## Code for Book: Applied Statistical Analysis in R for Psychology and Human factors ## (c) 2018 Shane T. Mueller, Ph.D. ## Michigan Technological University ## shanem@mtu.edu ## ## Textbook and videos available at http://pages.mtu.edu/~shanem/psy5210 ## ## ## This file contains example software code relevant for Chapter 1 (Introduction) ## The code in this file may be used and shared freely with or without attribution. ## The original vioplot function was licensed via the BSD license. ## ## Pie charts considered harmful ##blech: pie(c(3,5,9),c("Dogs","Cats","Fish")) ##see http://peltiertech.com/use-dot-plots-for-better-categorical-comparisons/ cols <- c("red","red3","orange","gold","yellow","white") ## what's worse than comparing category sizes between pie charts? Comparing them between two pie charts #pdf("c5-pets1.pdf",width=6,height=4) par(mfrow=c(1,2)) pie(c(3,5,9,3,5,9),c("Dogs","Cats","Fish","Gerbils","Horses","Rocks"),main="Pet Cemetery", col=cols) pie(c(5,5,2,3,3,1),c("Dogs","Cats","Fish","Gerbils","Horses","Rocks"),main="Pet Cremetorium", col=cols) #dev.off() ############################## ## 3D pie chart ## This section does not appear in the textbook, because ## pie charts ar bad, and 3D pie charts are terrible. library(plotrix) pie<- c(2,4,6,8) pielabels<-c("we hate\n pies","we oppose\n pies", "we dont\n care", "we love pies") pie3D(pie) pie3D(pie,labels=pielabels) pie3D(pie,labels=pielabels,theta=.4) pie3D(pie,labels=pielabels,theta=pi/6,radius=.8) pie3D(pie,labels=pielabels,theta=pi/6,radius=.9,border="white") pie3D(pie,labels=pielabels,theta=pi/6,radius=.9,border="black",labelcol="black") pie3D(pie,labels=pielabels,theta=pi/6,radius=.9,border="black",labelcex=1.3) pie3D(pie,labels=pielabels,theta=pi/6,radius=.9,border="black",labelcex=1.3,shade=.2) color<-c("white","grey50","gray70","red") pie3D(pie,labels=pielabels,theta=pi/6,radius=.9,border="black",labelcex=1.3,shade=.4,col=color) pie3D(pie,labels=pielabels,theta=pi/6,radius=.9,border="black",labelcex=1.3,shade=.4,col=c("white","grey50","gray70","grey90")) color12<-heat.colors(4) pie3D(pie,labels=pie,theta=pi/6,radius=.9,border="black",labelcex=1.3,shade=.4,col=color12) labe<-c(pie/sum(pie)*100) pie3D(pie,labels=labe,theta=pi/6,radius=.9,border="black",labelcex=1.3,shade=.4,col=color12) lab1<-paste(labe,"%") pie3D(pie,labels=lab1,theta=pi/6,radius=.9,border="black",labelcex=1.3,shade=.4,col=color12) lab2<-paste(labe,"%",sep="") pie3D(pie,labels=lab2,theta=pi/6,radius=.9,border="black",labelcex=1.3,shade=.4,col=color12,main="Pie3D") legend(-.9,1.2,pielabels,cex=.6,fill=color12) #pdf("c5-pets2.pdf",width=7,height=7) ##stacked bar compares area, but is easier to judge: data <- cbind(c(3,5,9,3,5,9),c(5,6,3,4,3,4)) rownames(data) <- c("Dogs","Cats","Fish","Gerbils","Horses","Rocks") colnames(data) <- c("Cemetery","Cremetorium") xs <- barplot(data,col=cols, ylim=c(0,40), main="Pet Burial Methods", legend=F, args.legend=list(x=2,y=40,bty="n")) yvals <- apply(data,2,cumsum) yv2 <- (rbind(yvals,0)+rbind(0,yvals))[1:6,]/2 text(xs[1],yv2[,1],rownames(yvals),cex=.8) text(xs[2],yv2[,2],rownames(yvals),cex=.8) #dev.off() ########################### ## Dot charts: An alternative ##do it 'by hand' #see http://peltiertech.com/use-dot-plots-for-better-categorical-comparisons/ ## what's worse than comparing category sizes between pie charts? Comparing them between two pie charts matplot(1:6,data,pch=16,type="o") ##do it 'by hand', turning the matplot sideways: #pdf("c5-dotchartpets.pdf",width=5,height=6) matplot(data,1:6,pch=16,xlim=c(0,10),ylim=c(0,8), yaxt="n",xaxt="n", cex=1.5, xlab="Number of pets",ylab="", type="o",line=3) segments(0,1:6,10,1:6,lty=3) axis(2,1:6,c("Dogs","Cats","Fish", "Gerbils","Horses","Rocks"),las=1) legend(1,8,c("Pet cemetery","Pet cremotorium"), lty=1:2,pch=16,col=1:2,bty="n") title(ylab="Pet type",line=4) axis(1,0:10) #dev.off() ##dotchart makes a creditable but simple alternative dotchart(data,labels=c("Dogs","Cats","Figs","Gerbils","Horses","Rocks")) ##how about a larger example: x <- read.table("aflcio-votes.txt") #pdf("c5-dot1.pdf",width=8,height=11) par(mfrow=c(2,2)) votes <- x[,3:21] senator <- paste(x$V1,x$V2) votes2 <- rowSums(votes=="R") ##Recode for voting ???Right??? dotchart(votes2) dotchart(votes2,labels=senator) dotchart(votes2,labels=senator,groups=as.factor(x$V2)) dotchart(votes2,labels=senator,groups=as.factor(x$V2),cex=.5) #dev.off() ##play with the order: #pdf("c5-dot2.pdf",width=6,height=11) par(mfrow=c(1,1)) ord <- order(votes2) dotchart(votes2[ord],labels=senator[ord],cex=.5, col=c("blue","gold","red")[x$V2[ord]], pch=15) #dev.off() ################################ ## Advanced graphics: error bars: set.seed(100) x <- rep(1:5,each=25) y <- x *3 + sqrt(x)*rnorm(25*5)*8 + runif(25*5)*3 se <- function(x){sd(x)/sqrt(length(x))} means <- aggregate(y,list(x),mean) sds <- aggregate(y,list(x),sd) ses <- aggregate(y,list(x),se) #pdf("c5-errorbars.pdf",width=9,height=5) par(mfrow=c(1,3)) ##plot the means: plot(x,y,pch=16,cex=.8,col="darkgrey",xlim=c(0,5)) points(1:nrow(means),means$x,cex=1.2,col="red",pch=16) ##plot a singe error bar, based on se and sd: arrows(1,means[1,]$x+ses[1,]$x,1,means[1,]$x- ses[1,]$x,code=3,angle=90,length=.1,lwd=2) arrows(1,means[1,]$x+sds[1,]$x,1,means[1,]$x- sds[1,]$x,code=3,angle=90,col="red",lwd=2) ##In one fell swoop: plot(x,y,pch=16,cex=.8,col="darkgrey",xlim=c(0,5)) points(1:nrow(means),means$x,cex=1.2,col="red",pch=16) arrows(1:nrow(means),means$x+ses$x,1:nrow(means),means$x- ses$x,code=3,angle=90,length=.1,lwd=2,col="blue") ##more of a box-plot with +/- 1 sd: diff <- .2 plot(x,y,pch=16,cex=.2,type="n",xlim=c(0,nrow(means)+1),xaxt="n") #rect(1:nrow(means)-diff,means$x-sds$x,1:nrow(means)+diff,means$x+sds$x,col="grey") arrows(1:nrow(means)-diff,means$x-sds$x,1:nrow(means)+diff,means$x+sds$x,col="grey") points(x,y,cex=.8,pch=16) segments(1:nrow(means)-diff,means$x,1:nrow(means)+diff,means$x,lwd=3) axis(1,1:nrow(means)) #dev.off() ############################ ## Some built-in libraries #Run these or install via RStudio interface if necessary: #install.packages("plotrix") #install.packages(c("caTools","gplots")) library(gplots) library(plotrix) ##notice that they both have a function called plotCI: ??plotCI #plotCI(1:nrow(means),means$x,ses$x) ##almost identical, with identical names: #pdf("c5-plotci1.pdf",width=8,height=8) par(mfrow=c(2,2),mar=c(4,5,3,0)) plotrix::plotCI(1:nrow(means),means$x,ses$x,main="plotrix plotCI") # like this one better gplots::plotCI(1:nrow(means),means$x,ses$x,main="gplots plotCI") # this one not as good plotrix::plotCI(1:nrow(means),means$x,ses$x,add=F,lwd=2,cex=1.2,sfrac=.001,col=1:4, pch=16, main="plotrix plotCI with additions ") ##gplots needs to be loaded: plotmeans(y~x,main="Gplots plotmeans") #give it the original data! #dev.off() ################################### ##Adding error bars to barplots: #pdf("c5-barerror.pdf",width=9,height=5) par(mfrow=c(1,3)) ##This doesn't quite work: barplot(means$x,col="navy") plotCI(1:nrow(means),means$x,ses$x,add=T) ##Try this: newx <-barplot(means$x,names=letters[1:nrow(means)],col="navy",ylim=c(0,max(means$x) + max(ses$x))) print(newx) #I don't like this: plotrix::plotCI(newx,means$x,ses$x,add=T,lwd=2) ##try #3. Add two versions of the error bars with a white outline newx <-barplot(means$x,names=letters[1:nrow(means)],col="navy",ylim=c(0,max(means$x) + max(ses$x))) gplots::plotCI(newx,means$x,ses$x,add=T,lwd=2.5,type="n",gap=0,col="white") gplots::plotCI(newx,means$x,ses$x,add=T,lwd=1.5,type="n",gap=0,col="black") #dev.off() ##Exercise here: # (see bottom for solution) # Write a function that takes a dependent measure as one argument, and a categorical # set of levels as the second argument (the IV). You can assume that these are of the # same length–no need to do any checking, and that there are at least three observations # in each . Within the function: # • Use aggregate to compute the mean value of the dependent measure associated # with each level of the independent measure. # • Similarly, compute the standard deviation for each level. # • Compute the number of observations in each level (try using length() as the # function in aggregate) # • Based on these values, compute the standard error (s.e.) as sd/sqrt(n) for each # group. # • Within the function, create a plot of your choice (bar or point plot), and add # error bars of +/- 1 s.e. unit on each side of the mean # • Add optional arguments to the function to control main header, axis labels, and # at least four other graphical arguments ############################################ ## Advanced boxplotting ## organize groups by color and axis #pdf("c5-boxplot1.pdf",width=9,height=8) par(mfrow=c(2,2)) boxplot(len ~ supp, data=ToothGrowth, notch=F, col=(c("gold","grey20")), main="Tooth Growth", xlab="Supplement") #plot by dosage boxplot(len~dose, data=ToothGrowth, notch=F, col=(c("gold","grey20","hotpink")), main="Tooth Growth", xlab="Dose") #plot by both factors boxplot(len~ supp+dose, data=ToothGrowth, notch=F, col=(c("gold","grey20")), main="Tooth Growth", xlab="Supplement and Dose") ##Change the order--the color is bad here--can you fix it? boxplot(len ~ dose+supp, data=ToothGrowth, col= c("gold","grey20"), main="Tooth Growth", xlab="Supplement and Dose") #dev.off() #pdf("c5-boxplot2.pdf",width=9,height=5) par(mfrow=c(1,3)) boxplot(len~dose*supp, data=ToothGrowth, horizontal=T, col=(rep(c("grey20","gold"),each=3)), main="Tooth Growth", xlab="Supplement and Dose") #make two sets of toothgrowth tooth2 <- rbind(ToothGrowth,ToothGrowth) tooth2$rep <- rep(1:2,each=nrow(ToothGrowth)) tooth2$len[tooth2$rep==2] <- tooth2$len[tooth2$rep==2]+5 boxplot(len~supp*dose*rep, data=tooth2, notch=F, col=(c("gold","grey20")), main="Tooth Growth", xlab="Supplement and Dose") abline(v=6.5) x<-boxplot(len~supp*dose, data=ToothGrowth, col=(c("gold","grey20")), main="Tooth Growth", xlab="Supplement and Dose", xaxt="n",ylim=c(0,43)) text(c(1,3,5)+.5,c(40,40,40),paste("Dose:\n",c("0.5","1.0","2.0"))) legend(5,15, c("OJ","VC"), pch=15,col=c("gold","grey20"),bty="n",lty=1:2) #dev.off() ##Exercise ## The colors are wrong on the above plot. Fix it. ############################################################## ## Images in plots #Install if necessary: #install.packages(c("jpeg","pixmap")) library(jpeg) library(pixmap) bradys <- c("marsha","carol","greg","jan","alice", "peter","brady","cindy","mike","bobby") images <- c() for(i in bradys) { ##This comes from the jpeg library img <- readJPEG(paste("images/",i,".jpg",sep="")) ##Convert to a pixmap using from the pixmap library: img2<-pixmapRGB(img) images <- c(images,img2) } ##randomize the order ord <- order(runif(length(bradys))) par(mfrow=c(1,1)) plot(0,type="n",xlim=c(0,800),ylim=c(0,600),xaxt="n",yaxt="n", xlab="",ylab="",bty="n") rect(0,0,800,600,col="black") x <- 0 for(i in images[ord]) { y <- round(runif(1)*500) addlogo(i,c(x,x+100),c(y,y+60),asp=1) ##addlogo is in pixmaps library x <- x + 70 } ################################################################ ### Violin plots v1 <- tapply(OrchardSprays$decrease, list( row=OrchardSprays$rowpos, treatment=OrchardSprays$treatment), mean) #Run these or install via RStudio interface if necessary: #install.packages("vioplot") #install.packages("violinmplot") library(vioplot) library(violinmplot) #pdf("c5-vioplot1.pdf",width=7,height=4) #par(mfrow=c(2,1),mar=c(1,3,4,0)) vioplot(v1[,1],v1[,2],v1[,3],v1[,4],v1[,5],v1[,6],v1[,7],v1[,8],col="gold", names=LETTERS[1:8],ylim=c(0,200)) title(main="OrchardSprays violin plot with point overlay: vioplot", ylab="Decrease in bees",xlab="Treatment") matplot(t(v1),add=T,pch=1,col="grey30",cex=1) #dev.off() ##look at the h parameter: vioplot(v1[,1],v1[,2],v1[,3],v1[,4],v1[,5],v1[,6],v1[,7],v1[,8],col="gold", names=LETTERS[1:8],h=2,ylim=c(0,200)) title(main="OrchardSprays violin plot: vioplot\nsmoothing kernel h=2", ylab="Decrease in bees",xlab="Treatment") #pdf("c5-vioplot2.pdf",width=7,height=4) par(mfrow=c(1,1)) violinmplot(decrease~treatment,data=OrchardSprays,horizontal=F,violin.col="gold", ylim=c(0,200), main="Violin plot of OrchardSprays treatments using violinmplot") #dev.off() ### Exercise here ### (solution at bottom of file) ###The following creates intermingled distributions whose mean and variability are cor- ### related. Thta is, as the mean increases, the standard deviation does as well. conds <- sample (1:4 ,1000 , replace = T ) data <- ( rnorm (1000 , mean = conds * 5 , sd = conds +1) ) ##the violinplot does not work well if you have likert-scale data. This is because ## it wants to smooth between values, but a likert scale only has integer values ## and you may not want to smooth at all. For a university survey, I was asked to ## do some analysis, and developed a custom vioplo t suitable for Likert-scale data. ## To do this, I took the function defined in vioplot and edited it. vplot2 <- function (x, ..., range = 1.5, h = NULL, ylim = NULL,ylabs=NULL, names = NULL, title="", horizontal = FALSE, col = "gold", border = "black", lty = 1, lwd = 1, rectCol = "black", colMed = "white", pchMed = 19, at, add = FALSE, wex = 1, drawRect = TRUE,adjust=0, crit=3, ignore=c(0) ) { datas <- list(x, ...) n <- length(datas) if (missing(at)) at <- 1:n upper <- vector(mode = "numeric", length = n) lower <- vector(mode = "numeric", length = n) q1 <- vector(mode = "numeric", length = n) q3 <- vector(mode = "numeric", length = n) med <- vector(mode = "numeric", length = n) means <- vector(mode="numeric",length=n) base <- vector(mode = "list", length = n) height <- vector(mode = "list", length = n) Ns <- vector(mode="numeric",length=n) pcts <- vector(mode="numeric",length=n) baserange <- c(Inf, -Inf) args <- list(display = "none") if (!(is.null(h))) args <- c(args, h = h) data.max <- min(datas[[1]],na.rm=T) data.min <- max(datas[[1]],na.rm=T) for (i in 1:n) { data <- datas[[i]] data.min <- min(data,data.min,na.rm=T) data.max <- max(data,data.max,na.rm=T) q1[i] <- quantile(data, 0.25,na.rm=T) q3[i] <- quantile(data, 0.75,na.rm=T) med[i] <- median(data,na.rm=T) data1 <- data[!is.element(data,ignore) & !is.na(data)] Ns[i] <- sum(!is.na(data)) means[i] <- mean(data1) pcts[i] <- round(100*mean((data1+adjust)>crit)) # pcts[i] <- round(100*mean((data1+adjust)> crit)) iqd <- q3[i] - q1[i] upper[i] <- min(q3[i] + range * iqd, data.max) lower[i] <- max(q1[i] - range * iqd, data.min) est.xlim <- c(min(lower[i], data.min), max(upper[i], data.max)) # smout <- do.call("sm.density", c(list(data, xlim = est.xlim), # args)) tab <- tapply(data,list(factor(data,levels=data.min:data.max)),length) tab[is.na(tab)] <- 0 hscale <- .4/max(tab)*wex ##this scales by the maximum; ##it might be reasonable to scale by the sum. #hscale <- .8/sum(tab)*wex #this scales by the total number, #so the 'volume' is roughly the same across violins. #This produces skinnier curves, because you need to #scale for the lopsided questions ##hscale <- 0.4/max(smout$estimate) * wex ##base[[i]] <- smout$eval.points base[[i]] <- as.numeric(names(tab)) ##height[[i]] <- smout$estimate * hscale height[[i]] <- tab * hscale t <- range(base[[i]]) baserange[1] <- min(baserange[1], t[1]) baserange[2] <- max(baserange[2], t[2]) } if (!add) { xlim <- if (n == 1) at + c(-0.5, 0.5) else range(at) + min(diff(at))/2 * c(-1, 1) if (is.null(ylim)) { ylim <- baserange } } if (is.null(names)) { label <- 1:n } else { label <- names } boxwidth <- 0.05 * wex if (!add) plot.new() if (!add) { plot.window(xlim = xlim, ylim = ylim) title(title,cex.main=.8,col="darkgrey") if(is.null(ylabs)) { axis(2) }else{ ylength <- length(ylabs) yvals <- seq(data.max-ylength+1,data.max,1) axis(2,yvals,ylabs,las=1) } axis(1, at = at, label = label,tick=F,line=-1,cex.axis=.8) # box(col="grey50") for(i in yvals)abline(i,0,lty=3,col="grey20",lwd=.8) abline( crit-adjust,0,lty=3,col="black",lwd=1) } for (i in 1:n) { polygon(c(at[i] - height[[i]], rev(at[i] + height[[i]])), c(base[[i]], rev(base[[i]])), col = col, border = border, lty = lty, lwd = lwd) if (drawRect) { segments(at[i]-.2, means[i],at[i]+.2, means[i], lwd = lwd*1.5, lty = lty) #rect(at[i] - boxwidth/2, q1[i], at[i] + boxwidth/2, q3[i], col = rectCol) #points(at[i], med[i], pch = pchMed, col = colMed) ##text means: text(at[i],data.max+.6,paste(expression(mu),"=",(round(means[i],2)+adjust),sep=""),cex=.8, col="grey40") ##text counts text(at[i],data.min-.5,paste("N=",Ns[i],sep="" ),cex=.8,col="grey40") ##text of % positive text(at[i],data.max+.2,paste( pcts[i],"%>",crit,sep=""),cex=.8,col="grey40") } } invisible(list(upper = upper, lower = lower, median = med, q1 = q1, q3 = q3, means=(means+adjust), pct=pcts)) } ##this just creates a fake dataset: set.seed(1000) levs <-c("Don't Know","Strongly Disagree", "Disagree","Neutral", "Agree", "Strongly Agree") gender=as.factor(sample(c("Men","Women"),1000,replace=T)) vals1 <- pmax(0,floor(rnorm(1000,mean=2.5,sd=.8) - as.numeric(gender)*.5))+1 vals1[sample(1000,20)]<- 0 ##ad some don't know responses resps <- factor(levs[vals1+1],levels=levs) data <- data.frame(gender=gender, value=vals1, resps) head(data) #pdf("c5-likertviolin1.pdf",width=9,height=5) par(mfrow=c(1,3)) vioplot(data$value[data$gender=="Men"], data$value[data$gender=="Women"],col="gold") vioplot(data$value[data$gender=="Men"], data$value[data$gender=="Women"],h=1.2,col="gold") vioplot(data$value[data$gender=="Men"], data$value[data$gender=="Women"],h=.2,col="gold") #dev.off() #pdf("c5-likertviolin2.pdf",width=9,height=5) par(mar=c(2,8,3,1),mfrow=c(1,1)) vplot2(data$value, data$value[data$gender=="Men"], data$value[data$gender=="Women"], at=c(1,3,4), names=c("Overall","Men","Women"), drawRect = T, ylim=c(-1,7), ylabs=levs, ignore=c(0), title="Support for Issue among Constituency" ) #dev.off() ###Exercise: # Write a function that takes a dependent measure as one argument, and a categorical # set of levels as the second argument (the IV). You can assume that these are of the # same length–no need to do any checking, and that there are at least three observations # in each . Within the function: # • Use aggregate to compute the mean value of the dependent measure associated # with each level of the independent measure. # • Similarly, compute the standard deviation for each level. # • Compute the number of observations in each level (try using length() as the # function in aggregate) # • Based on these values, compute the standard error (s.e.) as sd/sqrt(n) for each # group. # • Within the function, create a plot of your choice (bar or point plot), and add # error bars of +/- 1 s.e. unit on each side of the mean # • Add optional arguments to the function to control main header, axis labels, and # at least four other graphical arguments plotMeansandSE <- function(x,conds,main="",xlab="",ylab="", col="grey20",cex=2) { require(gplots) conds <- factor(conds) agg <- aggregate(x,list(conds),mean) agg$sd <- aggregate(x,list(conds),sd)$x agg$n <- aggregate(x,list(conds), length)$x agg$se <- agg$sd/sqrt(agg$n) xvals <- as.numeric(agg$Group.1) xs <- barplot(agg$x,names=agg$Group.1, ylim=c(0,max(agg$x+agg$se*2)), col=col, main=main,xlab=xlab,ylab=ylab) gplots::plotCI(xs,agg$x,agg$se,add=T,lwd=.5,type="n",gap=0,col="black") } set.seed(100) conds <- sample(1:4,100,replace=T) data <- (rnorm(100,mean=1+conds*5,sd=conds+1)) plotMeansandSE(data,conds,main="Stinky",col="darkgreen", xlab="Condition",ylab="Observed ability") ################## #Exercise 5.6.2 #The color scheme is wrong in the last example (lower right panel). Fix it in some #coherent way. boxplot ( len ~ dose * supp , data = ToothGrowth , col =( rep ( c ( "gold" ," grey20 " ) , each =3) ) , main = " Tooth Growth " , xlab = "Supplement and Dose" ) #Or you could color each sub-element of the series a different color: boxplot ( len ~ dose * supp , data = ToothGrowth , col =( rep ( c ( "gold" ,"grey20" ,"hotpink" ) ,2) ) , main = " Tooth Growth " , xlab = " Supplement and Dose " ) ##EXercise 5.6.2 #The following creates intermingled distributions whose mean and variability are cor- # related. Thta is, as the mean increases, the standard deviation does as well. # Create a violin plot showing the distribution of the four conditions set.seed(100) conds <- sample(1:4,1000,replace=T) data <- (rnorm(1000,mean=10+conds*5,sd=conds+1)) vioplot(data[conds==1],data[conds==2],data[conds==3], data[conds==4])