
Introductory R Tutorial 3: Filtering and Plotting

Shane T. Mueller shanem@mtu.edu Michigan Technological University

2020-05-28

Return to main site | Lesson 1 | Lesson 2 | Lesson 3 | Lesson 4 | Lesson 5
Download Lesson 3 files here

Annotation with hypothes.is

You can share annotations, questions, and answers on any of these pages using hypothes.is. Use this link to
join the group

Filtering and plotting: Goals
The goals of this session are to introduce you to data handling and visualization. We will start by looking a
plotting, which you are now ready to learn because you have understood data types and functions.

The main topics covered will include:

• Making simple plots of data
• Filtering rows of data/cases.
• Overlaying plots with filtered data.
• Combining multiple filters with logical operations

Plotting a single data variable
A real data set
The data file physio.csv was collected from a system that records heart rate, breathing rate, and skin
temperature and writes this to a file every 15 seconds. We will look at just the first few rows of the data here,
using the head() function:
data <- read.csv("physio.csv")
head(data)

date time HR BR tempC position ambulation Alert PWI
1 6/11/2018 0 98 21 29.6 Side Stationary Blue Blue
2 6/11/2018 15 128 21 28.4 Unknown MovingSlowly Blue Blue
3 6/11/2018 30 178 22 30.1 Supine MovingSlowly Blue Blue
4 6/11/2018 45 179 27 32.2 Unknown MovingFast Blue Blue
5 6/11/2018 60 184 32 32.4 Unknown MovingSlowly Blue Blue
6 6/11/2018 75 170 36 32.3 Upright Stationary Blue Blue

It actually recorded a number of other columns, but I have deleted these to make them easier to manage.
Along with a time counter in seconds, it records a body position and a classification of whether the participant
was moving or not (in this data, they wer always Stationary). It also provides some categories for whether
the person has high physio measures which could be of a concern, but because this was always stationary,
that is not a problem.

1

http://shanetmueller.info
mailto:shanem@mtu.edu
index.html
Lesson1.html
Lesson2.html
Lesson3.html
Lesson4.html
Lesson5.html
downloads/Lesson3.zip
http://hypothes.is
https://hypothes.is/groups/zE1RgRBZ/mtu-acshf-r-workshop
https://hypothes.is/groups/zE1RgRBZ/mtu-acshf-r-workshop

Inspecting the data
We already know how to select a specific variable using the $ operator. For example, we can look at the
temperature:
data$tempC

[1] 29.6 28.4 30.1 32.2 32.4 32.3 32.4 32.5 33.6 32.6 32.6 32.6 32.7 32.7 32.7 32.8 32.8 32.8 32.8 32.8 32.9 32.9 31.0
[24] 31.1 29.9 30.5 30.4 33.1 33.1 33.1 33.1 33.2 33.2 33.2 33.2 33.3 33.2 33.3 33.4 33.4 33.4 33.5 33.5 33.6 33.6 33.6
[47] 33.6 33.6 33.7 33.7 33.7 33.7 33.8 33.8 33.9 33.9 33.9 33.9 33.9 33.9 33.9 36.4 36.5 34.1 34.1 34.1 34.1 34.2 34.1
[70] 34.2 34.2 34.2 34.2 34.3 34.3 34.3 34.3 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.5 34.5 34.5 34.5 34.5 34.6 34.6
[93] 34.6 34.6 34.6 34.6 34.6 34.6 34.7 34.7 34.7 34.7 34.7 34.7 34.8 34.7 34.7 34.7 34.8 34.8 34.8 34.8 34.8 34.8 34.8
[116] 34.9 34.9 34.9 34.9 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.1 35.1 35.1 35.1 34.2 35.1 35.2
[139] 35.2 35.2 35.2 35.2 35.2 35.2 35.3 35.3 35.3 35.3 35.3 35.3 35.3 34.4 32.9 32.6 32.3 32.0 31.7 31.5 31.4 31.4 31.3
[162] 31.3 31.2 31.2 31.0 31.0 30.9 30.9 30.0

However, it is hard to see if there is a pattern here.

The plot() function
We can use the plot() function to make a simple plot. Notice the arguments for the code block to fix the size
of the figure.
plot(data$tempC)

0 50 100 150

30
32

34
36

Index

da
ta

$t
em

pC

What we didn’t probably see in the numbers that after a sharp rise, the skin temperature slowly increases
throughout the session, and then fell sharply. There are also some nosy data, and an area around sample 25
where maybe the sensor was removed or adjusted for a minute. But how long is the session? Maybe if we
plot by time, that would be easier. We can give the plot function two arguments, and it makes an x/y plot.
We will divide time by 60 to give it as time in minutes, so it is easier to comprehend.

2

plot(data$time/60,data$tempC)

0 10 20 30 40

30
32

34
36

data$time/60

da
ta

$t
em

pC

Ok, we can see that this occurred over a 35-minute session. But the plot looks ugly. It has no title, no
readable axis labels, and it plots in black open circles.

Exercise 1.

Look up the the plot and the par functions in the help, and create a new plot that includes axis labels, a
main label, changes this to a line plot or a line + symbol plot, changes the symbol being plotted, and changes
the color being plotted.

Selecting rows from a data frame
Our initial plot of the data looks fine, but there are some obvious problems: it appears to include data at the
beginning and the end which is bad–probably the sensor had not yet been put on, and then it was taken off
before we stopped collecting data. Also, there are some points that look like blips; probably sensor errors or
something we might want to clean up.

We’d like to restrict the data to just the values we think are valid, How might we do that? Here are some
ideas, and we might have to do all of them.

• Try to select a range of rows from the middle, cutting out the ends.

• Count the time periods/indexes of the bad data, and figure out a way to remove them. This is a bit
tedious, and would not help us a lot if we needed to handle dozens of these data sets, but it is likely to
work, as long as we don’t make mistakes. But we are likely to make mistakes.

• Figure out a valid range of temperatures, and throw out any data outside that range–maybe 32 to 35.
This will work for the initial data and some of the noisy data, but not for all the data points, which are
noisy but within the range.

3

• Come up with a rule for detecting outliers, like if the change between two data points is large, and
filter these out. This might work for the pops, but maybe not for the smooth decline at the end.

We will try a few different approaches to explore filtering options.

Selecting rows by row index
The first option is to simply figure out the middle range and use that. Just like we used the [] to select a
single row or column of a matrix, we can select a range. We might guess that we want to keep rows 4 through
150. We can put the sequence of rows, and then a comma, indicating we want to keep all the columns, but
only access a subset of rows. Here, I create a new data frame by selecting the rows using this method.
data2 <- data[4:150,]

par(las=1) ##This turns the temperature numbers horizontal
plot(data2$time/60,data2$tempC,

xlab="Time (m)",ylab="Temperature (c)",
main="Skin temperature over time: Filtering out the ends",
pch=16, type="o",
col="navy", bty="L", lwd=2, cex=.75)

grid()

0 10 20 30

30

31

32

33

34

35

36

Skin temperature over time: Filtering out the ends

Time (m)

Te
m

pe
ra

tu
re

 (
c)

That looks a lot better, but I’m not going to be able to get rid of the pops that easily. To to that, I can
count the indexes I want to remove. To make it easier, I will first create a list of the indexes to remove, and
then use another filter method to make a logical vector of 169 T/F values, so we can filter out, or plot things
differently, and apply the same filter to all of the data variables in the data frame.

First, I will record the rows that are bad in a vector. Then I will make a vector of boolean values that are all
TRUE. Next, I need to do something we haven’t done before which can look like black magic to new users. I

4

will select rows on the left side of the assignment operator, and assign F to those values. If I plot this vector,
we can see it jumps between 0/1 or F/T, with a few F and mostly T values.
badrows <- c(1:3,9, 23:28,44,62,63,137,150:169)
keep<- rep(T,169)
keep[badrows] <- FALSE
plot(keep,type="s",xlab="Data row",ylab="Value of keep",yaxt="n",bty="L")
axis(2,c(0,1),c("FALSE","TRUE"))

0 50 100 150

Data row

V
al

ue
 o

f k
ee

p

FA
LS

E
T

R
U

E

data2 <- data[keep,]

par(las=1) ##This turns the temperature numbers horizontal
plot(data2$time/60,data2$tempC,

xlab="Time (m)",ylab="Temperature (c)",
main="Skin temperature over time: Filtering by hand",
pch=16, type="o",
col="navy", bty="L", lwd=2, cex=.75)

grid()

5

0 10 20 30

32.5

33.0

33.5

34.0

34.5

35.0

Skin temperature over time: Filtering by hand

Time (m)

Te
m

pe
ra

tu
re

 (
c)

Here, we seemed to catch the right values. If you look carefully, you will see that the line gets connected
seamlessly over the missing data, because we have simply edited it out. But I also made at least one mistake:
I missed a bad data point near the end. Did I miscode any others and remove them incorrectly? Clearly, I
might not know unless I check.

To do this, lets think about filtering differently. What if we plotted every value, but changed the color of
ones we remove? To do this, we need a vector of color names–one for each of the data rows. To do this, we
will use the filter we just made, which is a bunch of TRUE/FALSE values. We would like a bunch of ‘navy’ and
red values maybe, which we can put in a new vector, and use the [] to select from that. But here we will use
another trick–we can specify the same row multiple times when we use the selection. Let’s say we wanted 5
“navy”, 4 “red”, and 3 “navy” in a row. We can do that like this:
colors <- c("navy","red")
colors[c(1,1,1,1,1,2,2,2,2,1,1,1)]

[1] "navy" "navy" "navy" "navy" "navy" "red" "red" "red" "red" "navy" "navy" "navy"

Now it is just a matter of turning the T/F filter vector into 1/2 values. Remember that F=0 and T=1, so we
can just add 1 to the filter and get what we want. However, we will need to reverse the colors vector.
colors <- c("red","navy")
colorvec <- colors[keep+1]
colorvec

[1] "red" "red" "red" "navy" "navy" "navy" "navy" "navy" "red" "navy" "navy" "navy" "navy" "navy" "navy" "navy"
[17] "navy" "navy" "navy" "navy" "navy" "navy" "red" "red" "red" "red" "red" "red" "navy" "navy" "navy" "navy"
[33] "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "red" "navy" "navy" "navy" "navy"
[49] "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "red" "red" "navy"
[65] "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy"
[81] "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy"
[97] "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy"

6

[113] "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy"
[129] "navy" "navy" "navy" "navy" "navy" "navy" "navy" "navy" "red" "navy" "navy" "navy" "navy" "navy" "navy" "navy"
[145] "navy" "navy" "navy" "navy" "navy" "red" "red" "red" "red" "red" "red" "red" "red" "red" "red" "red"
[161] "red" "red" "red" "red" "red" "red" "red" "red" "red"

Now, we can give the function this vector in the color argument, instead of a single value of ‘navy’.
par(las=1) ##This turns the temperature numbers horizontal
plot(data$time/60,data$tempC,

xlab="Time (m)",ylab="Temperature (c)",
main="Skin temperature over time: Filtering by hand",
pch=16, type="o",
col=colorvec, bty="L", lwd=2, cex=.75)

grid()

0 10 20 30 40

30

32

34

36

Skin temperature over time: Filtering by hand

Time (m)

Te
m

pe
ra

tu
re

 (
c)

That looks pretty good, and it shows the values we removed, and at least a few we removed incorrectly, and
the one we didn’t remove. However, there is something about the line that I don’t like. What I’d like is to
have the smooth line we used before, but to plot the red/blue points as well.

Plotting multiple layers
To do this, we will use one of the nice features of R plotting–overlaying. Overlaying lets you build a plot layer
by layer. This is exactly how we made the grid on top of the function. The points() function works just
like the plot() function, but it does not plot axis or axis labels, and plots on top of the plot we previously
made. Our strategy here will be to make the plot we just made with plot, but without the lines. Then we
will add lines connecting the data we did no not want to throw out. Although the filter is wrong, we will
keep using that same filter for now. Instead of making a new filtered data set, we will just filter it directly in
the points command. I will also use the [keep+1] filter trick for point size and symbol.

7

par(las=1) ##This turns the temperature numbers horizontal
plot(data$time/60,data$tempC,

xlab="Time (m)",ylab="Temperature (c)",
main="Skin temperature over time: Filtering by hand",
pch=c(5,16)[keep+1], type="p",
col=c("red","navy")[keep+1], bty="L",
cex=c(1,.5)[keep+1])

grid()
points(data[keep,]$time/60,data[keep,]$tempC,type="l",lwd=1.5,col="grey")

0 10 20 30 40

30

32

34

36

Skin temperature over time: Filtering by hand

Time (m)

Te
m

pe
ra

tu
re

 (
c)

This helps me see both the main pattern of data, and the filtered points clearly.

Filter by a calculation
Finally, maybe we want an automatic outlier detection instead of the one by hand. We could maybe combine
that with a hand-coded start/end filter. An easy filter is to look at the change between any pair of points. To
do this, we can subtract each data point from the previous row, and take the absolute value. We can remove
a single row with the [] by referring to the index with a negative value, which we need to do to accomplish
this. That will be one row too short, so we will add a single T at the beginning. Maybe we will try to remove
any points that change by .2 or more. I will reverse the remove vector by using the negative operator !, and
combine several filters with the & operator. We will look at any value that differs from the one before AND
the one after by .2 or more, and remove it.
remove.for <- c(abs(data$tempC[-1]-data$tempC[-nrow(data)]) >.2,T)
remove.back <- c(T,abs(data$tempC[-nrow(data)]- data$tempC[-1]) >.2)
remove.ends <- rep(F,nrow(data))
remove.ends[1:3] <- T
remove.ends[155:169] <- T

8

keep <- ! ((remove.for & remove.back) | remove.ends)

keepTemp <- data$tempC < 36 & data$tempC > 32

keep <- keep & keepTemp

par(las=1) ##This turns the temperature numbers horizontal
plot(data$time/60,data$tempC,

xlab="Time (m)",ylab="Temperature (c)",
main="Skin temperature over time: Using multiple filters",
pch=c(5,16)[keep+1], type="p",
col=c("red","navy")[keep+1], bty="L",
cex=c(1,.5)[keep+1])

grid()
points(data[keep,]$time/60,data[keep,]$tempC,type="l",lwd=.5,col="grey")

0 10 20 30 40

30

32

34

36

Skin temperature over time: Using multiple filters

Time (m)

Te
m

pe
ra

tu
re

 (
c)

This removes most of the bad data, but not the regions around minute 7 and 15. How might we handle those?

Exercise 2

The samples near minute 7 are all less than 31.5, which is 88.7 F; clearly too low for valid data. Similarly,
near minute 15, there are two measures above 36, which is higher than all of our data by a large amount.
Create another filter based on normal temperature range of 31.5 to 36, and use that to remove any outlying
data points.

9

Plotting multiple variables from a data frame
We’d like to plot the heart rate and breathing rate data as well. Luckily, although these are different measures,
they all fall into a similar range, so we can plot them all on one figure. The matplot function is helpful for
doing this–it plots several series of data as distinct lines. But we need to select the columns we want first.
We can use the [] operator, and maybe just select the columns we want, which would be data[,3:5], but it
might be more foolproof to select by the name of the variables. We can do that too:
data2 <- data[c("HR","tempC","BR")]
matplot(data$time/60,data2,type="l",lty=1)
grid()

0 10 20 30 40

0
50

10
0

15
0

data$time/60

da
ta

2

This needs to be cleaned up as well, For now, let’s just filter out the beginning and end points, but we’d
like to truncate the range so it doesn’t go above 100 as well. Finally, we’d like a legend to know what the
different series are. We will filter a slightly different way this time
keeprows <- 1:169
matplot(data$time[keeprows]/60,data2[keeprows,],type="l",lty=1,

ylim=c(0,110), lwd=1.5,
xlab="Time in study (min)",ylab="Measured value")

10

grid()

legend(6,110,c("Heart rate/min","Temperature (c)","Breathing rate/min"),
lty=1,col=1:3,lwd=1.5,cex=.8)

0 10 20 30 40

0
20

40
60

80
10

0

Time in study (min)

M
ea

su
re

d
va

lu
e

Heart rate/min
Temperature (c)
Breathing rate/min

We can overlay a normal points plot on this. Remember that there is an indicator for each row called ‘Alert’,
which is either Blue, Green, Yellow, or Red. This gets read in as a factor:
data$Alert

[1] Blue Blue Blue Blue Blue Blue Blue Blue Blue Blue Blue Blue Blue Blue Blue Green
[17] Green Green Green Blue Green Blue Green Green Green Green Green Blue Green Green Green Green
[33] Blue Green Blue Green Green Green Green Green Green Green Blue Blue Blue Blue Blue Blue
[49] Green Green Green Green Green Blue Blue Green Green Green Blue Blue Blue Blue Blue Blue
[65] Blue Blue Blue Blue Blue Blue Green Green Green Green Green Green Green Blue Blue Blue
[81] Blue Blue Green Green Green Green Green Green Green Green Green Green Green Green Green Green
[97] Green Blue Blue Blue Blue Blue Green Green Green Green Green Blue Green Green Green Blue
[113] Blue Blue Green Green Green Green Green Green Blue Green Green Blue Green Blue Green Blue
[129] Blue Blue Blue Blue Green Green Green Green Green Blue Blue Blue Green Green Blue Blue
[145] Blue Blue Blue Blue Green Green Green Red Green Yellow Blue Blue Yellow Yellow Yellow Yellow

11

[161] Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow
Levels: Blue Green Red Yellow

We can convert these to characters and use them directly for the color. However, since these are factors, they
have an implicit order, and we can use the same trick we used before for color and point size, but use the
factor level as an index. Then we could use a different set of colors. For example, the default green is almost
lime, and I like to use dark green. Here are two methods, both plotted near the bottom.
colors1 <- as.character(data$Alert)
colors2 <- c("blue","darkgreen","red","orange")[data$Alert]

keeprows <- 1:169
matplot(data$time[keeprows]/60,data2[keeprows,],type="l",lty=1,

ylim=c(0,110), lwd=1.5,
xlab="Time in study (min)",ylab="Measured value")

grid()

legend(6,110,c("Heart rate/min","Temperature (c)","Breathing rate/min"),
lty=1,col=1:3,lwd=1.5,cex=.8)

points(data$time[keeprows]/60,
rep(5,length(keeprows)),
col=colors2,pch=15,cex=.5)

points(data$time[keeprows]/60,
rep(0,length(keeprows)),
col=colors1,pch=15,cex=.5)

12

0 10 20 30 40

0
20

40
60

80
10

0

Time in study (min)

M
ea

su
re

d
va

lu
e

Heart rate/min
Temperature (c)
Breathing rate/min

Exercise 3

Use the keeprows variable to filter out the beginning and end of the data to remove bad data. Then, instead
of plotting the $Alert twice, plot both the $Alert and $PWI variables as separate strips near the bottom.
Finally, look up text() in the help, and label these two rows directly. Adjust the x and y range if necessary
to fit all the labels you need.

Scatterplots
We have actually been making scatterplots all along, but let’s try plotting HR by BR instead of time by HR
or time by BR;
plot(data$HR,data$BR,xlab="Heart rate",ylab="Breathing rate",

pch=16,cex=1.5)
grid()

13

0 50 100 150

0
10

20
30

40
50

Heart rate

B
re

at
hi

ng
 r

at
e

There seems to be some association here, but how much of it comes from the bad data?

Exercise 4

For the scatterplot comparing HR and BR, make a plot showing the bad data at the beginning and end as
red. Then, filter this out and make another plot. Use the command par(mfrow=c(1,2)) to plot two figures
on one page.

Exercise solutions
Exercise 1

Look up the the plot and the par functions in the help, and create a new plot that includes axis labels, a
main label, changes this to a line plot or a line + symbol plot, changes the symbol being plotted, and changes

14

the color being plotted.
par(las=1) ##This turns the temperature numbers horizontal
plot(data$time/60,data$tempC,

xlab="Time (m)",
ylab="Temperature (c)",

main="Skin temperature over time",
pch=16, ##Symbol to plot; 16 is filled circle
type="o", ##Use overplot of line and circle
col="navy", ##use navy blue; hundreds of color names are available
bty="L", ##Make box an L (axes only)
lwd=2, ##make line thick
cex=.75) ##make point size smaller

grid()

0 10 20 30 40

30

32

34

36

Skin temperature over time

Time (m)

Te
m

pe
ra

tu
re

 (
c)

Exercise 2

The samples near minute 7 are all less than 31.5, which is 88.7 F; clearly too low for valid data. Similarly,
near minute 15, there are two measures above 36, which is higher than all of our data by a large amount.
Create another filter based on normal temperature range of 31.5 to 36, and use that to remove any outlying
data points.

Here, the easiest thing to do is to count the indexes we want to remove, and set remove.ends to T for these.
remove.for <- c(abs(data$tempC[-1]-data$tempC[-nrow(data)]) >.2,T)
remove.back <- c(T,abs(data$tempC[-nrow(data)]- data$tempC[-1]) >.2)
remove.ends <- rep(F,nrow(data))
remove.ends[1:3] <- T
remove.ends[155:169] <- T

remove.outofbounds <- data$tempC>36 | data$tempC < 31.5

keep <- !((remove.for & remove.back) | remove.ends | remove.outofbounds)

par(las=1) ##This turns the temperature numbers horizontal

15

plot(data$time/60,data$tempC,
xlab="Time (m)",ylab="Temperature (c)",

main="Skin temperature over time: Filtering automatically",
pch=c(5,16)[keep+1], type="p",
col=c("red","navy")[keep+1], bty="L",
cex=c(1,.5)[keep+1])

grid()
points(data[keep,]$time/60,data[keep,]$tempC,type="l",lwd=.5,col="grey")

0 10 20 30 40

30

32

34

36

Skin temperature over time: Filtering automatically

Time (m)

Te
m

pe
ra

tu
re

 (
c)

Exercise 3

Use the keeprows variable to filter out the beginnig and end of the data to remove bad data. Then, instead of
plotting the Alert twice, plot both the Alert and PWI variables as separate strips near the bottom. Finally,
look up text() in the help, and label these two rows directly. Adjust the x and y range if necessary to fit all
the labels you need.
##Make separate colers for Alert and PWI.
colors1 <- c("blue","green","red","orange")[data$Alert]
colors2 <- c("blue","green","red","orange")[data$PWI]

##Filter out before row 10 and after 150:
keeprows <- 10:150

##Make the regular plots:
matplot(data$time[keeprows]/60,data2[keeprows,],type="l",lty=1,

ylim=c(0,110), xlim=c(0,40),
lwd=1.5,
xlab="Time in study (min)",ylab="Measured value")

16

grid()

legend(6,110,c("Heart rate/min","Temperature (c)","Breathing rate/min"),
lty=1,col=1:3,lwd=1.5,cex=.8)

##Make the strips of points at the bottom at rows 5 (Alert) and 0 (PWI)
points(data$time[keeprows]/60,

rep(5,length(keeprows)),
col=colors1,pch=15,cex=.5)

points(data$time[keeprows]/60,
rep(0,length(keeprows)),
col=colors2,pch=15,cex=.5)

##Use text to label the rows at the bottom.
text(0,5,"Alert")
text(0,0,"PWI")

17

0 10 20 30 40

0
20

40
60

80
10

0

Time in study (min)

M
ea

su
re

d
va

lu
e

Heart rate/min
Temperature (c)
Breathing rate/min

Alert
PWI

Exercise 4

For the scatterplot comparing HR and BR, make a plot showing the bad data at the beginning and end as red.
Then, filter this out and make another plot. Use the command par(mfrow=c(1,2)) to plot two figures on one
page.

This should be pretty straightforward. We will reuse one of the filter methods we tried before. I also overlaid
two points–a filled and unfilled, to give an outline look.
keep <- rep(F,nrow(data))
keep[10:150] <- T

par(mfrow=c(1,2))
plot(data$HR,data$BR,xlab="Heart rate",ylab="Breathing rate",

main="All data",
pch=16,cex=1.5,col=c("grey80","red")[2-keep])

grid()
points(data$HR,data$BR,pch=1,cex=1.5,col="black")

plot(data$HR[keep],data$BR[keep],xlab="Heart rate",ylab="Breathing rate",

18

pch=16,cex=1.5,col="grey80",
main="Excluding bad data")

grid()
points(data$HR[keep],data$BR[keep],pch=1,cex=1.5,col="black")

0 50 100 150

0
10

20
30

40
50

All data

Heart rate

B
re

at
hi

ng
 r

at
e

50 60 70 80 90 100
10

15
20

25
30

35

Excluding bad data

Heart rate

B
re

at
hi

ng
 r

at
e

It doesn’t look like there is much of a relationship.

19

	Filtering and plotting: Goals
	Plotting a single data variable
	A real data set
	Inspecting the data
	The plot() function
	Exercise 1.

	Selecting rows from a data frame
	Selecting rows by row index

	Plotting multiple layers
	Filter by a calculation
	Exercise 2

	Plotting multiple variables from a data frame
	Exercise 3

	Scatterplots
	Exercise 4

	Exercise solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

