
Support Vector Machines

Shane T. Mueller shanem@mtu.edu

2023-03-02

Support vector machines
The classification methods we have discussed so far can do well for data analytics, with relatively few
predictors, when clarity and transparency are needed. As the goal gets more complex, features get less
transparent and less interpretable, the number of examples get large, and number of classes get large, these
properties will sometimes take a backseat to performance.

LDA and QDA have some limitations. They ASSUME normality, and compute the multi-dimensional mean
of each group, form a discriminant function on the line between means, and use a linear or quadratic decision
criterion orthogonal to that line. But what if the points are not normal? If the point clouds take on strange
shapes, this might not be the right approach. What was critical in the first place was a criterion plane (or
quadratic surface) that distinguishes the two groups.

A more sophisticated method tries to find that criterion plane by other means. The algorithm called a
‘support vector machine’ is the most well-known, and is also called a ‘kernel’ methods. In general, they are
suitable for complex problems with relatively large training sets, and they rose to popularity following the
limitations of early neural network models.

Some of these methods become a challenge as complexity scales large. These include: * Optimization. The
least-squares approach used in regression, and maximum likelihood methods used in the glm may not scale
well as the number of predictors get large. SVMs typically attempt to map the problem into a problem
referred to as a ‘quadratic programming’ (QP) problem, which uses numerical methods to optimize the
multi-variate function.

• Complex Features. For some types of data (such as audio, imagery, and video), we might be interested
in creating complex features and use simple methods to classify. For example, to classify written text,
we might identify lines in certain angles and combinations of these lines. To identify speech, we might
try to translate into phonemes and then into sound patterns, and finally to words. In contrast, SVMs
use what is referred to as a kernel–a way of measuring the similarity between any two exemplars. When
a well-understood kernel is used, this permits substantial more efficiency. Furthermore, the useful
features may be complex combinations or transformations of the raw features, which a kernel may make
easier to manage.

• Decision bounds. For simple classifications, decision rules based on simple combinations of features
were sufficient. As the exemplar space gets complex, the bounds will become non-linear. Rather
than choosing a simple bound based on maximizing cross-validation accuracy, a decision boundary
and appropriate transformations are chosen that maximize the gap between groups (while minimizing
mis-classification). These transformations can include, essentially, automatically examining interactions
between features and using polynomial transforms as well, to permit separating classes with curved
bounds.

SVMs were first described in the 1960s, but rose to prominance in the 1990s as tools for machine vision, when
they began supplanting the neural networks developed in the 1980s. Their advantage over simpler methods
are likely to be greatest when you have large data sets with many features–such as images or sounds, that are

1

mailto:shanem@mtu.edu

hard to make sense of otherwise. However, they can still be used on the simpler classification problems we
have examined.

There are several SVM tools available within R. One is the svm function within e1071; another is the svmlight
function within klaR, which is an interface to the SVMlight library. svmlight requires installing that library,
so we will use the e1071 library for examples.

Linear SVMs
The internal methods of these classifiers are beyond the scope of this class, although we will discuss some of
aspects. At a practical level, we can think of these as advanced classifiers that in fact are rooted in statistical
decision theory from which LDA methods arose. Let’s first consider ‘linear’ SVMs. These are in fact nearly
identical to LDA, but instead of computing the discriminant and finding the best decision criterion, it uses
other optimization methods to determine a hyperplane that best discriminates the groups, minimizing errors.
But usually there are many possible hypeplanes that are equally good–ranges of slopes in each direction. The
approach of an SVM–that gives the SVM its name–is that it tries to find a set of points on the boundary
between the two classes. This set of points are usually a small subset of the total number of points available,
so they are more efficient to work with. This set provides the support to model a boundary (the support
vector). Linear SVMs attempt to find a plane that optimally separates these points.

Let’s look at the engineering data set first. We will run a classifier on the engineering data first. Because
the predicted variable is numeric, we will make it a factor so the svm knows to predict the class. The svm
function needs to be told to use a linear svm, which seems reasonable in this case.
library(e1071)
library(DAAG)
joint <- read.csv("eng-joint.csv")[, -1]
joint$eng <- as.factor(joint$eng)
s1 <- svm(y = joint$eng, x = joint[, -1], scale = T, kernel = "linear")

coef(s1)

(Intercept) eer eeu ep ppr ppu
0.05154417 -0.15567504 0.16576103 0.36205481 0.25004473 0.57847773

eer.1 eeu.1 ep.1 ppr.1 ppu.1
0.10664820 -0.31357906 0.60989730 -0.43790979 0.40541747

summary(s1)

Call:
svm.default(x = joint[, -1], y = joint$eng, scale = T, kernel = "linear")

Parameters:
SVM-Type: C-classification

SVM-Kernel: linear
cost: 1

Number of Support Vectors: 67

(33 34)

Number of Classes: 2

Levels:

2

0 1

confusion(joint$eng, predict(s1, data = joint))

Overall accuracy = 0.697

Confusion matrix
Predicted (cv)

Actual 0 1
0 0.684 0.316
1 0.289 0.711

First, consider the arguments we gave. We specified that the variables should be rescaled–this makes sense
here because the variables are on substantially different scales. Next, the svm used C-classification. This is
the default for predicting factor values–if you give a numeric value to predict, it will implement a regression.
You can also specify nu-classification which is essentially the same but uses a different parameter. Next,
we used a linear kernel Different types of data (networks, sparse text-document matrices, images, etc.) are
usually best fit by one or another of the available kernels. Next, the model specifies its ‘support vectors’. This
is in a sense a number of parameters used to make the decisions. For linear classifiers, we can extract the
coefficients–the actual plane used to discriminate between

The kernel trick for non-linear classifiers
If you cannot separate cleanly with a linear classifier, svm allows use of kernels (called the kernel trick). A
kernel is just a way of transforming the features into a higher-dimensional space. Different kernels provide
different higher-dimensional spaces, but essentially you can create new dimensions by combining existing
features, enabling interactions and other complex classification patterns. A linear boundary on those new
dimensions may produce a better classification. So the same SVM algorithm can apply after we generate a
higher-dimensional representation. So rather than, for example, trying to find a curve that separates two
classes of data, you transform the data into a higher-dimensional space that curves the data, and fit a linear
separation in that space.

Polynomial kernel
A polynomial kernel provides something like polynomial regression. It might be worthwhile to examine a
polynomial kernel, which is akin to QDA. We can see the fit improves to 79%
s1.pol <- svm(y = joint$eng, x = joint[, -1], kernel = "polynomial", scale = T)
s1.pol

Call:
svm.default(x = joint[, -1], y = joint$eng, scale = T, kernel = "polynomial")

Parameters:
SVM-Type: C-classification

SVM-Kernel: polynomial
cost: 1

degree: 3
coef.0: 0

Number of Support Vectors: 74

confusion(joint$eng, (predict(s1.pol)))

Overall accuracy = 0.789

3

Confusion matrix
Predicted (cv)

Actual 0 1
0 1.000 0.000
1 0.421 0.579

The linear SVM does not do as well, while the polynomial performs better. But it gets 100% accuracy on the
0-0 cases, and does much more poorly on the 1-1 case. But these are as good or better than any of the other
methods. The C-classification has two parameters that control the solution, the cost (C) of mis-classification
and γ. By increasing the cost function, we can punish errors more and force the model to fit the data better:
s1.pol <- svm(y = joint$eng, x = joint[, -1], kernel = "polynomial", scale = T, cost = 100)
s1.pol

Call:
svm.default(x = joint[, -1], y = joint$eng, scale = T, kernel = "polynomial",

cost = 100)

Parameters:
SVM-Type: C-classification

SVM-Kernel: polynomial
cost: 100

degree: 3
coef.0: 0

Number of Support Vectors: 60

confusion(joint$eng, (predict(s1.pol)))

Overall accuracy = 1

Confusion matrix
Predicted (cv)

Actual 0 1
0 1 0
1 0 1

Cross-validation
The high error cost is likely leading to overfitting. It is also typical to use cross-validation to help determine
reasonable values for the decision bounds. This svm library will do n-fold crossvalidation by specifying a
cross function. Maybe that will help with overfitting.
s1.pol <- svm(y = joint$eng, x = joint[, -1], kernel = "polynomial", scale = T, cross = 10,

cost = 100)
s1.pol$tot.accuracy

[1] 44.73684

confusion(joint$eng, (predict(s1.pol)))

Overall accuracy = 1

Confusion matrix

4

Predicted (cv)
Actual 0 1

0 1 0
1 0 1

It does not.
##

RBF and sigmoid kernels
The radial basis function kernel is useful for especially for images, as it is sort of a guassian transformation of
each pair of features. Similarly, a sigmoid kernel enables other

Exercise: iPhone data

phone <- read.csv("data_study1.csv")
phone$Smartphone <- factor(phone$Smartphone)
phone$Gender <- as.numeric(as.factor(phone$Gender))
phone.svm <- svm(y = phone$Smartphone, x = phone[, -1], scale = T, cross = 50)
phone.svm

Call:
svm.default(x = phone[, -1], y = phone$Smartphone, scale = T, cross = 50)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 1

Number of Support Vectors: 429

summary(phone.svm)

Call:
svm.default(x = phone[, -1], y = phone$Smartphone, scale = T, cross = 50)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 1

Number of Support Vectors: 429

(227 202)

Number of Classes: 2

Levels:
Android iPhone

5

50-fold cross-validation on training data:

Total Accuracy: 64.08318
Single Accuracies:
60 72.72727 70 90.90909 60 54.54545 90.90909 60 81.81818 40 72.72727 40 63.63636 63.63636 70 63.63636 60 72.72727 72.72727 60 63.63636 60 90.90909 80 27.27273 72.72727 70 72.72727 50 81.81818 40 72.72727 90.90909 80 72.72727 40 63.63636 63.63636 60 54.54545 60 72.72727 50 45.45455 54.54545 60 54.54545 50 63.63636 54.54545

Here, we are about as good as other methods using cross-validation. It again would be worthwhile to select
the C and gamma parameters via a grid search.

Exercise: MNist data
SVMs and the RBF kernel are especially well-suited for image data. We can use the image data, but this
svm does not like features that have 0 variance, so let’s remove them.
train <- (read.csv("trainmnist.csv"))
var <- apply(train, 2, sd)
train2 <- train[, var > 0]
test <- as.matrix(read.csv("testmnist.csv")[, var > 0])
class <- as.factor(rep(c("0", "1"), each = 250))
mn.svm <- svm(y = class, x = train2, kernel = "radial", scale = F, cross = 10)
table(class, predict(mn.svm, test))

class 0 1
0 249 1
1 2 248

A trickier example
This example comes from Andrew Ng’s open classroom tutorials on SVMs (http://openclassroom.stanford.e
du/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html)
ex4 <- read.csv("ex8a.csv", header = F)
ex4$V1 <- as.factor(ex4$V1)
ggplot(ex4, aes(x = V2, y = V3, colour = V1)) + geom_point(size = 3) + theme_minimal() +

scale_color_manual(values = c("orange", "navy"))

6

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html
http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
V2

V
3

V1

−1

1

Here, we can try to create a SVM that separates the two sets, using a linear kernel:
set.seed(100)
seed <- 20
set.seed(seed)
svm.ng <- svm(V1 ~ ., data = ex4[, 1:3], kernel = "linear", scale = F, cross = 10,

cost = 10, fitted = T)
svm.ng

Call:
svm(formula = V1 ~ ., data = ex4[, 1:3], kernel = "linear", cross = 10,

cost = 10, fitted = T, scale = F)

Parameters:
SVM-Type: C-classification

SVM-Kernel: linear
cost: 10

Number of Support Vectors: 743

confusion(ex4$V1, predict(svm.ng))

Overall accuracy = 0.569

Confusion matrix
Predicted (cv)

Actual -1 1

7

-1 0.462 0.538
1 0.346 0.654

ex4$class <- predict(svm.ng)
ex4$class2 <- paste(ex4$V1, ex4$class)
ggplot(ex4, aes(x = V2, y = V3, colour = class2, shape = class)) + geom_point(size = 3) +

theme_minimal() + scale_color_manual(values = c("darkgreen", "orange", "red",
"blue"))

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
V2

V
3

class2

−1 −1

−1 1

1 −1

1 1

class

−1

1

This used a linear kernel, and you can see it sort of splits the space in half and does horribly. The linear
coefficients can be extracted:
coef(svm.ng)

(Intercept) V2 V3
-2.0357351 -0.9325268 3.8319148

These coefficients specify a plane in v2/v3 that separates the two groups.

Let’s try again using a radial kernel:
svm.ng <- svm(V1 ~ ., data = ex4[, 1:3], kernel = "radial", scale = F, cross = 10,

cost = 10, fitted = T)
svm.ng

Call:
svm(formula = V1 ~ ., data = ex4[, 1:3], kernel = "radial", cross = 10,

cost = 10, fitted = T, scale = F)

8

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 10

Number of Support Vectors: 532

confusion(ex4$V1, predict(svm.ng))

Overall accuracy = 0.817

Confusion matrix
Predicted (cv)

Actual -1 1
-1 0.872 0.128
1 0.227 0.773

ex4$class <- predict(svm.ng)
ex4$class2 <- paste(ex4$V1, ex4$class)
ggplot(ex4, aes(x = V2, y = V3, colour = class2, shape = class)) + geom_point(size = 3) +

theme_minimal() + scale_color_manual(values = c("darkgreen", "orange", "red",
"blue"))

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
V2

V
3

class2

−1 −1

−1 1

1 −1

1 1

class

−1

1

Here, green and blue are correct, and red/orange are incorrect. It creates a reasonably circle in the middle.
Can we get better? The SVM is controlled by a parameter gamma, which is a sort of curvature parameter.
Let’s try a large value of 100 (as suggested by Ng).
svm.ng <- svm(V1 ~ ., data = ex4[, 1:3], type = "nu-classification", kernel = "radial",

scale = F, fitted = T, gamma = 100)

9

svm.ng

Call:
svm(formula = V1 ~ ., data = ex4[, 1:3], type = "nu-classification",

kernel = "radial", fitted = T, gamma = 100, scale = F)

Parameters:
SVM-Type: nu-classification

SVM-Kernel: radial
gamma: 100

nu: 0.5

Number of Support Vectors: 450

confusion(ex4$V1, predict(svm.ng))

Overall accuracy = 0.977

Confusion matrix
Predicted (cv)

Actual -1 1
-1 0.958 0.042
1 0.008 0.992

ex4$class <- predict(svm.ng)
ex4$class2 <- paste(ex4$V1, ex4$class)
ggplot(ex4, aes(x = V2, y = V3, colour = class2, shape = class)) + geom_point(size = 3) +

theme_minimal() + scale_color_manual(values = c("darkgreen", "orange", "red",
"blue"))

10

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
V2

V
3

class2

−1 −1

−1 1

1 −1

1 1

class

−1

1

What if we added some noise and re-trained on data for which there was not as clear a boundary?
ex4b <- ex4
ex4b$V2 <- ex4b$V2 + rnorm(nrow(ex4), mean = 0, sd = 0.05)
ex4b$V3 <- ex4b$V3 + rnorm(nrow(ex4), mean = 0, sd = 0.05)

svm.ng <- svm(V1 ~ ., data = ex4b[, 1:3], kernel = "radial", scale = T, cross = 100,
gamma = 100, cost = 0.5)

svm.ng

Call:
svm(formula = V1 ~ ., data = ex4b[, 1:3], kernel = "radial", cross = 100,

gamma = 100, cost = 0.5, scale = T)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 0.5

Number of Support Vectors: 791

table(ex4b$V1, predict(svm.ng))

-1 1
-1 330 53
1 23 457

11

ex4b$class <- predict(svm.ng)
ex4b$class2 <- paste(ex4b$V1, ex4b$class)
ggplot(ex4b, aes(x = V2, y = V3, colour = class2, shape = class)) + geom_point(size = 3) +

theme_minimal() + scale_color_manual(values = c("darkgreen", "orange", "red",
"blue"))

0.3

0.5

0.7

0.9

1.1

0.0 0.3 0.6 0.9
V2

V
3

class2

−1 −1

−1 1

1 −1

1 1

class

−1

1

We can still do very well, just not 100% accuracy.

Summary
SVMs have a couple other functions, including regression and novelty detection. At their heart, they are quite
similar to LDA, but use alternative methods for finding the best decision bound, and permit using kernels
that generate new features (just like polynomial regression) enabling quite complicated non-linear classifiers.

12

	Support vector machines
	Linear SVMs
	The kernel trick for non-linear classifiers
	Polynomial kernel
	Cross-validation
	RBF and sigmoid kernels
	Exercise: iPhone data
	Exercise: MNist data

	A trickier example
	Summary

