One can start with b as a rough guess and compute New x; from New x, one can generate a even better guess, until two successive guesses are very close. Either one could be considered as the square root of b.
Write a function MySqrt() that accepts a formal argument and uses Newton's method to computes its square root. Then, write a main program that reads in an initial value, a final value, and a step size, and computes the square roots of these successive values with Newton'e method and Fortran's SQRT() function, and determines the absolute error.
Click here to download this program.! --------------------------------------------------------------- ! This program contains a function MySqrt() that uses Newton's ! method to find the square root of a positive number. This is ! an iterative method and the program keeps generating better ! approximation of the square root until two successive ! approximations have a distance less than the specified tolerance. ! --------------------------------------------------------------- PROGRAM SquareRoot IMPLICIT NONE REAL :: Begin, End, Step REAL :: x, SQRTx, MySQRTx, Error READ(*,*) Begin, End, Step ! read in init, final and step x = Begin ! x starts with the init value DO IF (x > End) EXIT ! exit if x > the final value SQRTx = SQRT(x) ! find square root with SQRT() MySQRTx = MySqrt(x) ! do the same with my sqrt() Error = ABS(SQRTx - MySQRTx) ! compute the absolute error WRITE(*,*) x, SQRTx, MySQRTx, Error ! display the results x = x + Step ! move on to the next value END DO CONTAINS ! --------------------------------------------------------------- ! REAL FUNCTION MySqrt() ! This function uses Newton's method to compute an approximate ! of a positive number. If the input value is zero, then zero is ! returned immediately. For convenience, the absolute value of ! the input is used rather than kill the program when the input ! is negative. ! --------------------------------------------------------------- REAL FUNCTION MySqrt(Input) IMPLICIT NONE REAL, INTENT(IN) :: Input REAL :: X, NewX REAL, PARAMETER :: Tolerance = 0.00001 IF (Input == 0.0) THEN ! if the input is zero MySqrt = 0.0 ! returns zero ELSE ! otherwise, X = ABS(Input) ! use absolute value DO ! for each iteration NewX = 0.5*(X + Input/X) ! compute a new approximation IF (ABS(X - NewX) < Tolerance) EXIT ! if very close, exit X = NewX ! otherwise, keep the new one END DO MySqrt = NewX END IF END FUNCTION MySqrt END PROGRAM SquareRoot
0.E+0, 0.E+0, 0.E+0, 0.E+0 0.5, 0.707106769, 0.707106769, 0.E+0 1., 1., 1., 0.E+0 1.5, 1.22474492, 1.2247448, 1.192092896E-7 2., 1.41421354, 1.41421354, 0.E+0 2.5, 1.58113885, 1.58113885, 0.E+0 3., 1.73205078, 1.7320509, 1.192092896E-7 3.5, 1.87082875, 1.87082863, 1.192092896E-7 4., 2., 2., 0.E+0 4.5, 2.12132025, 2.12132025, 0.E+0 5., 2.23606801, 2.23606801, 0.E+0 5.5, 2.34520793, 2.34520793, 0.E+0 6., 2.44948983, 2.44948959, 2.384185791E-7 6.5, 2.54950976, 2.54950976, 0.E+0 7., 2.64575124, 2.64575148, 2.384185791E-7 7.5, 2.73861289, 2.73861265, 2.384185791E-7 8., 2.82842708, 2.82842708, 0.E+0 8.5, 2.91547585, 2.91547585, 0.E+0 9., 3., 3., 0.E+0 9.5, 3.08220696, 3.08220696, 0.E+0 10., 3.1622777, 3.1622777, 0.E+0