
Introductory R Tutorial 4: Aggregating and Summarizing

Shane T. Mueller shanem@mtu.edu Michigan Technological University

2020-05-28

Return to main site | Lesson 1 | Lesson 2 | Lesson 3 | Lesson 4 | Lesson 5
Download Lesson 4 files here

Annotation with hypothes.is

You can share annotations, questions, and answers on any of these pages using hypothes.is. Use this link to
join the group

Aggregating and summarizing: Goals
The goals of this session are to introduce you to a few methods that help you aggregate data across conditions,
compute statistics across variables. These are powerful approaches for data management that are difficult or
impossible to do in many other stats packages, but are indispensible if you understand them.

This lesson covers a number of different functions that serve different purposes.

The summarize function
In Lesson 2, we looked at applying the mean, range, and sd to individual data columns of a data frame. This
is such a common thing to do that R has a built-in function to do this called summary. R’s function system is
object-oriented, so that there are actually many different summary functions (which are technically called
methods. When called on a data structure, R finds the right version of the function to run. If we have a data
frame (or vector or matrix), it calls a method that calculates a number of statistics on each column of data.

We will start by loading a fairly complicated data file that contains the play-by-play records of an NCAA
basketball game between Purdue and Michigan.
bball <- read.csv("basketball.csv")
head(bball)

game_id date home away play_id half time_remaining_half secs_remaining secs_remaining_absolute
1 401166238 2020-02-22 Purdue Michigan 1 1 20:00 2400 2400
2 401166238 2020-02-22 Purdue Michigan 2 1 20:00 2400 2400
3 401166238 2020-02-22 Purdue Michigan 3 1 19:34 2374 2374
4 401166238 2020-02-22 Purdue Michigan 4 1 19:34 2374 2374
5 401166238 2020-02-22 Purdue Michigan 5 1 19:19 2359 2359
6 401166238 2020-02-22 Purdue Michigan 6 1 19:19 2359 2359
description home_score away_score score_diff play_length win_prob naive_win_prob home_time_out_remaining
1 PLAY 0 0 0 0 0.6368015 0.5 4
2 Jump Ball won by Purdue 0 0 0 0 0.6368015 0.5 4
3 Matt Haarms Turnover. 0 0 0 26 0.6364613 0.5 4
4 Franz Wagner Steal. 0 0 0 0 0.6364613 0.5 4
5 Jon Teske missed Jumper. 0 0 0 15 0.6362600 0.5 4

1

http://shanetmueller.info
mailto:shanem@mtu.edu
index.html
Lesson1.html
Lesson2.html
Lesson3.html
Lesson4.html
Lesson5.html
downloads/Lesson4.zip
http://hypothes.is
https://hypothes.is/groups/zE1RgRBZ/mtu-acshf-r-workshop
https://hypothes.is/groups/zE1RgRBZ/mtu-acshf-r-workshop

6 Matt Haarms Block. 0 0 0 0 0.6362600 0.5 4
away_time_out_remaining home_favored_by shot_x shot_y shot_team shot_outcome shooter assist three_pt free_throw
1 4 3.5 NA NA <NA> <NA> <NA> <NA> NA NA
2 4 3.5 NA NA <NA> <NA> <NA> <NA> NA NA
3 4 3.5 NA NA <NA> <NA> <NA> <NA> NA NA
4 4 3.5 NA NA <NA> <NA> <NA> <NA> NA NA
5 4 3.5 18 11.48889 Michigan missed Jon Teske <NA> FALSE FALSE
6 4 3.5 NA NA <NA> <NA> <NA> <NA> NA NA
possession_before possession_after
1 <NA> Purdue
2 Purdue Purdue
3 Purdue Michigan
4 Purdue Michigan
5 Michigan Michigan
6 Michigan Michigan

We can see that this data file is pretty complex. To get a quick snapshot of what is going on in each column,
we can use summary:
summary(bball)

game_id date home away play_id half time_remaining_half
Min. :401166238 2020-02-22:330 Purdue:330 Michigan:330 Min. : 1.00 Min. :1.000 9:52 : 7
1st Qu.:401166238 1st Qu.: 83.25 1st Qu.:1.000 1:47 : 6
Median :401166238 Median :165.50 Median :2.000 0:42 : 5
Mean :401166238 Mean :165.70 Mean :1.573 1:12 : 5
3rd Qu.:401166238 3rd Qu.:247.75 3rd Qu.:2.000 0:05 : 4
Max. :401166238 Max. :332.00 Max. :2.000 1:25 : 4
(Other):299
secs_remaining secs_remaining_absolute description home_score away_score
Min. : 0 Min. : 0 Evan Boudreaux Defensive Rebound. : 12 Min. : 0.00 Min. : 0.00
1st Qu.: 419 1st Qu.: 419 Isaiah Livers made Free Throw. : 8 1st Qu.:11.00 1st Qu.:17.00
Median :1011 Median :1011 Official TV Timeout : 7 Median :27.00 Median :38.00
Mean :1069 Mean :1069 Trevion Williams missed Jumper. : 7 Mean :25.93 Mean :34.17
3rd Qu.:1739 3rd Qu.:1739 Trevion Williams Defensive Rebound.: 6 3rd Qu.:36.00 3rd Qu.:51.00
Max. :2400 Max. :2400 Foul on Sasha Stefanovic. : 5 Max. :63.00 Max. :71.00
(Other) :285
score_diff play_length win_prob naive_win_prob home_time_out_remaining away_time_out_remaining
Min. :-15.000 Min. : 0.000 Min. :0.00000 Min. :0.00000 Min. :3.000 Min. :1.000
1st Qu.:-13.000 1st Qu.: 0.000 1st Qu.:0.03636 1st Qu.:0.02794 1st Qu.:4.000 1st Qu.:3.000
Median :-10.000 Median : 1.000 Median :0.13642 Median :0.09205 Median :4.000 Median :4.000
Mean : -8.236 Mean : 7.236 Mean :0.26016 Mean :0.20035 Mean :3.924 Mean :3.506
3rd Qu.: -4.000 3rd Qu.:13.000 3rd Qu.:0.48149 3rd Qu.:0.36628 3rd Qu.:4.000 3rd Qu.:4.000
Max. : 4.000 Max. :33.000 Max. :0.72269 Max. :0.60416 Max. :4.000 Max. :4.000
##
home_favored_by shot_x shot_y shot_team shot_outcome shooter
Min. :3.5 Min. : 1.00 Min. : 2.089 Michigan: 88 made : 74 Trevion Williams: 25
1st Qu.:3.5 1st Qu.:24.00 1st Qu.: 6.267 Purdue : 74 missed: 88 Isaiah Livers : 19
Median :3.5 Median :25.00 Median :28.722 NA's :168 NA's :168 Zavier Simpson : 18
Mean :3.5 Mean :25.77 Mean :44.181 Franz Wagner : 15
3rd Qu.:3.5 3rd Qu.:27.00 3rd Qu.:83.764 Jon Teske : 14
Max. :3.5 Max. :47.00 Max. :90.867 (Other) : 71
NA's :168 NA's :168 NA's :168
assist three_pt free_throw possession_before possession_after
Zavier Simpson: 6 Mode :logical Mode :logical Michigan:165 Michigan:173

2

Jon Teske : 4 FALSE:122 FALSE:127 Purdue :163 Purdue :155
David DeJulius: 3 TRUE :40 TRUE :35 NA's : 2 NA's : 2
Franz Wagner : 3 NA's :168 NA's :168
Jahaad Proctor: 2
(Other) : 7
NA's :305

Take a look at the variables, and see what summary does for each one. The data file is very detailed, but
makes it difficult to understand anything. Using selection, we can plot home vs. away scores by time in
matplot
gametime = (2400 - bball$secs_remaining)/60
scores <- data.frame(MI=bball$away_score,

PU=bball$home_score)
matplot(gametime,scores,

col=c("gold","grey50"),type="l",lwd=2.5,lty=1,
xlab="Score by game minute",ylab="Points scored",main="Michigan at Purdue, 2-22-2020")

matplot(gametime,scores,
col=c("navy","black"),type="p",pch=16,add=T)

grid()

##Legend can't handle mixed colors, so we need to plot it twice:
legend(5,60,c("Michigan","Purdue"),pch=NA,lty=1,col=c("gold","grey50"),lwd=2,cex=1.5)
legend(5,60,c("",""),pch=16,lty=0,lwd=2.5,col=c("navy","black"),bty="n",cex=1.5)

3

0 10 20 30 40

0
10

20
30

40
50

60
70

Michigan at Purdue, 2−22−2020

Score by game minute

P
oi

nt
s

sc
or

ed

Michigan
Purdue

We’d also like to keep track of how many points were scored at each timepoint. Most of the time this will be
0, but sometimes 1, 2, or 3. The original data doesn’t have this in it. I’ll simply calculate the differential and
add it to our new data set. This is sort of like how we computed outliers in the body temp data set.
scoredelta <- rbind(c(0,0),

scores[-1,] - scores[-nrow(scores),])

matplot(gametime,scoredelta,col=c("navy","black"),type="h")

4

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

gametime

sc
or

ed
el

ta

newdat <- data.frame(gametime,
quarter = floor(gametime/10.001)+1,
points=scores,scores=scoredelta)

The rowSums, colSums, and apply

Now that we have some data, let’s say we want to know how many total points were scored, or know the total
score (MI+PURDUE) at any time point. Or the average score of both teams at each time point. Previously,
we did this with something like scores[,1]+scores[,2], but the rowSums and rowMeans functions do this easily
as well, and will work well if we more than two columns
plot(gametime, rowSums(scores),main="Total points (MI + PURDUE)",xlab="Game time",ylab="Total points")

5

0 10 20 30 40

0
20

40
60

80
12

0
Total points (MI + PURDUE)

Game time

To
ta

l p
oi

nt
s

Maybe we want to know the number of points scored during the game by each team. We can use colSums
colSums(scoredelta)

MI PU
71 63

These are special-purpose functions that apply the function (mean or sum) along all the rows or columns of a
matrix or data frame. What if we want to apply a different function, like standard deviation (sd)? We can
do the same thing with “‘apply”’, which takes the data frame/matrix, the dimension we want to apply to
(1=row, 2=column), and the name of the function
plot(apply(scores,1,sum),main="Using apply to calculate the sum of two columns")

6

0 50 100 150 200 250 300

0
20

40
60

80
12

0
Using apply to calculate the sum of two columns

Index

ap
pl

y(
sc

or
es

, 1
, s

um
)

##The sum of two rows:
apply(scoredelta,2,sum)

MI PU
71 63
apply(scoredelta,2,sd)

MI PU
0.6279320 0.5962719

The last one shows the standard deviation of the points earned on each possession change. We’d probably
want to filter out to calculate this just for each team’s own possessions, but that

Exercise 1:

For the following matrix of numbers might be a series of 10 observations made over time of 20 independent
participants. We can plot the entire noisy data using matplot. Find the mean, max, and min values of each
row, put them together in a data frame and plot them using matplot. Use the add=T argument to overplot
these onto the original data.
set.seed(10)
dat <- outer(10+c(1,1.5,1.6,1.9,2.0, 1.2,1.4,1.8,2.1,2.2), 2+runif(20)*1.5) + rnorm(200)*5

matplot(dat,pch=16,cex=.5,col="grey",type="o",lty=1,lwd=.3,
xlab="Time",ylab="Measured value")

7

2 4 6 8 10

15
20

25
30

35
40

45

Time

M
ea

su
re

d
va

lu
e

Computing tabulations and cross-tabulations with table
If we have a categorical variables, we often just want to know what the levels are, and how many of them are
there. We can use table for that, which will just create an integer vector with the counts of each category,
and label each row with the category name. IF we look at the description variable, there might be a lot of
unique descriptions of plays, but are there any repetitions? Let’s look. I will use order() to pick out only the
most common labels.
tab <- table(bball$description)
length(tab)

[1] 164
tab[order(-tab)[1:20]]

##
Evan Boudreaux Defensive Rebound. Isaiah Livers made Free Throw.
12 8
Official TV Timeout Trevion Williams missed Jumper.
7 7
Trevion Williams Defensive Rebound. Foul on Sasha Stefanovic.
6 5
Franz Wagner Defensive Rebound. Isaiah Livers Defensive Rebound.
5 5

8

Purdue Defensive Rebound. Zavier Simpson Defensive Rebound.
5 5
Zavier Simpson missed Three Point Jumper. Foul on Austin Davis.
5 4
Foul on Eric Hunter Jr.. Isaiah Livers missed Three Point Jumper.
4 4
Jon Teske missed Jumper. Purdue Timeout
4 4
Sasha Stefanovic Defensive Rebound. Sasha Stefanovic made Free Throw.
4 4
Trevion Williams missed Layup. Trevion Williams Offensive Rebound.
4 4

It turns out that there were 164 unique descriptions for 330 plays.

In addition, table allows us to calculate cross-tabs: the number of cases that match a pair of IVs. Let’s look
at possession_before and shot_outcome variables. It is good to label the row and column to make it easier
to interpret:
table(team=bball$possession_before,outcome=bball$shot_outcome)

outcome
team made missed
Michigan 40 48
Purdue 34 40

Note that this only adds up to 162, even though there are 300+ plays. The rest of the plays did not end in a
shot and were coded as NA; table ignores these NAs by default. But these are interesting in this case, and
we can get them back with the useNA argument (check the help).
table(team=bball$possession_before,outcome=bball$shot_outcome, useNA="always")

outcome
team made missed <NA>
Michigan 40 48 77
Purdue 34 40 89
<NA> 0 0 2

This shows how 89 plays ended for Purdue without a shot, compared to 77 for Michigan. The 2 NA/NA
values are probably just the first play of each half, which always end with a possession by one of the teams.

Exercise 2

Use table to calculate cross-tabulation of the following variables in bball:

• possession_before and possession_after
• shot_team and free_throw
• shot_team and three_pt
• shooter and shot_outcome

Finding condition means and summaries with aggregate and tapply

We often have data organized in columns so that one column is a measure we care about, and other columns
are IVs, conditions, or categories we want to organize by. For example, in the basketball data, we can compute
a column regarding how many points were scored on any position, which is like a DV. We also have a column
showing which team was in possession (bball$shot_team). We often want to collect all the data for each
level of an IV, and apply some function to that data set. For example, we might want to find the sum of the

9

points scored by each team. This is what a pivot table in spreadsheet programs permit, but these don’t get
used very frequently. There are two common approaches to doing this in R: aggregate and tapply.

Using aggregate to collapse a data set.
We use aggregate when we want to organize functions of one or more DVs by one or more levels of IVs, and
we want the resulting table to retain the IV and DV data frame columns. Here are some examples using
aggregate and different functions and IVs to compute different statistics about the game:

First, we will calculate the points scored on each possession, and aggregate finding the sum of the points
scored by each team. There are two ways to call aggregate, one using a ~formula. The main difference is the
name of the values in the data frame.
points <- rowSums(scoredelta)
newdat$points <- points

aggregate(points,list(team=bball$shot_team),sum)

team x
1 Michigan 71
2 Purdue 63
aggregate(points~shot_team,data=bball,FUN=sum)

shot_team points
1 Michigan 71
2 Purdue 63

This shows the final score was 71 to 63. But what if we also want to know how many points each player
scored?
aggregate(points,list(player=bball$shooter,team=bball$shot_team),sum)

player team x
1 Austin Davis Michigan 3
2 Brandon Johns Jr. Michigan 2
3 David DeJulius Michigan 6
4 Eli Brooks Michigan 4
5 Franz Wagner Michigan 22
6 Isaiah Livers Michigan 19
7 Jon Teske Michigan 11
8 Zavier Simpson Michigan 4
9 Aaron Wheeler Purdue 0
10 Eric Hunter Jr. Purdue 7
11 Evan Boudreaux Purdue 4
12 Isaiah Thompson Purdue 5
13 Jahaad Proctor Purdue 6
14 Matt Haarms Purdue 4
15 Nojel Eastern Purdue 6
16 Sasha Stefanovic Purdue 13
17 Trevion Williams Purdue 18

But we might also want to know how many times a player was credited with the possession. We can determine
this by finding the length of the vector specified by each combination of team and player:
aggregate(points,list(player=bball$shooter,team=bball$shot_team),length)

player team x

10

1 Austin Davis Michigan 5
2 Brandon Johns Jr. Michigan 3
3 David DeJulius Michigan 7
4 Eli Brooks Michigan 7
5 Franz Wagner Michigan 15
6 Isaiah Livers Michigan 19
7 Jon Teske Michigan 14
8 Zavier Simpson Michigan 18
9 Aaron Wheeler Purdue 1
10 Eric Hunter Jr. Purdue 10
11 Evan Boudreaux Purdue 5
12 Isaiah Thompson Purdue 5
13 Jahaad Proctor Purdue 6
14 Matt Haarms Purdue 5
15 Nojel Eastern Purdue 8
16 Sasha Stefanovic Purdue 9
17 Trevion Williams Purdue 25

Similarly, we could calculate average number of points scored per possession by each player by giving it mean
instead of length or sum:
aggregate(points,list(player=bball$shooter,team=bball$shot_team),mean)

player team x
1 Austin Davis Michigan 0.6000000
2 Brandon Johns Jr. Michigan 0.6666667
3 David DeJulius Michigan 0.8571429
4 Eli Brooks Michigan 0.5714286
5 Franz Wagner Michigan 1.4666667
6 Isaiah Livers Michigan 1.0000000
7 Jon Teske Michigan 0.7857143
8 Zavier Simpson Michigan 0.2222222
9 Aaron Wheeler Purdue 0.0000000
10 Eric Hunter Jr. Purdue 0.7000000
11 Evan Boudreaux Purdue 0.8000000
12 Isaiah Thompson Purdue 1.0000000
13 Jahaad Proctor Purdue 1.0000000
14 Matt Haarms Purdue 0.8000000
15 Nojel Eastern Purdue 0.7500000
16 Sasha Stefanovic Purdue 1.4444444
17 Trevion Williams Purdue 0.7200000

Using tapply to make an aggregate matrix
Sometimes we want the values aggregated into a table, with levels of one IV along the rows, and another
along the columns. This would be nice for making a matplot. The tapply works a lot like aggregate, but
organizes the results into a matrix. Here is the same aggregation of points per player.
x <- tapply(points,list(player=bball$shooter,team=bball$shot_team),sum)
x

team
player Michigan Purdue
Aaron Wheeler NA 0
Austin Davis 3 NA
Brandon Johns Jr. 2 NA

11

David DeJulius 6 NA
Eli Brooks 4 NA
Eric Hunter Jr. NA 7
Evan Boudreaux NA 4
Franz Wagner 22 NA
Isaiah Livers 19 NA
Isaiah Thompson NA 5
Jahaad Proctor NA 6
Jon Teske 11 NA
Matt Haarms NA 4
Nojel Eastern NA 6
Sasha Stefanovic NA 13
Trevion Williams NA 18
Zavier Simpson 4 NA

This would make a lot more sense if the two IVs were not nested like team/player. For example, maybe we
want to look at each team or each player and find out how many possessions ended in 0, 1, 2, or 3 points, or
how many points were gained in each of those conditions. Using sum as the function will show total point
earned by each player/team in each scoring category:
tapply(points,list(team=bball$shot_team,gain=points),sum)

gain
team 0 1 2 3
Michigan 0 15 38 18
Purdue 0 9 42 12
tapply(points,list(shooter=bball$shooter,gain=points),sum)

gain
shooter 0 1 2 3
Aaron Wheeler 0 NA NA NA
Austin Davis 0 1 2 NA
Brandon Johns Jr. 0 NA 2 NA
David DeJulius 0 1 2 3
Eli Brooks 0 NA 4 NA
Eric Hunter Jr. 0 1 6 NA
Evan Boudreaux 0 2 2 NA
Franz Wagner 0 1 12 9
Isaiah Livers 0 8 8 3
Isaiah Thompson 0 NA 2 3
Jahaad Proctor 0 NA 6 NA
Jon Teske 0 NA 8 3
Matt Haarms 0 NA 4 NA
Nojel Eastern 0 NA 6 NA
Sasha Stefanovic 0 4 NA 9
Trevion Williams 0 2 16 NA
Zavier Simpson 0 4 NA NA

Using length() will show the number of possessions in each category
tapply(points,list(team=bball$shot_team,gain=points),length)

gain
team 0 1 2 3
Michigan 48 15 19 6
Purdue 40 9 21 4

12

tapply(points,list(shooter=bball$shooter,gain=points),length)

gain
shooter 0 1 2 3
Aaron Wheeler 1 NA NA NA
Austin Davis 3 1 1 NA
Brandon Johns Jr. 2 NA 1 NA
David DeJulius 4 1 1 1
Eli Brooks 5 NA 2 NA
Eric Hunter Jr. 6 1 3 NA
Evan Boudreaux 2 2 1 NA
Franz Wagner 5 1 6 3
Isaiah Livers 6 8 4 1
Isaiah Thompson 3 NA 1 1
Jahaad Proctor 3 NA 3 NA
Jon Teske 9 NA 4 1
Matt Haarms 3 NA 2 NA
Nojel Eastern 5 NA 3 NA
Sasha Stefanovic 2 4 NA 3
Trevion Williams 15 2 8 NA
Zavier Simpson 14 4 NA NA

We can see that NAs fill the cells that were empty,

Exercise 3

Although college basketball does not have quarters, we can divide the time into 4 equal 10-minute bins we
call quarter, which I did above and saved in newdat$quarter. Find the number of points scored by each
team in each quarter, using both tapply and aggregate.

aggregate(points,list(
team=bball$shot_team,
quarter=newdat$quarter),sum)

team quarter x
1 Michigan 1 12
2 Purdue 1 11
3 Michigan 2 24
4 Purdue 2 10
5 Michigan 3 8
6 Purdue 3 12
7 Michigan 4 27
8 Purdue 4 30

tapply(points,list(
team=bball$shot_team,
quarter=newdat$quarter),sum)

quarter
team 1 2 3 4
Michigan 12 24 8 27
Purdue 11 10 12 30

13

Putting it all together
For a final exercise, let’s try to integrate several of these.

• First, look at play_id, which identifies the unique row number/possession number.
bball$play_id

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[30] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
[59] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
[88] 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
[117] 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
[146] 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
[175] 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
[204] 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
[233] 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
[262] 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
[291] 291 292 293 294 295 296 297 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
[320] 322 323 324 325 326 327 328 329 330 331 332

• Next, we will use tapply to create a table that has play_id along the rows, player as a column, and
number of points scored in the cells. Use the I() function to simply pass through the play_outcome
variable, as you are summarizing a single value in each row. I will use the default argument =0 to make
any missing data default to 0 instead of NA.

playerbyplay <- tapply(points,list(bball$play_id,bball$shooter),I,default=0)
playerbyplay[20:30,]

Aaron Wheeler Austin Davis Brandon Johns Jr. David DeJulius Eli Brooks Eric Hunter Jr. Evan Boudreaux Franz Wagner
20 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
Isaiah Livers Isaiah Thompson Jahaad Proctor Jon Teske Matt Haarms Nojel Eastern Sasha Stefanovic Trevion Williams
20 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
25 0 0 2 0 0 0 0 0
26 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 3 0
30 0 0 0 0 0 0 0 0
Zavier Simpson
20 0
21 0
22 0

14

23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0

• Then, use aggregate to create a data frame with possession number as the first column, and the
possession team (stored in possession_before) as the variable. Use the I() function as the function
argument to simply pass through the label.

teambyplayer <- table(bball$shooter,bball$possession_before)
(teambyplayer)

##
Michigan Purdue
Aaron Wheeler 0 1
Austin Davis 5 0
Brandon Johns Jr. 3 0
David DeJulius 7 0
Eli Brooks 7 0
Eric Hunter Jr. 0 10
Evan Boudreaux 0 5
Franz Wagner 15 0
Isaiah Livers 19 0
Isaiah Thompson 0 5
Jahaad Proctor 0 6
Jon Teske 14 0
Matt Haarms 0 5
Nojel Eastern 0 8
Sasha Stefanovic 0 9
Trevion Williams 0 25
Zavier Simpson 18 0

Let’s create a vector which tells us which team each player plays for.
team.membership <- apply(teambyplayer,1,which.max)
team.membership

Aaron Wheeler Austin Davis Brandon Johns Jr. David DeJulius Eli Brooks Eric Hunter Jr.
2 1 1 1 1 2
Evan Boudreaux Franz Wagner Isaiah Livers Isaiah Thompson Jahaad Proctor Jon Teske
2 1 1 2 2 1
Matt Haarms Nojel Eastern Sasha Stefanovic Trevion Williams Zavier Simpson
2 2 2 2 1

Next, we can use apply with cumsum to look at cumulative points for each player. This looks like magic, but
what we are doing is finding the cumulative sum of values in each column, for each column separately. We can
use team.membership to color each series, and put player names based on their final points at the right side.
cumulative.pbp <- apply(playerbyplay,2,cumsum)

purdue.cumulative <- cumsum(rowSums(playerbyplay[,team.membership==2]))
michigan.cumulative <- cumsum(rowSums(playerbyplay[,team.membership==1]))

15

matplot(gametime,cumulative.pbp,type="l",col=c("blue","black")[team.membership],lty=1,main="Cumulative points scored by each player",
xlab="Game time",ylab="Cumulative points",xlim=c(0,50),ylim=c(0,70))

lines(gametime,purdue.cumulative,lwd=3,col="black")
lines(gametime,michigan.cumulative,lwd=3,col="blue")

grid()
legend(0,60,c("Michigan player","Purdue player"),col=c('blue','black'),lty=1)

finalpoints <- aggregate(points,list(player=bball$shooter),sum)

text(41,finalpoints$x,finalpoints$player,pos=4,cex=.7,col=c("blue","black")[team.membership])
text(41,max(michigan.cumulative),"Michigan",pos=4)
text(41,max(purdue.cumulative),"Purdue",pos=4)

0 10 20 30 40 50

0
10

20
30

40
50

60
70

Cumulative points scored by each player

Game time

C
um

ul
at

iv
e

po
in

ts

Michigan player
Purdue player

Aaron Wheeler

Austin Davis
Brandon Johns Jr.

David DeJulius

Eli Brooks

Eric Hunter Jr.

Evan Boudreaux

Franz Wagner

Isaiah Livers

Isaiah Thompson
Jahaad Proctor

Jon Teske

Matt Haarms

Nojel Eastern

Sasha Stefanovic

Trevion Williams

Zavier Simpson

Michigan

Purdue

16

This isn’t perfect because we have player names overlapping, but it shows how we used apply, tapply,
aggregate, and rowSums, all together to create a comprehensive look at the game.

Exercise solutions
Exercise 1

Use table to calculate cross-tabulation of:

• possession_before and possession_after
• shot_team and free_throw
• shot_team and three_pt
• shooter and shot_outcome

For each one, try to explain what the table is telling you.
table(before=bball$possession_before,after=bball$possession_after)

after
before Michigan Purdue
Michigan 59 105
Purdue 113 49
table(team=bball$shot_team,freethrow=bball$free_throw)

freethrow
team FALSE TRUE
Michigan 65 23
Purdue 62 12
table(team=bball$shot_team,three=bball$three_pt)

three
team FALSE TRUE
Michigan 63 25
Purdue 59 15
table(player=bball$shooter,outcome=bball$shot_outcome)

outcome
player made missed
Aaron Wheeler 0 1
Austin Davis 2 3
Brandon Johns Jr. 1 2
David DeJulius 3 4
Eli Brooks 2 5
Eric Hunter Jr. 4 6
Evan Boudreaux 3 2
Franz Wagner 10 5
Isaiah Livers 13 6
Isaiah Thompson 2 3
Jahaad Proctor 3 3
Jon Teske 5 9
Matt Haarms 2 3
Nojel Eastern 3 5
Sasha Stefanovic 7 2
Trevion Williams 10 15
Zavier Simpson 4 14

17

Exercise 2:

For the following matrix of numbers might be a series of 10 observations made over time of 20 independent
participants. We can plot the entire noisy data using matplot. Find the mean, max, and min values of each
row, put them together in a data frame and plot them using matplot. Use the add=T argument to overplot
these onto the original data.
set.seed(10)
dat <- outer(10+c(1,1.5,1.6,1.9,2.0, 1.2,1.4,1.8,2.1,2.2), 2+runif(20)*1.5) + rnorm(200)*5

matplot(dat,pch=16,cex=.5,col="grey",type="o",lty=1,lwd=.3,
xlab="Time",ylab="Measured value")

summarydat <- data.frame(mean=rowMeans(dat),
min=apply(dat,1,min),
max=apply(dat,1,max))

matplot(summarydat,add=T,type="l",lwd=3,lty=c(1,3,3))

2 4 6 8 10

15
20

25
30

35
40

45

Time

M
ea

su
re

d
va

lu
e

18

Exercise 3

Although college basketball does not have quarters, we can divide the time into 4 equal 10-minute bins we call
quarter, which I did above and saved in newdat$quarter. Find the number of points scored by each team in
each quarter, using both tapply and aggregate.
tapply(points, list(team=bball$shot_team,

quarter=newdat$quarter),length)

quarter
team 1 2 3 4
Michigan 18 17 21 32
Purdue 18 16 15 25
aggregate(points, list(quarter=newdat$quarter,

team=bball$shot_team),length)

quarter team x
1 1 Michigan 18
2 2 Michigan 17
3 3 Michigan 21
4 4 Michigan 32
5 1 Purdue 18
6 2 Purdue 16
7 3 Purdue 15
8 4 Purdue 25

19

	Aggregating and summarizing: Goals
	The summarize function
	The rowSums, colSums, and apply
	Exercise 1:

	Computing tabulations and cross-tabulations with table
	Exercise 2

	Finding condition means and summaries with aggregate and tapply
	Using aggregate to collapse a data set.
	Using tapply to make an aggregate matrix
	Exercise 3

	Putting it all together
	Exercise solutions
	Exercise 1
	Exercise 2:
	Exercise 3

