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Decision Trees, Forests, and Nearest-Neighbors classifiers
The classic statistical decision theory on which LDA and QDA and logistic regression are highly model-based.
We assume the features are fit by some model, we fit that model, and use inferences from that model to make
a decision. Using the model means we make assumptions, and if those assumptions are correct, we can have
a lot of success. Not all classifiers make such strong assumptions, and three of these will be covered in this
section: Decision trees, random forests, and K-Nearest Neighbor classifiers.

Decision trees
Decision trees assume that the different predictors are independent and combine together to form a an overall
likelihood of one class over another. However, this may not be true. Many times, we might want to make a
classification rule based on a few simple measures. The notion is that you may have several measures, and by
asking a few decisions about individual dimensions, end up with a classification decision. For example, such
trees are frequently used in medical contexts. If you want to know if you are at risk for some disease, the
decision process might be a series of yes/no questions, at the end of which a ‘high-risk’ or ‘low-risk’ label
would be given:

1. Decision 1: Are you above 35?

• Yes: Use Decision 2
• No: Use Decision 3

2. Decision 2: Do you have testing scores above 1000?

• Yes: High risk
• No: Low risk

3. Decision 3: Do you a family history?

• Yes: etc.

• No: etc.

Notice that if we were trying to determine a class via LDA, we’d create a single composite score based on all the
questions and make a decision at the end. But if we make a decision about individual variables consecutively,
it allows us to incorporate interactions between variables, which can be very powerful. Tree-based decision
tools can be useful in many cases:

• When we want simple decision rules that can be applied by novices or people under time stress.
• When the structure of our classes are dependent or nested, or somehow hierarchical. Many natural

categories have a hierarchical structure, so that the way you split one variable may depend on the value
of another. For example, if you want to know if someone is ‘tall’, you first might determine their gender,
and then use a different cutoff for each gender.
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• When many of your observables are binary states. To classify lawmakers we can look at their voting
patterns–which are always binary. We may be able to identify just a couple issues we care about that
will tell us everything we need to know.

• When you have multiple categories. There is no need to restrict the classes to binary, unlike for the
previous methods we examined.

• When you expect some classifications will require complex interactions between feature values.

To make a decision tree, we essentially have to use heuristic processes to determine the best order and cutoffs
to use in making decisions, while identifying our error rates. Even with a single feature, we can make a
decision tree that correctly classifies all the elements in a set (as long as all feature values are unique). So we
also need to understand how many branches/rules to use, in order to minimize over-fitting.

There are a number of software packages available for classification trees. One commonly-used package in R
is called rpart. In fact, rpart implements a more general concept called ‘Classification and Regression Trees’
(CART). So, instead of giving a categorical output to rpart, you can give it a continous output and specify
“ANOVA”, and each bottom leaf computes the average value of the items, producing a sort of tree-based
regression/ANOVA model.

Let’s start with a simple tree made to classify elements on which we have only one measure:
library(rpart)
library(rattle) #for graphing
library(rpart.plot) #also for graphing
library(DAAG)
classes <- sample(c("A", "B"), 100, replace = T)
predictor <- rnorm(100)
r1 <- rpart(classes ~ predictor, method = "class")

plot(r1)
text(r1)

|
predictor< −1.056

predictor>=−0.5171

predictor< −0.2791

predictor>=1.545

predictor< 1.289predictor>=0.9811

predictor< 0.7266predictor>=0.1057
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B

prp(r1)
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predicto < −1.1

predicto >= −0.52

predicto < −0.28

predicto >= 1.5

predicto < 1.3

predicto >= 0.98

predicto < 0.73

predicto >= 0.11
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A

A
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A B

B

B
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yes no

fancyRpartPlot(r1) #better visualization
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confusion(classes, predict(r1, type = "class"))

Overall accuracy = 0.69

Confusion matrix
Predicted (cv)

Actual [,1] [,2]
[1,] 0.784 0.216
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[2,] 0.408 0.592
plot(predictor, col = factor(classes))

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2

Index

pr
ed

ic
to

r

Notice
that even though the predictor had no true relationship to the categories, we were able to get 71% accuracy.
We could in fact do better, just by adding rules. Various aspects of the tree algorithm are controlled via
the control argument, using rpart.control. Here, we set ‘minsplit’ to 1, which says we can split a group
as long as it has at least 1 item. ‘minbucket’ specifies the smallest number of observations that can appear
on the bottom node, and cp is a complexity argument. It defaults to .01, and is a criterion for how much
better each model must be before splitting a leaf node. A negative value will mean that any additional node
is better, and so it will accept any split.
r2 <- rpart(classes ~ predictor, method = "class", control = rpart.control(minsplit = 1,

minbucket = 1, cp = -1))
prp(r2)
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# this tree is a bit too large for this graphics method: fancyRpartPlot(r2)
confusion(classes, predict(r2, type = "class"))

Overall accuracy = 1

Confusion matrix
Predicted (cv)

Actual [,1] [,2]
[1,] 1 0
[2,] 0 1

Now, we have completely predicted every item by successively dividing the line. Notice that by default,
rpart must choose the best number of nodes to use„ and the default control parameters are set to often be
reasonable, but there is no guarantee they are the right ones for your data. This is a critical decision for a
decision tree, as it impacts the complexity of the model, and how much it overfits the data.

How will this work for a real data set? Let’s re-load the engineering data set. In this data, we have asked
both Engineering and Psychology students to determine whether pairs of words from Psychology, Engineering
go together, and measured their time and accuracy.
joint <- read.csv("eng-joint.csv")
joint$eng <- as.factor(c("psych", "eng")[joint$eng + 1])

## This is the partitioning tree:

r1 <- rpart(eng ~ ., data = joint, method = "class")
r1

n= 76

node), split, n, loss, yval, (yprob)
* denotes terminal node
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1) root 76 38 eng (0.50000000 0.50000000)
2) ep.1>=2049.256 68 31 eng (0.54411765 0.45588235)

4) ppr.1< 2900.149 39 14 eng (0.64102564 0.35897436)
8) ppr.1>=2656.496 11 1 eng (0.90909091 0.09090909) *
9) ppr.1< 2656.496 28 13 eng (0.53571429 0.46428571)
18) ep>=0.7083333 14 4 eng (0.71428571 0.28571429) *
19) ep< 0.7083333 14 5 psych (0.35714286 0.64285714) *

5) ppr.1>=2900.149 29 12 psych (0.41379310 0.58620690)
10) ppu>=0.8333333 7 2 eng (0.71428571 0.28571429) *
11) ppu< 0.8333333 22 7 psych (0.31818182 0.68181818) *

3) ep.1< 2049.256 8 1 psych (0.12500000 0.87500000) *
prp(r1, cex = 0.75)

ep.1 >= 2049

ppr.1 < 2900

ppr.1 >= 2656

ep >= 0.71

ppu >= 0.83

eng

eng psych

eng psych

psych

yes no

# text(r1,use.n=TRUE)
fancyRpartPlot(r1)
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confusion(joint$eng, predict(r1, type = "class"))

Overall accuracy = 0.737

Confusion matrix
Predicted (cv)

Actual eng psych
eng 0.658 0.342
psych 0.184 0.816

With the default full partitioning, we get 73% accuracy. But the decision tree is fairly complicated. For
example, notice that nodes 2 and 4 consecutively select ppr.1 twice. First, if ppr.1 is faster than 2900, it then
checks if it is slower than 2656, and makes different decisions based on these narrow ranges of response time.
This seems unlikely to be a real or meaningful decision, and we might want something simpler. Let’s only
allow it to go to a depth of 2, by controlling maxdepth:
library(rattle)
r2 <- rpart(eng ~ ., data = joint, method = "class", control = rpart.control(maxdepth = 2))
r2

n= 76

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 76 38 eng (0.5000000 0.5000000)
2) ep.1>=2049.256 68 31 eng (0.5441176 0.4558824)

4) ppr.1< 2900.149 39 14 eng (0.6410256 0.3589744) *
5) ppr.1>=2900.149 29 12 psych (0.4137931 0.5862069) *

3) ep.1< 2049.256 8 1 psych (0.1250000 0.8750000) *
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fancyRpartPlot(r2)
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# text(r2,use.n=T)
confusion(joint$eng, predict(r2, type = "class"))

Overall accuracy = 0.645

Confusion matrix
Predicted (cv)

Actual eng psych
eng 0.658 0.342
psych 0.368 0.632

Here, we are down to 65% ‘correct’ classifications.

Looking deeper
If we look at the summary of the tree object, it gives us a lot of details about goodness of fit and decision
points.
summary(r2)

Call:
rpart(formula = eng ~ ., data = joint, method = "class", control = rpart.control(minbucket = 2))

n= 76

CP nsplit rel error xerror xstd
1 0.15789474 0 1.0000000 1.289474 0.1097968
2 0.06140351 1 0.8421053 1.342105 0.1077866
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3 0.05263158 8 0.3157895 1.263158 0.1106647
4 0.02631579 9 0.2631579 1.210526 0.1121371
5 0.01000000 13 0.1578947 1.236842 0.1114442

Variable importance
eer.1 ep.1 ppr.1 eeu.1 ppu.1 eeu ep ppr eer

18 17 16 13 11 10 6 5 4

Node number 1: 76 observations, complexity param=0.1578947
predicted class=eng expected loss=0.5 P(node) =1

class counts: 38 38
probabilities: 0.500 0.500

left son=2 (70 obs) right son=3 (6 obs)
Primary splits:

ep.1 < 2017.343 to the right, improve=3.257143, (0 missing)
eeu.1 < 2431.336 to the right, improve=2.326531, (0 missing)
ppr.1 < 5377.582 to the right, improve=2.111111, (0 missing)
ppu.1 < 4579.384 to the right, improve=2.072727, (0 missing)
eer.1 < 4687.518 to the right, improve=1.966874, (0 missing)

Surrogate splits:
eer.1 < 1450.41 to the right, agree=0.947, adj=0.333, (0 split)
eeu.1 < 1693.927 to the right, agree=0.947, adj=0.333, (0 split)
ppu.1 < 1532.392 to the right, agree=0.947, adj=0.333, (0 split)

Node number 2: 70 observations, complexity param=0.06140351
predicted class=eng expected loss=0.4571429 P(node) =0.9210526

class counts: 38 32
probabilities: 0.543 0.457

left son=4 (4 obs) right son=5 (66 obs)
Primary splits:

eer.1 < 1768.284 to the left, improve=1.773160, (0 missing)
ppr.1 < 5377.582 to the right, improve=1.773160, (0 missing)
ppu < 0.8333333 to the right, improve=1.559096, (0 missing)
ppu.1 < 4579.384 to the right, improve=1.542857, (0 missing)
eeu.1 < 6596.24 to the left, improve=1.213445, (0 missing)

Node number 3: 6 observations
predicted class=psych expected loss=0 P(node) =0.07894737

class counts: 0 6
probabilities: 0.000 1.000

Node number 4: 4 observations
predicted class=eng expected loss=0 P(node) =0.05263158

class counts: 4 0
probabilities: 1.000 0.000

Node number 5: 66 observations, complexity param=0.06140351
predicted class=eng expected loss=0.4848485 P(node) =0.8684211

class counts: 34 32
probabilities: 0.515 0.485

left son=10 (4 obs) right son=11 (62 obs)
Primary splits:

ppr.1 < 5377.582 to the right, improve=2.001955, (0 missing)
ppu.1 < 4579.384 to the right, improve=1.912554, (0 missing)
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eer.1 < 4687.518 to the right, improve=1.831682, (0 missing)
ppu < 0.8333333 to the right, improve=1.665975, (0 missing)
ep.1 < 5045.675 to the right, improve=1.336364, (0 missing)

Node number 10: 4 observations
predicted class=eng expected loss=0 P(node) =0.05263158

class counts: 4 0
probabilities: 1.000 0.000

Node number 11: 62 observations, complexity param=0.06140351
predicted class=psych expected loss=0.483871 P(node) =0.8157895

class counts: 30 32
probabilities: 0.484 0.516

left son=22 (53 obs) right son=23 (9 obs)
Primary splits:

ppr.1 < 4276.628 to the left, improve=2.9258130, (0 missing)
ppu.1 < 4579.384 to the right, improve=1.8188950, (0 missing)
eer.1 < 7129.535 to the right, improve=1.6796060, (0 missing)
ppu < 0.8333333 to the right, improve=1.3223520, (0 missing)
eeu.1 < 6596.24 to the left, improve=0.9677419, (0 missing)

Surrogate splits:
ep.1 < 5274.203 to the left, agree=0.871, adj=0.111, (0 split)

Node number 22: 53 observations, complexity param=0.06140351
predicted class=eng expected loss=0.4528302 P(node) =0.6973684

class counts: 29 24
probabilities: 0.547 0.453

left son=44 (8 obs) right son=45 (45 obs)
Primary splits:

ppu.1 < 4549.837 to the right, improve=2.0252620, (0 missing)
eer.1 < 4687.518 to the right, improve=1.7743550, (0 missing)
ep.1 < 3637.668 to the right, improve=1.2763460, (0 missing)
ppr < 0.5 to the right, improve=0.9177457, (0 missing)
eeu.1 < 2431.336 to the right, improve=0.9177457, (0 missing)

Surrogate splits:
ppr.1 < 1274.998 to the left, agree=0.906, adj=0.375, (0 split)
eer.1 < 4340.98 to the right, agree=0.887, adj=0.250, (0 split)
ep.1 < 5045.675 to the right, agree=0.887, adj=0.250, (0 split)
eeu.1 < 4075.88 to the right, agree=0.868, adj=0.125, (0 split)

Node number 23: 9 observations
predicted class=psych expected loss=0.1111111 P(node) =0.1184211

class counts: 1 8
probabilities: 0.111 0.889

Node number 44: 8 observations
predicted class=eng expected loss=0.125 P(node) =0.1052632

class counts: 7 1
probabilities: 0.875 0.125

Node number 45: 45 observations, complexity param=0.06140351
predicted class=psych expected loss=0.4888889 P(node) =0.5921053

class counts: 22 23
probabilities: 0.489 0.511
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left son=90 (31 obs) right son=91 (14 obs)
Primary splits:

ppr < 0.5 to the right, improve=1.677829, (0 missing)
eer.1 < 2344.133 to the right, improve=1.110511, (0 missing)
ppu.1 < 3962.375 to the left, improve=1.110511, (0 missing)
ppr.1 < 1678.842 to the left, improve=1.093540, (0 missing)
eeu.1 < 2431.336 to the right, improve=1.088889, (0 missing)

Surrogate splits:
eeu.1 < 3750.117 to the left, agree=0.778, adj=0.286, (0 split)
ep < 0.4583333 to the right, agree=0.756, adj=0.214, (0 split)
eer.1 < 2330.756 to the right, agree=0.756, adj=0.214, (0 split)
ep.1 < 3546.093 to the left, agree=0.733, adj=0.143, (0 split)
ppr.1 < 1867.892 to the right, agree=0.711, adj=0.071, (0 split)

Node number 90: 31 observations, complexity param=0.06140351
predicted class=eng expected loss=0.4193548 P(node) =0.4078947

class counts: 18 13
probabilities: 0.581 0.419

left son=180 (15 obs) right son=181 (16 obs)
Primary splits:

eer.1 < 2730.725 to the left, improve=2.7967740, (0 missing)
eeu.1 < 2431.336 to the right, improve=2.3950200, (0 missing)
ppu.1 < 3962.375 to the left, improve=1.7275430, (0 missing)
ppr.1 < 2892.779 to the left, improve=0.9634409, (0 missing)
eer < 0.5 to the left, improve=0.9501075, (0 missing)

Surrogate splits:
ep.1 < 2513.859 to the left, agree=0.710, adj=0.400, (0 split)
ppu.1 < 2662.676 to the left, agree=0.710, adj=0.400, (0 split)
eeu.1 < 2866.971 to the left, agree=0.677, adj=0.333, (0 split)
ppr.1 < 2824.401 to the left, agree=0.677, adj=0.333, (0 split)
eer < 0.5 to the left, agree=0.645, adj=0.267, (0 split)

Node number 91: 14 observations, complexity param=0.02631579
predicted class=psych expected loss=0.2857143 P(node) =0.1842105

class counts: 4 10
probabilities: 0.286 0.714

left son=182 (9 obs) right son=183 (5 obs)
Primary splits:

eeu < 0.5 to the right, improve=1.269841, (0 missing)
eer.1 < 2416.786 to the right, improve=1.269841, (0 missing)
ep < 0.4583333 to the left, improve=1.108225, (0 missing)
ep.1 < 3903.651 to the right, improve=1.108225, (0 missing)
ppr.1 < 3215.113 to the right, improve=1.108225, (0 missing)

Surrogate splits:
ep < 0.8333333 to the left, agree=0.786, adj=0.4, (0 split)
eeu.1 < 2589.253 to the right, agree=0.786, adj=0.4, (0 split)
ep.1 < 2231.651 to the right, agree=0.786, adj=0.4, (0 split)
ppr < 0.1666667 to the right, agree=0.714, adj=0.2, (0 split)
ppu < 0.5 to the right, agree=0.714, adj=0.2, (0 split)

Node number 180: 15 observations, complexity param=0.02631579
predicted class=eng expected loss=0.2 P(node) =0.1973684

class counts: 12 3
probabilities: 0.800 0.200
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left son=360 (8 obs) right son=361 (7 obs)
Primary splits:

eeu.1 < 2431.631 to the right, improve=1.3714290, (0 missing)
eeu < 0.5 to the right, improve=0.9818182, (0 missing)
eer.1 < 2515.267 to the right, improve=0.8000000, (0 missing)
ppu.1 < 2570.591 to the right, improve=0.8000000, (0 missing)
ep.1 < 2406.521 to the left, improve=0.6000000, (0 missing)

Surrogate splits:
ep.1 < 2465.887 to the right, agree=0.733, adj=0.429, (0 split)
eeu < 0.5 to the right, agree=0.667, adj=0.286, (0 split)
eer.1 < 2528.369 to the right, agree=0.667, adj=0.286, (0 split)
ppu.1 < 1856.145 to the right, agree=0.667, adj=0.286, (0 split)
ep < 0.5416667 to the left, agree=0.600, adj=0.143, (0 split)

Node number 181: 16 observations, complexity param=0.06140351
predicted class=psych expected loss=0.375 P(node) =0.2105263

class counts: 6 10
probabilities: 0.375 0.625

left son=362 (7 obs) right son=363 (9 obs)
Primary splits:

eeu < 0.5 to the left, improve=2.8650790, (0 missing)
eeu.1 < 2431.336 to the right, improve=2.0454550, (0 missing)
eer.1 < 3816.402 to the right, improve=1.7857140, (0 missing)
ep.1 < 2578.796 to the right, improve=1.0384620, (0 missing)
ppr < 0.8333333 to the left, improve=0.8333333, (0 missing)

Surrogate splits:
eer < 0.8333333 to the right, agree=0.688, adj=0.286, (0 split)
ppr < 0.8333333 to the left, agree=0.688, adj=0.286, (0 split)
eer.1 < 3816.402 to the right, agree=0.688, adj=0.286, (0 split)
ep.1 < 3322.808 to the right, agree=0.688, adj=0.286, (0 split)
ppr.1 < 3660.362 to the right, agree=0.688, adj=0.286, (0 split)

Node number 182: 9 observations, complexity param=0.02631579
predicted class=psych expected loss=0.4444444 P(node) =0.1184211

class counts: 4 5
probabilities: 0.444 0.556

left son=364 (2 obs) right son=365 (7 obs)
Primary splits:

ep < 0.4583333 to the left, improve=1.587302, (0 missing)
ep.1 < 3903.651 to the right, improve=1.587302, (0 missing)
ppr.1 < 3215.113 to the right, improve=1.587302, (0 missing)
eer.1 < 2387.215 to the right, improve=1.015873, (0 missing)
ppu.1 < 2349.516 to the right, improve=1.015873, (0 missing)

Surrogate splits:
ppr.1 < 3215.113 to the right, agree=1, adj=1, (0 split)

Node number 183: 5 observations
predicted class=psych expected loss=0 P(node) =0.06578947

class counts: 0 5
probabilities: 0.000 1.000

Node number 360: 8 observations
predicted class=eng expected loss=0 P(node) =0.1052632

class counts: 8 0
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probabilities: 1.000 0.000

Node number 361: 7 observations, complexity param=0.02631579
predicted class=eng expected loss=0.4285714 P(node) =0.09210526

class counts: 4 3
probabilities: 0.571 0.429

left son=722 (3 obs) right son=723 (4 obs)
Primary splits:

ep.1 < 2385.735 to the left, improve=1.9285710, (0 missing)
eeu.1 < 2369.62 to the left, improve=1.8285710, (0 missing)
eer.1 < 2515.267 to the right, improve=1.0285710, (0 missing)
ppu.1 < 1929.897 to the left, improve=1.0285710, (0 missing)
eeu < 0.5 to the right, improve=0.5952381, (0 missing)

Surrogate splits:
eeu < 0.5 to the right, agree=0.857, adj=0.667, (0 split)
ppu.1 < 2576.52 to the right, agree=0.857, adj=0.667, (0 split)
eer < 0.8333333 to the left, agree=0.714, adj=0.333, (0 split)
ep < 0.7083333 to the left, agree=0.714, adj=0.333, (0 split)
eer.1 < 2465.266 to the left, agree=0.714, adj=0.333, (0 split)

Node number 362: 7 observations, complexity param=0.05263158
predicted class=eng expected loss=0.2857143 P(node) =0.09210526

class counts: 5 2
probabilities: 0.714 0.286

left son=724 (5 obs) right son=725 (2 obs)
Primary splits:

eeu.1 < 2431.336 to the right, improve=2.8571430, (0 missing)
eer.1 < 3282.949 to the right, improve=1.5238100, (0 missing)
ppu < 0.8333333 to the right, improve=0.8571429, (0 missing)
ep < 0.7083333 to the left, improve=0.4571429, (0 missing)
ep.1 < 3435.295 to the right, improve=0.4571429, (0 missing)

Surrogate splits:
eer.1 < 3282.949 to the right, agree=0.857, adj=0.5, (0 split)

Node number 363: 9 observations
predicted class=psych expected loss=0.1111111 P(node) =0.1184211

class counts: 1 8
probabilities: 0.111 0.889

Node number 364: 2 observations
predicted class=eng expected loss=0 P(node) =0.02631579

class counts: 2 0
probabilities: 1.000 0.000

Node number 365: 7 observations
predicted class=psych expected loss=0.2857143 P(node) =0.09210526

class counts: 2 5
probabilities: 0.286 0.714

Node number 722: 3 observations
predicted class=eng expected loss=0 P(node) =0.03947368

class counts: 3 0
probabilities: 1.000 0.000
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Node number 723: 4 observations
predicted class=psych expected loss=0.25 P(node) =0.05263158

class counts: 1 3
probabilities: 0.250 0.750

Node number 724: 5 observations
predicted class=eng expected loss=0 P(node) =0.06578947

class counts: 5 0
probabilities: 1.000 0.000

Node number 725: 2 observations
predicted class=psych expected loss=0 P(node) =0.02631579

class counts: 0 2
probabilities: 0.000 1.000

This model seems to fit a lot better than our earlier LDA models, which suggest that it is probably overfitting.
Cross-validation can be done within the control parameter xval:
r3 <- rpart(eng ~ ., data = joint, method = "class", control = c(maxdepth = 3, xval = 10))
r3

n= 76

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 76 38 eng (0.5000000 0.5000000)
2) ep.1>=2049.256 68 31 eng (0.5441176 0.4558824)

4) ppr.1< 2900.149 39 14 eng (0.6410256 0.3589744) *
5) ppr.1>=2900.149 29 12 psych (0.4137931 0.5862069)
10) ppu>=0.8333333 7 2 eng (0.7142857 0.2857143) *
11) ppu< 0.8333333 22 7 psych (0.3181818 0.6818182) *

3) ep.1< 2049.256 8 1 psych (0.1250000 0.8750000) *
confusion(joint$eng, predict(r1, type = "class"))

Overall accuracy = 0.737

Confusion matrix
Predicted (cv)

Actual eng psych
eng 0.658 0.342
psych 0.184 0.816

confusion(joint$eng, predict(r3, type = "class"))

Overall accuracy = 0.684

Confusion matrix
Predicted (cv)

Actual eng psych
eng 0.789 0.211
psych 0.421 0.579

Accuracy goes down a bit, but the 74% accuracy is about what we achieved in the simple lda models.

Clearly, for partitioning trees, we have to be careful about overfitting, because we can always easily get the
perfect classification.
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Regression Trees
Instead of using a tree to divide and predict group memberships, rpart can also use a tree as a sort of
regression. It tries to model all of the data within a group as a single intercept value, and then tries to divide
groups to improve fit. There are some pdf help files available for more detail, but the regression options
(including poisson and anova) are a bit poorly documented. But, basically, we can use the same ideas to
partition the data, and then fit either a single value within each group or some small linear model. The tree
shows nodes with the the top value the mean for that branch.
cw <- rpart(weight ~ Time + Diet, data = ChickWeight, control = rpart.control(maxdepth = 5))
summary(cw)

Call:
rpart(formula = weight ~ Time + Diet, data = ChickWeight, control = rpart.control(maxdepth = 5))

n= 578

CP nsplit rel error xerror xstd
1 0.54964983 0 1.0000000 1.0030695 0.06391963
2 0.08477800 1 0.4503502 0.4785714 0.03605353
3 0.04291979 2 0.3655722 0.3714165 0.02871494
4 0.03905827 3 0.3226524 0.3647261 0.03094922
5 0.01431308 4 0.2835941 0.3214765 0.02827394
6 0.01000000 5 0.2692810 0.3219507 0.02822922

Variable importance
Time Diet

93 7

Node number 1: 578 observations, complexity param=0.5496498
mean=121.8183, MSE=5042.484
left son=2 (296 obs) right son=3 (282 obs)
Primary splits:

Time < 11 to the left, improve=0.54964980, (0 missing)
Diet splits as LRRR, improve=0.04479917, (0 missing)

Node number 2: 296 observations, complexity param=0.04291979
mean=70.43243, MSE=700.6779
left son=4 (149 obs) right son=5 (147 obs)
Primary splits:

Time < 5 to the left, improve=0.60314240, (0 missing)
Diet splits as LRRR, improve=0.04085943, (0 missing)

Node number 3: 282 observations, complexity param=0.084778
mean=175.7553, MSE=3919.043
left son=6 (144 obs) right son=7 (138 obs)
Primary splits:

Time < 17 to the left, improve=0.2235767, (0 missing)
Diet splits as LLRR, improve=0.1333256, (0 missing)

Node number 4: 149 observations
mean=50.01342, MSE=71.0468

Node number 5: 147 observations
mean=91.12925, MSE=487.9085
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Node number 6: 144 observations, complexity param=0.01431308
mean=146.7778, MSE=1825.326
left son=12 (84 obs) right son=13 (60 obs)
Primary splits:

Diet splits as LLRR, improve=0.1587094, (0 missing)
Time < 15 to the left, improve=0.1205157, (0 missing)

Node number 7: 138 observations, complexity param=0.03905827
mean=205.9928, MSE=4313.283
left son=14 (80 obs) right son=15 (58 obs)
Primary splits:

Diet splits as LLRR, improve=0.19124870, (0 missing)
Time < 19 to the left, improve=0.02989732, (0 missing)

Node number 12: 84 observations
mean=132.3929, MSE=1862.834

Node number 13: 60 observations
mean=166.9167, MSE=1077.543

Node number 14: 80 observations
mean=181.5375, MSE=3790.849

Node number 15: 58 observations
mean=239.7241, MSE=3071.165

fancyRpartPlot(cw)

Rattle 2023−Feb−27 23:13:44 smueller 

Time < 11

Time < 5 Time < 17

Diet = 1,2 Diet = 1,2
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## this shows the yvalue estimate for each leaf node:
cw$frame

var n wt dev yval complexity ncompete nsurrogate
1 Time 578 578 2914555.93 121.81834 0.549649827 1 0
2 Time 296 296 207400.65 70.43243 0.042919791 1 0
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4 <leaf> 149 149 10585.97 50.01342 0.010000000 0 0
5 <leaf> 147 147 71722.54 91.12925 0.007137211 0 0
3 Time 282 282 1105170.12 175.75532 0.084778005 1 0
6 Diet 144 144 262846.89 146.77778 0.014313079 1 0
12 <leaf> 84 84 156478.04 132.39286 0.005288100 0 0
13 <leaf> 60 60 64652.58 166.91667 0.005342978 0 0
7 Diet 138 138 595232.99 205.99275 0.039058272 1 0
[ reached 'max' / getOption("max.print") -- omitted 2 rows ]

library(ggplot2)
ChickWeight$predicted <- predict(cw)
ggplot(ChickWeight, aes(x = Time, y = predicted, group = Diet, color = Diet, size = Diet)) +

geom_point(shape = 1) + theme_minimal()
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#
Random Forests

One advantage of partitioning/decision trees is that they are fast and easy to make. They are also considered
interpretable and easy to understand. A tree like this can be used by a doctor or a medical counselor to help
understand the risk for a disease, by asking a few simple questions.

The downsides of a decision tree is that they are often not very good, especially once they have been trimmed
to avoid over-fitting. Recently, researchers have been interested in combining the results of many small (and
often not-very-good) classifiers to make one better one. This often is described as ‘boosting’, or ‘ensemble’
methods, and there are a number of ways to achieve this. Doing this in a particular way with decision trees
is referred to as a ‘random forest’ (see Breiman and Cutler).

Random forests can be used for both regression and classification (trees can be used in either way as well),
and the classification and regression trees (CART) approach is a method that supports both. A random
forest works as follows:

17



• Build N trees (where N may be hundreds; Brieman says ‘Don’t be stingy’), where each tree is built
from a random subset of features/variables. That is, on each step, choose the best variable to divide
the branch based on a random subset of variables.

For each tree: 1. Pick a random sample of data. This is by default ‘bootstrapped’, meaning it has the same
size as your data but samples it with replacement. 2. Pick K, where k is the number of variables considered
at each step (typically sqrt(number of variables)) 3. Select k variables at random. 4. Find the best split
among those k variables. 5. Repeat from point 3 until you reach the end criteria (determined by maxnodes
and nodesize)

• Then, to classify your data, have each tree determine its best guess, and then take the most frequent
outcome (or give a probabilistic answer based on the balance of evidence). This can both provide
a robust classifier and a general importance of variables. You can look at the trees that more more
accurate and see which variables were used, and which were used earlier, and this can give an indication
of the most robust classification. In contrast to a normal CART, where the first cut may end up not
being as important as later cuts.

The randomForest package in R supports building these models. Because these can be a bit more difficult to
comprehend, there is a companion package randomForestExplainer that is also handy in digging down on the
types of forests derived.
library(randomForest)
library(randomForestExplainer)

rf <- randomForest(x = joint[, -1], y = joint$eng, proximity = T, ntree = 5000)
rf

Call:
randomForest(x = joint[, -1], y = joint$eng, ntree = 5000, proximity = T)

Type of random forest: classification
Number of trees: 5000

No. of variables tried at each split: 3

OOB estimate of error rate: 56.58%
Confusion matrix:

eng psych class.error
eng 17 21 0.5526316
psych 22 16 0.5789474
# printRandomForests(rf) ##look at all the RFs
confusion(joint$eng, predict(rf))

Overall accuracy = 0.434

Confusion matrix
Predicted (cv)

Actual eng psych
eng 0.447 0.553
psych 0.579 0.421

If you run this repeatedly, you get a different answer each time. For this data, quite often the accuracy is below
chance. The confusion matrix produced is “OOB”: out-of-bag, which is like Leave-on-out cross-validation.
Looking at the trees, they are quite complex as well, with tens of rules. We can get a printout of individual
subtrees with getTree:
(getTree(rf, 1))
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left daughter right daughter split var split point status prediction
1 2 3 8 2031.6703986 1 0
2 0 0 0 0.0000000 -1 2
3 4 5 7 4856.4912642 1 0
4 6 7 10 4766.9475175 1 0
5 8 9 6 3813.5958144 1 0
6 10 11 3 0.3750000 1 0
7 0 0 0 0.0000000 -1 1
8 12 13 7 5706.1613398 1 0
9 0 0 0 0.0000000 -1 2
10 0 0 0 0.0000000 -1 1
11 14 15 6 2730.7252506 1 0
12 0 0 0 0.0000000 -1 2
[ reached getOption("max.print") -- omitted 21 rows ]

(getTree(rf, 5))

left daughter right daughter split var split point status prediction
1 2 3 7 2546.7325445 1 0
2 4 5 10 4722.4207254 1 0
3 6 7 5 0.8333333 1 0
4 8 9 8 2385.7348988 1 0
5 0 0 0 0.0000000 -1 1
6 10 11 7 2596.2210961 1 0
7 12 13 6 3148.9162846 1 0
8 14 15 2 0.5000000 1 0
9 0 0 0 0.0000000 -1 2
10 0 0 0 0.0000000 -1 1
11 16 17 7 3128.9802424 1 0
12 0 0 0 0.0000000 -1 1
[ reached getOption("max.print") -- omitted 25 rows ]

There are many arguments that support the sampling/evaluation process. The feasibility of changing these
will often depend on the size of the data set. With a large data set and many variables, fitting one of these
models may take a long time if they are not constrained. Here we look at:

• sampsize: number of bootstrapped samples to try.
• replace: bootstrapped cases are sampled with or without replacement
• mtry: how many variables to try at each split
• ntree: how many trees to grow
• keep.inbag: keep track of which samples are ‘in the bag’

rf <- randomForest(eng ~ ., data = joint, proximity = T, replace = F, mtry = 3, maxnodes = 5,
ntree = 500, keep.inbag = T, sampsize = 10, localImp = TRUE)

confusion(joint$eng, predict(rf))

Overall accuracy = 0.487

Confusion matrix
Predicted (cv)

Actual eng psych
eng 0.553 0.447
psych 0.579 0.421

The forest lets us understand which variables are more important, by identifying how often variables are
closer to the root of the tree. Depending on the run, these figures change, but a variable that is frequently

19



selected as the root, or one whose mean depth is low, is likely to be more important.
plot_min_depth_distribution(rf)
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plot_multi_way_importance(rf)
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This plots the prediction of the forest for different values of variables. If the variables are useful, we will tend
to see blocks of red/purple indicating the prediction in different regions.:
plot_predict_interaction(rf, joint, "eer", "ppr")
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Note that the random forest rarely produces a good classification for the engineers/psychologist data. How
does it doe for the iphone data?
phone <- read.csv("data_study1.csv")
phone.dt <- rpart(Smartphone ~ ., data = phone)
prp(phone.dt, cex = 0.5)
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Phone.as < 2.6

Gender = mal

Avoidanc >= 2.7

Conscien < 3.6

Extraver >= 3.7

Honesty. >= 3.7

Openness >= 3.4

Phone.as < 2.3

Agreeabl >= 4

Phone.as >= 2.1

Conscien < 3.8

Phone.as < 1.6

Age >= 20

Agreeabl < 3

Time.own < 9

Conscien < 3.3

Emotiona >= 4.1

Age >= 27

Age < 34

Android

Android

Android

iPhone

Android

Android

Android

Android

iPhone

iPhone

Android

iPhone

iPhone

Android

Android

iPhone

iPhone

Android

iPhone

iPhone

yes no

confusion(phone$Smartphone, predict(phone.dt)[, 1] < 0.5)

Overall accuracy = 0.783

Confusion matrix
Predicted (cv)

Actual [,1] [,2]
[1,] 0.658 0.342
[2,] 0.129 0.871

## this doesn't like the predicted value to be a factor phone$Smartphone<-
## phone$Smartphone=='iPhone' newer versions require this to be a factor:
phone$Smartphone <- as.factor(phone$Smartphone)

phone.rf <- randomForest(Smartphone ~ ., data = phone)
phone.rf

Call:
randomForest(formula = Smartphone ~ ., data = phone)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 36.11%
Confusion matrix:

Android iPhone class.error
Android 103 116 0.5296804
iPhone 75 235 0.2419355
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confusion(phone$Smartphone, predict(phone.rf))

Overall accuracy = 0.639

Confusion matrix
Predicted (cv)

Actual Android iPhone
Android 0.470 0.530
iPhone 0.242 0.758

This does not seem to be better than the other models for the iphone data, but at least it is comparable. It
does not seem to do as well as rpart though!

Note the ranger library random forest gives roughly equivalent results.
library(ranger)
r2 <- ranger(Smartphone ~ ., data = phone)
r2

Ranger result

Call:
ranger(Smartphone ~ ., data = phone)

Type: Classification
Number of trees: 500
Sample size: 529
Number of independent variables: 12
Mtry: 3
Target node size: 1
Variable importance mode: none
Splitrule: gini
OOB prediction error: 36.11 %
treeInfo(r2)

nodeID leftChild rightChild splitvarID splitvarName splitval
1 0 1 2 1 Age 22.50
2 1 3 4 9 Phone.as.status.object 2.40
3 2 5 6 2 Honesty.Humility 4.15
4 3 7 8 3 Emotionality 4.45
5 4 9 10 8 Avoidance.Similarity 2.65
6 5 11 12 0 Gender 1.50
7 6 13 14 6 Conscientiousness 3.55
8 7 15 16 2 Honesty.Humility 4.50
9 8 NA NA NA <NA> NA

terminal prediction
1 FALSE <NA>
2 FALSE <NA>
3 FALSE <NA>
4 FALSE <NA>
5 FALSE <NA>
6 FALSE <NA>
7 FALSE <NA>
8 FALSE <NA>
9 TRUE iPhone
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[ reached 'max' / getOption("max.print") -- omitted 192 rows ]
confusion(phone$Smartphone, predictions(r2))

Overall accuracy = 0.639

Confusion matrix
Predicted (cv)

Actual Android iPhone
Android 0.493 0.507
iPhone 0.258 0.742

For the examples we looked at, random forests did not perform that well. However, for large complex
classifications they can both be more sensitive and provide more convincing explanations than trees, because
they can give probabilistic and importance weightings to each variable. However, they do lose some of the
simplicity and as we saw, don’t always improve performance of the classifier.

K Nearest-Neighbor classifiers
Another non-model-based classifier are nearest-neighbor methods. These methods require you to develop a
similarity or distance space–usually on the basis of a set of predictors or features. Once this distance space is
defined, we determine the class by finding the nearest neighbor in that space, and using that label. Because
this could be susceptible to noisy data, we usually find a set of k neighbors and have them vote on the
outcome. These are K-nearest neighbor classifiers, or KNN.

Choosing K.
The choice of k can have a big impact on the results. If k is too small, classification will be highly impacted
by local neighborhood; if it is too big (i.e., if K = N), it will always just respond with the most likely response
in the entire population.

Distance Metric
The distance metric used in KNN easily be chosen poorly. For example, if you want to decide on political
party based on age, income level, and gender, you need to figure out how to weigh and combine these. By
default, you might add differences along each dimension, which would combine something that differs on
the scale of dozens with something that differs on the scale of thousands, and so the KNN model would
essentially ignore gender and age.

Normalization selection
A typical approach would be to normalize all variables first. Then each variable has equal weight and range.

Using KNN
Unlike previous methods where we train a system based on data and then make classifications, for KNN the
trained system is just the data.

Libraries and functions.
There are several options for knn classifers. ### Library: Class * Function: knn * Function: knn.cv
(cross-validation)
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Library: kknn

• Function: kknn

This provides a ‘weighted k-nearest neighbor classifier’. Here, weighting is a weighting kernel, which gives
greater weights to the nearer neighbors.

Library: klaR

• Function: sknn A ‘simple’ knn function. Permits using a weighting kernel as well.

Function: nm

This provides a ‘nearest mean’ classifier

Example
In general, we need to normalize the variables first when using knn, because it tries to create a distance
metric between cases–we don’t want distance to be dominated by a variable that happens to have a larger
scale.
phone <- read.csv("data_study1.csv")
# Normalizing the values by creating a new function
normal = function(x) {

xn = (x - min(x))/(max(x) - min(x))
return(xn)

}

phone2 <- phone
phone2$Gender <- as.numeric(as.factor(phone2$Gender))
for (i in 2:ncol(phone2)) {

phone2[, i] = normal(as.numeric(phone2[, i]))
}

# we might also use scale:
phone3 <- scale(phone[, -(1:2)])

# checking the range of values after normalization
par(mfrow = c(3, 1))
boxplot(phone[, 3:12])
boxplot(phone2[, 3:12])
boxplot(phone3)
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## Fitting a simple KNN model

Here, we use the class:knn model. We specify separate the training and testing separately, but they can be
the same. ‘training’ a knn is a bit deceptive, the training pool is just the set of points being used to classify
the test cases. We will use a k of 11, which means each case will be compared to the 11 closes cases and a
decision made based on the vote of those. Using an odd number means that there won’t be a tie.
library(class)
m1 = knn(train = phone2[, -1], test = phone2[, -1], cl = phone2$Smartphone, k = 11)
confusion(phone2$Smartphone, m1)

Overall accuracy = 0.688
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Confusion matrix
Predicted (cv)

Actual [,1] [,2]
[1,] 0.557 0.443
[2,] 0.219 0.781

That is pretty good, but what if we expand k
m1 = knn(train = phone2[, -1], test = phone2[, -1], cl = phone2$Smartphone, k = 25)
confusion(phone2$Smartphone, m1)

Overall accuracy = 0.686

Confusion matrix
Predicted (cv)

Actual [,1] [,2]
[1,] 0.534 0.466
[2,] 0.206 0.794

It looks we the choice of k is not going to matter much. What we could do is play with cross-validation
though–right now we are testing on the same set as we are ‘training’ with, which will boost our accuracy
(since the correct answer will always be one of the elements.) We can also try to do variable selection to
change the similarity space to something that works better.
phone2 <- phone2[order(runif(nrow(phone2))), ] #random sort
phone.train = phone2[1:450, 2:12]
phone.test = phone2[451:nrow(phone2), 2:12]
phone.train.target = phone2[1:450, 1]
phone.test.target = phone2[451:nrow(phone2), 1]

train <- sample(1:nrow(phone2), 300)
m2 <- knn(train = phone.train, test = phone.test, cl = phone.train.target, k = 10)
confusion(phone.test.target, m2)

Overall accuracy = 0.62

Confusion matrix
Predicted (cv)

Actual [,1] [,2]
[1,] 0.438 0.562
[2,] 0.255 0.745

Additional resources
• K-Nearest Neighbor Classification:

– MASS: Chapter 12.3, p. 341
– https://rstudio-pubs-static.s3.amazonaws.com/123438_3b9052ed40ec4cd2854b72d1aa154df9.ht

ml

• Relevant library/functions in R:

• Decision Trees:

– Faraway, Chapter 13

• Library: rpart (function rpart)
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• Random Forest Classification:

References: - https://www.r-bloggers.com/predicting-wine-quality-using-random-forests/ - https:
//www.stat.berkeley.edu/~breiman/RandomForests/ - Library: randomForest (Function randomForest) -
ranger (a fast random forest implementation).
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