
Introductory R Tutorial 1: Basics

Shane T. Mueller shanem@mtu.edu Michigan Technological University

2020-05-28

Return to main site | Lesson 1 | Lesson 2 | Lesson 3 | Lesson 4 | Lesson 5
Download Lesson 1 files here

Annotation with hypothes.is

You can share annotations, questions, and answers on any of these pages using hypothes.is. Use this link to
join the group

Goals
The goals of the first session are to familiarize you with R and R studio. After installing these separate
systems, you will learn:

• What the console is and using it as a simple calculator
• Mathematical expressions and functions
• What the editing pane does
• What packages are and how to use them
• How to use help
• How to use R Markdown to create reports and web pages of your analyses.

R Studio
R Studio is created by a company that has created a professional frontend for R. They license the R studio
with an open-source license, but also sell support and several server and other things that some people pay for.
It has become one of the most important popularizers of R, and the default front-end that most people use.

You will probably need to download R and R studio separately. You can download R from our local MTU
server:

https://cran.mtu.edu/

And download R studio from the R studio page:

https://rstudio.com/products/rstudio/download/

When you load R studio, it will look something like this. There are four panels or panes. Today, we will
focus on three: the editing pane, the console pane, and the help/packages pane.

The R console and R expressions
Overview
At the bottom left of the screen is the console, where the ‘R’ interpreter lives. It is basically a calculator. Try
typing in an expression like 3+5 at the ‘>’ prompt (don’t type the ‘>’ symbol):

1

http://shanetmueller.info
mailto:shanem@mtu.edu
index.html
Lesson1.html
Lesson2.html
Lesson3.html
Lesson4.html
Lesson5.html
downloads/Lesson1.zip
http://hypothes.is
https://hypothes.is/groups/zE1RgRBZ/mtu-acshf-r-workshop
https://hypothes.is/groups/zE1RgRBZ/mtu-acshf-r-workshop
https://cran.mtu.edu/
https://rstudio.com/products/rstudio/download/

Figure 1: Screenshot of R studio

2

> 3+5
[1] 8

You can see that the expression evaluates to 8, and that value is printed in the console. We say that the
expression evaluates to or returns the value of 8, because that value can be used by something else, including
a more complex expression. The [1] indicates that a single number is returned, and you can safely ignore that
for now. Everything you do will be executed by an interpreter, often the one in this console, but sometimes
one running behind the scenes. You can run the R interpreter without using R studio. It can be run on
web servers to make dynamic web analytics. It runs inside other graphical analysis programs like JASP
and JAMOVI. You can type commands into the console, or have it read and process files to run a series of
commands. The web page you are currently looking was made by an R interpreter working behind the scenes
to process a file. Unlike many statistical programs for which a data table is the central focus, in R the console
and its interpreter is.

Exercises
Try to do the following and determine what happens:

• enter a number
• Enter a simple mathematical expression using numbers, and the following operations +-/*
• Use parentheses to force calculation in different orders: 3+(4*5) versus (3+4)*5. Pay attention to how

R inserts the closing parenthesis automatically.
• Enter an incomplete expression like 3+ 4 +. Try to complete the expression after you hit enter.
• Enter a the quoted text ‘hello world’ and “hello world”. Pay attention to how R studio inserts the

closing quote.
• type hello world into the console, without any quotes.
• Try to enter an expression with an extra or missing opening or closing parenthesis.

Summary
At its core, R is a complex calculator called an interpreter. You can use it to do complex operations on data,
but it works, at its core, very much like your pocket calculator.

Basics of R Functions
Overview
R also has functions that will do more complex operations. A function has a name, and it is called by writing
the name of the function followed by (), and an expression can usually be put inside the parentheses. One
useful function is round(), and you can use it like this:

> round(3.36)
[1] 3

Functions have multiple arguments, these arguments have both an order and names. Furthermore, many
of the arguments have default values. If you type the name of the function in the console, you can see its
definition, and especially the arguments it takes:

> round
function (x, digits = 0) .Primitive("round")

This shows that the round function takes two arguments. The first is called ‘x’, and the second is called
‘digits’. Digits has a default value of 0, so when we used round previously, it used a digits value of 0, which is
why it rounded to the nearest digit. In R, if a function is called with arguments without names, it binds
them in the order they are applied. So, if I type the following, it knows the first number is bound to ‘x’ and
the second number is bound to ‘digits’:

3

> round(13.3245,1)
[1] 13.3

We cannot call round without an x value, but we can call round with named arguments instead of using the
default slots. When doing this, we can call them in any order we want, or start naming non-default arguments
after we provide the default ones. And the first default argument will be bound to the first un-named value
given. Notice that when naming arguments, R will be satisfied with partial matching; if you get the first
characters of an argument right, and it is enough to distinguish it from other arguments, it will succeed

Here are some examples to try:

> round(digits=3,x=3145.1)
[1] 3145.1
> round(393.313414,digits=-2)
[1] 400
> round(digits=3,3145.1)
[1] 3145.1
> round(x=3552.5252, d =-1)
[1] 3550

R functions will also fail when used incorrectly. This is usually to help you get the right results; if instead of
failing they tried to guess what you wanted, you would never know if the guess was wrong. This sometimes
includes checking for missing values, arguments used multiple times, giving the wrong number of arguments,
and giving the wrong type of argument.

Exercises
Try each of the following. Identify what you think will happen before you enter the command, and see if you
are right. Some of these will produce errors. If an error is produced, explain why the error occurred.

• give the x argument of round as a more complex expression including several terms.

• Run the function hello() by typing it into the console.

• Try running each of the following. Before each one, predict what should happen and whether it will
lead to an error. Some of these look like dumb mistakes, but they will all happen if you use R.

• round(13.5, 3, 9)

• round(13.12515,2,x=5)

• round(13.12515,digit=3,digits=1)

• round(x=12.22,x=15.33)

• round("hello",3)

• round(digits=5)

Summary
Functions are very powerful, and we will later learn how to make them ourselves, which will help you repeat
complex operations without copy/pasting, and to generalize analyses so you can apply them to multiple data
sets. For now, it is enough to know how to use them.

The editing pane
Basic file management
In the upper left of the screen is an editor, and you might even have this file open in it. You can have a
number of documents open in different tabs. We will focus on two types of documents you might use.

4

• Files with a .R extension include a series of commands that can get run in sequence
• Files with an .Rmd extension (like this one) mix simple ‘markdown’ and blocks of R code to generate

reports.

We will deal with markdown at the end of this lesson. For now, we want to create an .R file and enter some
calculations and expressions in the file.

When you enter different expressions into an R script file, you can run the entire file, or parts of the file by
selecting the region you want to run. This is helpful in debugging or testing. It is a good practice to work
within an .R file instead of the console, so you always have a record of what you are doing.

Any line that starts with # is ignored in the console and the script file. And anything that follows the # on
a line. You can use this to make comments to help you remember what you have entered.

Exercise:

• Go to File|New File| R Script
• This will open up a file called ‘Untitled1.R’
• Save this in a convenient place with a convenient name, but be sure to have a .R extension.
• Move to that empty document
• Enter several mathematical expressions onto separate lines of that file
• Add a comment using the # on the line before an expression.
• Add a comment using the # at the end of a line.
• Save the file.

Executing code from a file.
Even before you save the file, you can execute a line by selecting it and hitting -> run, or selecting a region
and hitting ctrl-enter. There are actually many ways of sending code to the console though–look at the Code
menu under the Run section for some other options. You can also use ctrl-shift-enter for running the entire
file. source() loads the file in the background.

Exercises

• Select an expression and hit the ->Run button at the top or ctrl-enter. What happens?
• Unselect everything and hit the ->Run button or ctrl-enter. What happens?
• Try hitting the ‘source’ button. Does it look like anything happened?
• Compare ctrl-enter and ctrl-shift-enter when selecting different regions of the file. What happens?

Summary and tips
It is important to be systematic about saving what you are doing so it can be redone later. You should
always aim to be able to completely re-run the steps you take to accomplish something based on a series
of commands saved in your file. Because you can work simultaneously in the console and a .R file, it is a
common mistake to do something in the console, or mix up the order of something in your file, and then
when you return to it later, it will not work. You should also start developing good habits about how you
save and name these files, separate them from data, and document what you are doing in the files using #
comments. You will thank yourself later when you can return to an analysis you did in the past and be able
to jump in and know what is going on.

R Packages/libraries
Overview
One of the advantages of R is that it gives you access to thousands of special-purpose packages that help you
do specific analyses. There are many advanced techniques that are available first as R packages, or only as R

5

Figure 2: R Studio packages pane

packages, and the commercial packages are lagging or lacking.

The built-in or installed packages you have are avialable in the ‘Packages’ tab on the lower right. There are
websites that list many of them, but if you know the name of the package, you can hit the ‘install’ button,
enter the name, and it will download and install for you. You can also run the function install.packages(),
giving it the text name of the package you want to install.

We will try to install the ‘fortunes’ package. Try typing fortunes into the packages|install entry, or enter the
following into the console, which should produce the following output:

install.packages("fortunes")

Installing package into ‘/home/smueller/R/x86_64-pc-linux-gnu-library/3.6’
(as ‘lib’ is unspecified)
trying URL 'https://cloud.r-project.org/src/contrib/fortunes_1.5-4.tar.gz'
Content type 'application/x-gzip' length 192938 bytes (188 KB)
==
downloaded 188 KB

* installing *source* package ‘fortunes’ ...
** package ‘fortunes’ successfully unpacked and MD5 sums checked
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (fortunes)

The downloaded source packages are in
‘/tmp/RtmpxuCwVJ/downloaded_packages’

You can download as many packages as you want, but they will not be accessible to you until you load them.
If you look through the packages pane for ‘fortunes’ you will see that it does not have a checkmark beside it.
If you click on the checkmark, you will see that the text library(fortunes) appears in the console. Instead
of clicking the checkmark, you could alternately type this into the console, or put it at the top of your .R file.

6

Exercises
• Install the ‘cowsay’ library, and add text to your .R file to do this whenever you run that file.
• Also load ‘fortunes’ at the beginning of your .R file using the appropriate text.
• Run the file with ‘source’ to load these two libraries.

Summary
The R packages system are one of the most powerful and exciting parts of R. It is one of the things that
truly separates it from most competition. For almost any analysis or statistic you want to perform, there are
likely to be one or more packages out there that do what you want. The trick is figuring out how to use
them, which is why we rely on the help system.

The Help system

Figure 3: R Studio help pane

7

Overview
We have loaded two libraries, but we have no idea what they do or how to use them. Luckily, there is
extensive help within R. Navigate to the fortunes line in the packages tab, and click on the blue link to get
help. Alternately, you can type ?fortunes or help(fortunes). These will open up the help file in the help tab.
If we do that, the documentation below is displayed in the help panel for the library, which looks like this.
This tells us all the functions that the library provides:

Documentation for package ‘fortunes’ version 1.5-4
DESCRIPTION file.
User guides, package vignettes and other documentation.

Help Pages
fortune R Fortunes
fortunes R Fortunes
print.fortune R Fortunes
read.fortunes R Fortunes
toLatex.fortune R Fortunes

If you click on fortune or type help(fortune), it will send you to a specific help file for that function:

help(fortune)

R Fortunes
Description
Read and print R fortunes.

Usage
fortune(which = NULL, fortunes.data = NULL, fixed = TRUE,

showMatches = FALSE, author = character(), ...)
S3 method for class 'fortune'
print(x, width = NULL, ...)
read.fortunes(file = NULL)

The help gives more details about the arguments and the value (what is returned from the function.) We can
see that fortunes provides a function called fortune(), and the fortune() function takes a number of arguments,
although none are are needed. The =NULL tells us that the default value is NULL, and so it is really not
needed. This should give you all the information you need to run a library function. Usually, examples are
also provided in the help file.

Sometimes when you search for a function help using ? or ??, you will get to a page within the library but
not the one you want. You can usually scroll to the bottom of that help page to find an ‘index’ link which
will take you to the main help for a package.

Exercises
• Look at the help for fortunes and try running fortune() in the console several times, with different

arguments.
• Find the help for the cowsay library.
• Determine what functions are provided by the cowsay library.
• Look at the cowsay tutorial linked from the library’s help.
• Determine the function cowsay provides and find the help page for that function.
• Try out different arguments for this function identified by the help.

8

Summary
If you don’t know how to use a function, or it does not seem to be working as expected, the first place to
look is the help. This sounds obvious, but I have learned that it is not always. When using a new library, I
often have to pause in the middle of an analysis, work through some examples in the help in order to test
how the function works, and then return to the analysis more confident in how to apply the function I am
interested in.

R Markdown
Overview
We looked at creating .R files earlier. The web page you are probably reading is generated from another kind
of file, called a markdown file. It is similar to an R file but has an extension of .Rmd. Open the Lesson1.Rmd
file and see what it looks like.

R Markdown files must end in the Rmd extension, and start with some header information that looks like
this:

title: "Introductory R Tutorial 1: Basics"
author: Shane Mueller
date: July 4, 1776
output:

word_document:

I have a lot more options in the current file to allow me to make the special html page and pdfs, and auto-date
the document. Following this header, you can add formatted text using simple markdown code–which is how I
have used this so far. Using the ‘knit’ button, you can choose how you want the markdown formatted–without
installing additional packages, you probably can knit to a .docx file or a plain .html file, but .pdf and fancier
.html are also possible.

There are detailed tutorials in using markdown to format text, and for basic support, just go to the Help|R
Markdown Quick Reference and some markdown examples are shown in the help pane.

However, more interesting is that you can embed R code in a markdown file, and it will run the code and
display the output to the generated file. You specify it with the following pattern:

Figure 4: Example markdown used in this document

We can see that in the following code block, the code and the results of each line are printed in the final
document.
library(cowsay)
3

[1] 3

9

3+5

[1] 8
round(1314.3, -2)

[1] 1300
say("hello there")

##

hello there

\
\
\
|___/|
==) ^Y^ (==
\ ^ /
)=*=(
/ \
| |
/| | | |\
\| | |_|/\
jgs //_// ___/
_)
##

Within R, you can hit the green ‘play’ button for any code block and see the result. You will need to load
any library in document if you plan on using it, even if you have loaded in in your console, because the
markdown creates a fresh R instance to generate the document.

Exercises
• Open up the markdown file used to create this web page. Examine the different markdown codes and

compare to the web page or pdf file it created.

• Navigate to the code block in the section above and run it within the Rstudio window using the play
button.

• Create your own new markdown file from the File|New File| R Markdown menu. Consult the quick
reference for more guidance. Some things to try:

• Add your name, a title and some text.

• Create a section with a header

• Make an ordered and unordered list

• Add a link to a web page

• Add a link to an image file you have found on the web.

• Make a block of code and enter some calculations or functions into a code block.

At each step, knit the file into a word document and open that document to see your progress and to be sure
you have not made any errors.

10

Summary
Using markdown is very powerful, and gives the ability to document what you are doing, create reports, and
also create the basis for a report that easily gets edited to a shorter version you may give a client.

Conclusions
The concepts we learned today cover how to use the basic aspects of R. You will use most of these all the
time, and so most tutorials forget to explain these basics to new users.

11

	Goals
	R Studio
	The R console and R expressions
	Overview
	Exercises
	Summary

	Basics of R Functions
	Overview
	Exercises
	Summary

	The editing pane
	Basic file management
	Exercise:

	Executing code from a file.
	Exercises

	Summary and tips

	R Packages/libraries
	Overview
	Exercises
	Summary

	The Help system
	Overview
	Exercises
	Summary

	R Markdown
	Overview
	Exercises
	Summary

	Conclusions

