Naive Bayes Classifiers

A naive bayes classifier uses Bayes rule to combine information about a set of predictors. Although many Bayesian approaches can be quite complex and computationally-intensive, Naive Bayes classifiers are simple such that they can often be implemented without any special library. They are also easy to use even when you have hundreds or thousands of features, such as when trying to classify text (e.g., each word is a feature/predictor), for classification problems like sentiment analysis or spam detection. Let’s start with an example application for the iPhone data set:

```r
dat <- read.csv("data_study1.csv")
dat$Smartphone <- factor(dat$Smartphone)
library(klaR)
b <- NaiveBayes(Smartphone ~ ., data = dat)
library(DAAG)
summary(b)
```

<table>
<thead>
<tr>
<th>Length</th>
<th>Class</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>apriori</td>
<td>2</td>
<td>table</td>
</tr>
<tr>
<td>tables</td>
<td>12</td>
<td>-none-</td>
</tr>
<tr>
<td>levels</td>
<td>2</td>
<td>-none-</td>
</tr>
<tr>
<td>call</td>
<td>3</td>
<td>-none-</td>
</tr>
<tr>
<td>x</td>
<td>12</td>
<td>data.frame</td>
</tr>
<tr>
<td>usekernel</td>
<td>1</td>
<td>-none-</td>
</tr>
<tr>
<td>varnames</td>
<td>12</td>
<td>-none-</td>
</tr>
</tbody>
</table>

nb$apriori

<table>
<thead>
<tr>
<th>grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android</td>
</tr>
<tr>
<td>0.4139887</td>
</tr>
</tbody>
</table>

nb$tables

$Gender

<table>
<thead>
<tr>
<th>var</th>
</tr>
</thead>
<tbody>
<tr>
<td>grouping</td>
</tr>
<tr>
<td>female</td>
</tr>
<tr>
<td>Android</td>
</tr>
<tr>
<td>iPhone</td>
</tr>
</tbody>
</table>

$Age

<table>
<thead>
<tr>
<th>,1</th>
<th>,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android</td>
<td>31.42466</td>
</tr>
<tr>
<td>iPhone</td>
<td>26.84839</td>
</tr>
<tr>
<td>Feature</td>
<td>Android</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>$Honesty.Humility</td>
<td>3.598174</td>
</tr>
<tr>
<td></td>
<td>0.5971617</td>
</tr>
<tr>
<td>$Emotionality</td>
<td>3.231963</td>
</tr>
<tr>
<td></td>
<td>0.7187408</td>
</tr>
<tr>
<td>$Extraversion</td>
<td>3.196347</td>
</tr>
<tr>
<td></td>
<td>0.6842832</td>
</tr>
<tr>
<td>$Agreeableness</td>
<td>3.175799</td>
</tr>
<tr>
<td></td>
<td>0.5900619</td>
</tr>
<tr>
<td>$Conscientiousness</td>
<td>3.544292</td>
</tr>
<tr>
<td></td>
<td>0.5910664</td>
</tr>
<tr>
<td>$Openness</td>
<td>3.542922</td>
</tr>
<tr>
<td></td>
<td>0.6218371</td>
</tr>
<tr>
<td>$Avoidance.Similarity</td>
<td>2.545205</td>
</tr>
<tr>
<td></td>
<td>0.8413687</td>
</tr>
<tr>
<td>$Phone.as.status.object</td>
<td>2.086758</td>
</tr>
<tr>
<td></td>
<td>0.5411150</td>
</tr>
<tr>
<td>$Social.Economic.Status</td>
<td>5.949772</td>
</tr>
<tr>
<td></td>
<td>1.586132</td>
</tr>
<tr>
<td>$Time.owned.current.phone</td>
<td>12.72146</td>
</tr>
<tr>
<td></td>
<td>11.497509</td>
</tr>
</tbody>
</table>

To understand how it works, let’s look at the output. First, we have the apriori values—this determines the overall base rate of the outcomes. Then, we have the mean and standard deviation of normal distribution describing of each feature for each group. To confirm, look at the values for age:
means <- tapply(as.numeric(dat$Age), list(dat$Smartphone), mean)
sds <- tapply(as.numeric(dat$Age), list(dat$Smartphone), sd)
means

<table>
<thead>
<tr>
<th></th>
<th>iPhone</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>26.84839</td>
<td>31.42466</td>
</tr>
</tbody>
</table>

sds

<table>
<thead>
<tr>
<th></th>
<th>iPhone</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>12.19792</td>
<td>13.52190</td>
</tr>
</tbody>
</table>

Naive Bayes works very similarly to qda. QDA attempts to find a decision point consistent with the most likely outcome that combines all features optimally. In contrast, NB combines all features equally— for each feature computing the likelihood of each option, and combining those one at a time. For the Age predictor, the two densities look like this:

library(ggplot2)
phone <- rep(c("iphone", "android"), each = 100)
density <- c(dnorm(1:100, mean = means[2], sd = sds[2]), dnorm(1:100, mean = means[1], sd = sds[1]))
df <- data.frame(age = c(1:100, 1:100), phone, density)
ggplot(df, aes(x = age, y = density, colour = phone)) + geom_line()

So, in a way this is very similar to LDA/QDA, because it uses a model-based approach, assuming a normal distribution, and permits different means and standard deviation for each group. Notice how for different ages, there is a higher likelihood for one group or the other. We can compute a ratio easily:
df <- data.frame(age = c(1:100), lr = (dnorm(1:100, mean = means[2], sd = sds[2]) / dnorm(1:100, mean = means[1], sd = sds[1])))

ggplot(df, aes(x = age, y = lr)) + geom_line() + geom_hline(yintercept = 1)

This shows the likelihood of ratio in favor of being an iPhone user across age. Notice that this is highly model-based—if your assumed model is wrong, like it if it is not normally-distributed, the ratio can be wrong. This is especially true out in the tails of the distribution, where we probably have the least amount of data, but where the observations can have the greatest impact. If this were a decision tree, we’d use the point the likelihood ratio crosses 1.0 as the place to put the cut-off for that dimension. If we were doing LDA or QDA, we’d combine all axes and find a cutoff along a single vector. NB combines the likelihood ratio curves for each dimension using Bayes Rule, which also permits combining prior probability (base rate). So, like LDA, it combines all the dimensions, but like a decision tree, it computes a fit on dimension.

In contrast to QDA, the weighing of features technically differs in Naive Bayes, but they differ in details a little. One important aspect is that QDA and LDA essentially use a regression equation that incorporates base rate in an intercept value. Here, each features is ignorant of the bias. If you have a missing value, you can ignore the contribution of that feature, as the best guess is 1.0—which has no impact on the classification. For LDA and QDA, it is not as easy to deal with missing values. This is one benefit of Bayes Factor—it is useful for data that are often likely to be missing. This is one of the reasons why it is frequently used for classifying text data, which may have thousands of features (i.e., words) but most of them are missing for any given document.

We can use this for prediction:

Overall accuracy = 0.667
Confusion matrix

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted (cv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android</td>
<td>0.543 0.457</td>
</tr>
<tr>
<td>iPhone</td>
<td>0.245 0.755</td>
</tr>
</tbody>
</table>

This performs about as well as any of the other models. There is no simple way to do cross-validation with this implementation—you would have to do this by hand if you wanted to implement cross-validation. But also note that if a feature is non-predictive, it will essentially have very little impact on the outcome.

Using alternative kernel

The model assumes a normal/gaussian distribution, but Naive Bayes will permit us to estimate the of each feature empirically, which happens when we specify usekernel=T.

```r
nb2 <- NaiveBayes(Smartphone ~ ., usekernel = T, data = dat)
nb2$tables
```

$Gender

```r
$Gender
var grouping female male
Android 0.5753425 0.4246575
iPhone 0.7516129 0.2483871
```

$Age

```r
$Age$Android
Call:
density.default(x = xx)
Data: xx (219 obs.); Bandwidth 'bw' = 4.142

x   y
Min. : 3.575 Min. :5.350e-06
1st Qu.:23.537 1st Qu.:2.524e-03
Median :43.500 Median :8.884e-03
Mean :43.500 Mean :1.251e-02
3rd Qu.:63.463 3rd Qu.:1.954e-02
Max. :83.425 Max. :4.128e-02
```

AgeiPhone

Call:
density.default(x = xx)
Data: xx (310 obs.); Bandwidth 'bw' = 2.292

x y
Min. : 9.123 Min. :1.259e-05
1st Qu.:27.062 1st Qu.:8.960e-04
Median :45.000 Median :7.547e-03
Mean :45.000 Mean :1.392e-02
3rd Qu.:62.938 3rd Qu.:1.111e-02
Max. :80.877 Max. :9.380e-02
$Honesty.Humility$

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.1829

 x y
Min. :1.151 Min. :0.0001146
1st Qu.:2.226 1st Qu.:0.0197670
Median :3.300 Median :0.1441117
Mean :3.300 Mean :0.2324787
3rd Qu.:4.374 3rd Qu.:0.4797145
Max. :5.449 Max. :0.5965253

$Honesty.Humility$iPhone

Call:
density.default(x = xx)

Data: xx (310 obs.); Bandwidth 'bw' = 0.1791

 x y
Min. :1.163 Min. :0.0000963
1st Qu.:2.206 1st Qu.:0.0382611
Median :3.250 Median :0.1789519
Mean :3.250 Mean :0.2392920
3rd Qu.:4.294 3rd Qu.:0.4296896
Max. :5.337 Max. :0.6257473

$Emotionality$

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.2202

 x y
Min. :0.4395 Min. :0.0000934
1st Qu.:1.7448 1st Qu.:0.0166069
Median :3.0500 Median :0.1157574
Mean :3.0500 Mean :0.1913477
3rd Qu.:4.3552 3rd Qu.:0.3759779
Max. :5.6605 Max. :0.5323054

$Emotionality$iPhone

Call:
density.default(x = xx)
Data: xx (310 obs.); Bandwidth 'bw' = 0.19

x y
Min. :0.9301 Min. :0.0000773
1st Qu.:2.0900 1st Qu.:0.0219688
Median :3.2500 Median :0.1508402
Mean :3.2500 Mean :0.2153124
3rd Qu.:4.4100 3rd Qu.:0.3922926
Max. :5.5699 Max. :0.6291699

$Extraversion$
$Extraversion$Android

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.2057

x y
Min. :0.7828 Min. :0.0001224
1st Qu.:1.9164 1st Qu.:0.0407787
Median :3.0500 Median :0.1578239
Mean :3.0500 Mean :0.2203167
3rd Qu.:4.1836 3rd Qu.:0.3968226
Max. :5.3172 Max. :0.5870843

$Extraversion$iPhone

Call:
density.default(x = xx)

Data: xx (310 obs.); Bandwidth 'bw' = 0.1817

x y
Min. :1.055 Min. :0.0000833
1st Qu.:2.077 1st Qu.:0.0339189
Median :3.100 Median :0.2100553
Mean :3.100 Mean :0.2442280
3rd Qu.:4.123 3rd Qu.:0.4375608
Max. :5.145 Max. :0.5799863

$Agreeableness$
$Agreeableness$Android

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.1807

x y
Min. :1.058 Min. :0.0001347
1st Qu.:2.104 1st Qu.:0.0270296
Median : 3.150 Median : 0.1628894
Mean : 3.150 Mean : 0.2387443
3rd Qu.: 4.196 3rd Qu.: 0.4663836
Max. : 5.242 Max. : 0.6169762

$Agreeableness$

Call:
\texttt{density.default(x = xx)}

Data: xx (310 obs.); Bandwidth 'bw' = 0.1826

\begin{tabular}{ll}
\texttt{x} & \texttt{y} \\
Min. & 0.8522 \\
1st Qu. & 1.9261 \\
Median & 3.0000 \\
Mean & 3.0000 \\
3rd Qu. & 4.0739 \\
Max. & 5.1478 \\
\end{tabular}

$Conscientiousness$

$Conscientiousness$

$Android$

Call:
\texttt{density.default(x = xx)}

Data: xx (219 obs.); Bandwidth 'bw' = 0.181

\begin{tabular}{ll}
\texttt{x} & \texttt{y} \\
Min. & 0.9569 \\
1st Qu. & 2.1034 \\
Median & 3.2500 \\
Mean & 3.2500 \\
3rd Qu. & 4.3966 \\
Max. & 5.5431 \\
\end{tabular}

$Conscientiousness$

$iPhone$

Call:
\texttt{density.default(x = xx)}

Data: xx (310 obs.); Bandwidth 'bw' = 0.1706

\begin{tabular}{ll}
\texttt{x} & \texttt{y} \\
Min. & 1.188 \\
1st Qu. & 2.244 \\
Median & 3.300 \\
Mean & 3.300 \\
3rd Qu. & 4.356 \\
Max. & 5.412 \\
\end{tabular}

$Openness$
$Openness$Android

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.1905

 x y
Min. :1.029 Min. :0.0001105
1st Qu.:2.139 1st Qu.:0.0234947
Median :3.250 Median :0.1359343
Mean :3.250 Mean :0.2248574
3rd Qu.:4.361 3rd Qu.:0.4378584
Max. :5.471 Max. :0.6162173

$Openness$iPhone

Call:
density.default(x = xx)

Data: xx (310 obs.); Bandwidth 'bw' = 0.1779

 x y
Min. :1.166 Min. :0.0000961
1st Qu.:2.233 1st Qu.:0.0252414
Median :3.300 Median :0.1804943
Mean :3.300 Mean :0.2341143
3rd Qu.:4.367 3rd Qu.:0.4645641
Max. :5.434 Max. :0.5693733

$Avoidance.Similarity$

$Avoidance.Similarity$Android

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.2286

 x y
Min. :0.3142 Min. :0.00027
1st Qu.:1.6071 1st Qu.:0.03275
Median :2.9000 Median :0.15129
Mean :2.9000 Mean :0.19315
3rd Qu.:4.1929 3rd Qu.:0.37572
Max. :5.4858 Max. :0.46712

$Avoidance.Similarity$iPhone

Call:
density.default(x = xx)

Data: xx (310 obs.); Bandwidth 'bw' = 0.1706
$Phone.as.status.object$Android

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.1657

$Phone.as.status.object$iPhone

Call:
density.default(x = xx)

Data: xx (310 obs.); Bandwidth 'bw' = 0.1706

$Social.Economic.Status$Android

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 0.4572
$Social.Economic.Status$\text{iPhone}$

Call:
density.default(x = xx)

Data: xx (310 obs.); Bandwidth 'bw' = 0.4245

\[
\begin{array}{ll}
\text{x} & \text{y} \\
\text{Min.} & -0.2735 & \text{Min.} & 6.835e-05 \\
\text{1st Qu.} & 2.6133 & \text{1st Qu.} & 7.145e-03 \\
\text{Median} & 5.5000 & \text{Median} & 3.632e-02 \\
\text{Mean} & 5.5000 & \text{Mean} & 8.652e-02 \\
\text{3rd Qu.} & 8.3867 & \text{3rd Qu.} & 1.511e-01 \\
\text{Max.} & 11.2735 & \text{Max.} & 2.871e-01 \\
\end{array}
\]

$\text{Time.owned.current.phone}$

\$\text{Time.owned.current.phone}\Android

Call:
density.default(x = xx)

Data: xx (219 obs.); Bandwidth 'bw' = 2.972

\[
\begin{array}{ll}
\text{x} & \text{y} \\
\text{Min.} & -8.915 & \text{Min.} & 0.000e+00 \\
\text{1st Qu.} & 20.293 & \text{1st Qu.} & 8.400e-07 \\
\text{Median} & 49.500 & \text{Median} & 5.839e-04 \\
\text{Mean} & 49.500 & \text{Mean} & 8.550e-03 \\
\text{3rd Qu.} & 78.707 & \text{3rd Qu.} & 1.160e-02 \\
\text{Max.} & 107.915 & \text{Max.} & 4.714e-02 \\
\end{array}
\]

$\text{Time.owned.current.phone}\iPhone

Call:
density.default(x = xx)

Data: xx (310 obs.); Bandwidth 'bw' = 2.5

\[
\begin{array}{ll}
\text{x} & \text{y} \\
\text{Min.} & -7.50 & \text{Min.} & 5.810e-06 \\
\text{1st Qu.} & 8.25 & \text{1st Qu.} & 9.996e-04 \\
\text{Median} & 24.00 & \text{Median} & 5.201e-03 \\
\text{Mean} & 24.00 & \text{Mean} & 1.586e-02 \\
\text{3rd Qu.} & 39.75 & \text{3rd Qu.} & 3.214e-02 \\
\text{Max.} & 55.50 & \text{Max.} & 5.031e-02 \\
\end{array}
\]

plot(nb2)
Naive Bayes Plot

Agreeableness

Density

Android

iPhone

Conscientiousness

Naive Bayes Plot

Density

Android

iPhone
Naive Bayes Plot

Openness

Naive Bayes Plot

Avoidance.Similarity
Now, instead of just the mean and standard deviation, we have estimated quantiles of the distribution. This might help us when we have skewed distributions, but we need a lot of observations in order to get reliable estimates. 200-300 observations in each group might not be enough to do well. If we look at the predictions:

```r
pred2 <- predict(nb2)
confusion(dat$Smartphone, pred2$class)
```

Overall accuracy = 0.699

Confusion matrix

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted (cv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Android</td>
</tr>
<tr>
<td>Android</td>
<td>0.557</td>
</tr>
<tr>
<td>iPhone</td>
<td>0.200</td>
</tr>
</tbody>
</table>

Here, we do a bit better, and in contrast to some of the other classification methods, we have a 55% chance of getting Android users right (the lda model sometimes had less than a 50% chance of getting them correct.)

Again, it would be good to implement a cross-validation here.

Example: Predicting Dengue Fever

The NaiveBayes function is sensitive to missing data and zero-variances. If you have a variable with no variance, any new value will have likelihood of 0, and we have a chance of getting a likelihood ratio that is infinite. Similarly, an NA in the values can cause trouble, dependent on how the model handles it. It might be useful to impute NA data, or add small amounts of noise to the training set to smooth out the values.

```r
library(e1071)
data(dengue)
summary(dengue)
```
Notice that there are about a dozen or so values with NA data.

```r
dengue$NoYes <- as.factor(dengue$NoYes)
```

This doesn't work
```r
nb.dengue <- NaiveBayes(NoYes ~ ., data = dengue)
```

```r
nb.dengue <- NaiveBayes(NoYes ~ ., data = dengue, na.action = "na.omit")  ## this works
```

This one works with the klaR NaiveBayes:
```r
nb.dengue2 <- NaiveBayes(NoYes ~ h10pix + Xmin + Ymin, data = dengue)
```

this one works -- from e1071 package
```r
nb.dengue3 <- naiveBayes(NoYes ~ ., data = dengue)
```

when we remove the na, we need to remove it from the ground truth too:
```r
confusion(dengue$NoYes[!is.na(rowMeans(dengue[, -9]))], predict(nb.dengue)$class)
```

Overall accuracy = 0.882

Confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>(cv)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.845</td>
</tr>
<tr>
<td>1</td>
<td>0.066</td>
<td>0.934</td>
</tr>
</tbody>
</table>

confusion(dengue$NoYes, predict(nb.dengue2)$class)

Overall accuracy = 0.883
Confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>Predicted (cv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.843</td>
</tr>
<tr>
<td></td>
<td>0.059</td>
</tr>
</tbody>
</table>

confusion(dengue$NoYes, predict(nb.dengue3, newdata = dengue))

Overall accuracy = 0.881

Confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>Predicted (cv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td>0.066</td>
</tr>
</tbody>
</table>

Naive Bayes with the mnist (handwriting) set

this code will download a create a 500-letter two-class training set from
mnist via tensorflow
library(tensorflow)
datasets <- tf$contrib$learn$datasets
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE)

extract just two labels and sample images

mnist.1 <- mnist$train$labels[,1]
mnist.2 <- mnist$train$labels[,2]

mnist.img1 <- mnist$train$images[mnist.1==1,]
mnist.img2 <- mnist$train$images[mnist.2==1,]

plot prototypes
par(mfrow=c(1,2))
image((matrix(colMeans(mnist.img1),28,28)))
matrix(colMeans(mnist.img2),28,28)))

these are too many. Sample 250 from each
traintest1 <- sample(1:nrow(mnist.img1),size=500)
traintest2 <- sample(1:nrow(mnist.img2),size=500)

train <- rbind(mnist.img1[traintest1[1:250],],
mnist.img2[traintest2[1:250],])

test <- rbind(mnist.img1[traintest1[251:500],],
mnist.img2[traintest2[251:500],])
train<-as.data.frame(train)
test<-as.data.frame(test)
train$labels <- rep(0:1,each=250)

write.csv(train,"trainmnist.csv",row.names=F)
write.csv(test, "testmnist.csv", row.names = F)

library(klaR)
library(DAAG)
train <- read.csv("trainmnist.csv")
test <- read.csv("testmnist.csv")

smooth out the training set a bit by adding some noise, so no pixel has a sd of 0.
for (i in 1:ncol(train)) {
 train[, i] <- rnorm(500, as.numeric(train[, i]), 0.1)
}

par(mfrow = c(2, 4))
image(matrix(unlist(train[1,]), nrow = 28))
image(matrix(unlist(train[2,]), nrow = 28))
image(matrix(unlist(train[3,]), nrow = 28))
image(matrix(unlist(train[251,]), nrow = 28))
image(matrix(unlist(train[252,]), nrow = 28))
image(matrix(unlist(train[253,]), nrow = 28))
image(matrix(colMeans(train[1:250,]), nrow = 28))
image(matrix(unlist(train[251:500,]), nrow = 28))

Build Naive Bayes model

train$labels <- as.factor(rep(0:1, each = 250))
nb3 <- NaiveBayes(labels ~ ., usekernel = T, data = train)
p3a <- predict(nb3) ##this takes a while
confusion(train$labels, p3a$class) ##almost perfect

Overall accuracy = 0.998
Confusion matrix
 Predicted (cv)
 Actual 0 1
 0 0.996 0.004
 1 0.000 1.000

p3b <- predict(nb3, test) ##equally good
confusion(rep(0:1, each = 250), p3b$class)

Overall accuracy = 0.998

Confusion matrix
 Predicted (cv)
 Actual [,1] [,2]
 [1,] 1.000 0.000
 [2,] 0.004 0.996

What if we add noise to the test?

for (i in 1:ncol(test)) {
 test[, i] <- rnorm(500, as.numeric(test[, i]), 0.02)
}

par(mfrow = c(2, 4))
image(matrix(unlist(test[1,]), nrow = 28))
image(matrix(unlist(test[2,]), nrow = 28))
image(matrix(unlist(test[3,]), nrow = 28))
image(matrix(colMeans(test[1:250,]), nrow = 28))

image(matrix(unlist(test[251,]), nrow = 28))
image(matrix(unlist(test[252,]), nrow = 28))
image(matrix(unlist(test[253,]), nrow = 28))
image(matrix(colMeans(test[251:500,]), nrow = 28))
p3c <- predict(nb3, test)
##This one is still pretty good
confusion(rep(0:1, each = 250), p3c$class)

Overall accuracy = 0.994

Confusion matrix

<table>
<thead>
<tr>
<th>Actual</th>
<th>[,1]</th>
<th>[,2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.996</td>
<td>0.004</td>
</tr>
<tr>
<td>[2,]</td>
<td>0.008</td>
<td>0.992</td>
</tr>
</tbody>
</table>

##add larger amount of noise

for (i in 1:ncol(test)) {
 test[, i] <- rnorm(500, as.numeric(test[, i]), 0.35)
}

par(mfrow = c(2, 4))
image(matrix(unlist(test[1,]), nrow = 28))
image(matrix(unlist(test[2,]), nrow = 28))
image(matrix(unlist(test[3,]), nrow = 28))
image(matrix(colMeans(test[1:250,]), nrow = 28))
p3c <- predict(nb3, test) # This one is pretty bad.
confusion(rep(0:1, each = 250), p3c$class)

Overall accuracy = 0.5

Confusion matrix
Predicted (cv)
Actual [,1] [,2]
[1,] 1 0
[2,] 1 0