Mesh Basics




A polygonal mesh consists of three kinds of
mesh elements: vertices, edges, and faces.

(1 The information describing the mesh elements
are mesh connectivity and mesh geometry.

1 The mesh connectivity, or topology, describes
the incidence relations among mesh elements
(e.g., adjacent vertices and edges of a face, etc).

(1 The mesh geomelry specifies the position and
other geometric characteristics of each vertex.



1 A mesh is a manifold if (1) each edge
is incident to only one or two faces
and (2) the faces incident to a vertex
form a closed or an open fan.

 The orientation of a face is a cyclic
order of the incident vertices.

(] The orientation of two adjacent faces
is compatible, if the two vertices of
the common edge are in opposite
order.

1 A manifold mesh is orientableif any
two adjacent faces have compatible
orientation.

open fan
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(1 Manifold Conditions: (1) Each edge is incident to
only one or two faces and (2) the faces incident to
a vertex form a closed or an open fan.

1 The following examples are not manifold meshes!
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1 If every vertex has a closed fan, the given
manifold has no boundary. Edges only incident
to one face form the boundary of the manifold.

(1 Boundary is a union of simple polygons.

dWe only consider orientable manifolds
without boundary in this course.

manifold boundary

closed fan

open fan

boundar
y non-manifold boundary
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(1 Not all manifolds are orientable. The most well-
known ones are Mobius band and Klein bottle.

(JThe Mobius band is shown below, and is an one-
sided manifold with boundary (i.e., a circle).

http://www.jcu.edu/math/vignettes/Mobius.htm 6
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1 The Klein bottle is a manifold without boundary.

Slicing a Klein bottle properly yields two Mobius
bands.

A Klein bottle sliced to show its interior.
However, Klein bottles have no interior.

Maurice Fréchet and Ky Fan,
Invitation to Combinatorial Topology

v

Tin-Tin Yu, MTU
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JVertices: 703
JEdges: 2106
dFaces: 1401
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Euler-Po

1 Given a 2-manifold mesh M without boundary,
the Euler-Poincaré characteristic of M is y(M)

= V-E+F, where V, E and F are the number of
vertices, number of edges, and number of faces.

V=8,E=12,F=6  V=16,E=32,F=16 V=28, E=56, F=26
¥(M) =V-E+F=2  y(M) =V-E+F=0 ¥(M) =V-E+F=2



uler-Poincaré Characteristi

 Euler-Poincaré characteristic y(M) = V-E+F is
independent of tessellation.

V=24, E=48, F=22
v(M) =V-E+F=-2

eeed

V=16, E=32, F=16 V=16, E=36, F=20 V=28, E=56, F=26
y(M)=V-E+F=0  y(M)=V-E+F=0  y(M) =V-E+F=-2

11
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1 An orientable 2-manifold mesh M with g
“handles” (i.e.,, genus) has Euler-Poincaré
characteristic y(M) = V-E+F = 2(1-Q).

1 Spheres, boxes, tetrahedrons and convex
surfaces have g = 0; but, tori have g=1.

0=0 = x(M) =2(1-0)=2  g=1=>y(M)=2(1-D=0  g=2=> (M) =2(1-2)=2 12



Euler-Poincaré Characteristi

(1 The boundary of an orientable 2-manifold is
the union of a set of simple polygons.

1 Since each polygon bounds a face, these
“boundary faces” may be added back to form a
manifold without boundary so that Euler-
Poincaré characteristic can be applied.

(1 The Euler-Poincaré characteristic of an
orientable 2-manifold with boundary is y(M) =
2(1-9)-d, where 0 is the number “boundary
polygons”.

13
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dTwo Examples:

V=10,E=15,F=6
g=0,0 =1
v(M)=V-E+F =1
*(M) =2(1-g)-0 =1

V=30,E=54,F=20
g=2,0 =2

(M) = V-E+F = -4
x(M) =2(1-9)-0 = -4

14
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Homeomorph

(1 Two 2-manifold meshes A and B are
homeomorphic if their surfaces can be
transformed to the other by twisting, squeezing,
and stretching without cutting and gluing.

 Thus, boxes, spheres and ellipsoids are
homeomorphic to each other.

is homeomorphic to

15
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1 Two orientable 2-manifold meshes without
boundary are homeomorphic if and only if they
have the same Euler-Poincaré characteristic.

1 Thus, a m-handle (i.e., genus m) orientable
mesh is homeomorphic to a n-handle (i.e.,
genus N) orientable mesh if and only if m=n.

1 Two orientable 2-manifold meshes with the
same number of boundary polygons are
homeomorphic if and only if they have the same
Euler-Poincaré characteristic.

16



Homeomorphisms: 3/3
(1 Hence, any orientable 2-manifold mesh without
boundary is homeomorphic to a sphere with m

handles (i.e., genus M), where m = 0.

17



Applications: 1/3

J A mesh is regular if all faces have the same
number edges, and all vertices are incident to
the same number of edges (i.e., valence).

JEach face of a regular quad mesh is a
quadrilateral (1.e., four-sided) and each vertex
is incident to four edges (i.e., valence = 4).
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Applications: 2/3

dOnly a torus can be a regular quad mesh!

1 Since each vertex has 4 edges and each edge is
counted twice, we have 4V = 2E (i.e., V=E/2).

1 Since each face has 4 edges and each edge is
counted twice, we have 4F = 2E (i.e,, F = E/2).

9
QO Thus, (M) = V-E+F = 0 r
O O Q

T 71
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Applications: 3/3

(1 Only tori can be regular triangle mesh of valence 6!
1 Since each vertex has 6 edges and each is counted
twice, we have 6V = 2E (i.e., V=E/3).

1 Since each face has 3 edges and each edge is
counted twice, we have 3F = 2E (i.e., F = 2E/3).

QThus, x(M) = V-E+F = 0 m
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(1 Since meshes are usually large and complex
and since many operations are performed on
meshes, compact data structures that support
efficient algorithms are needed.

1 Depending on the applications in hand, one
may use vertex- (or point-) based, edge-based,
face-based, or other data structures.

(1 One of the earliest edge-based data structure is
the winged-edge data structure. Its new variant
is the half-edge data structure.

21
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Vinged-Edge

1 1If all faces are oriented clock-wise, each edge
has eight pieces of incident information.

*Given edge: b=XY
eIncident faces: 1 and 2
*Pred. & succ. edges of 1
*Pred. & succ. edges of 2

*The wings of edge b=XY
are faces 1 and 2.
*Edge b is a winged-edge

22
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Vinged-Edge

1 1If all faces are oriented clock-wise, each edge
has eight pieces of incident information.

*The first four pieces:
=The two vertices of b:
XandY
*The two incident faces:
1 and 2

23
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Vinged-Edge

1 1If all faces are oriented clock-wise, each edge
has eight pieces of incident information.

*The pred. and succ. edges
of b with respect to face 1:
aand C

24
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Vinged-Edge

1 1If all faces are oriented clock-wise, each edge
has eight pieces of incident information.

. d "o *The pred. and succ. edges

of b with respect to face 2:
................ “ eandd

25
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Vinged-Edge
JdHow do we name faces 1 and 27
dWe use left and right faces!

*Which one is left, 1 or 2?
*Choose a direction for edge
b, say from X to Y or from

Y to X.

*Going from the start vertex
to the end vertex, we know
which face is the left one!

If the start vertex is X, the
|eft face is face 1.

26



\AIJ

VVIic

e - AL

t Is a Winged-Edge

- )
C7

Information for Edge b (from X to Y)

—
'f

Start End Left Right Left Left Right | Right
Vertex | Vertex | Face Face Pred. Succ. Pred. Succ.
X Y 1 2 a C e d

27
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What Is a Winged-Edge? 7/7
Information for Edge b (from Y to X)
Start End Left Right Left Left Right | Right
Vertex | Vertex | Face Face | Pred. | Succ. | Pred. | Succ.
Y X 2 1 e d a C

28




The Winged-Edge Data Structure: 1/6

(1 The winged-edge data structure has three tables,
edge table, vertex table, and face table.

(1 Each edge has one row in the edge table. Each
row contains the eight pieces information of that
edge.

h vertex table.

J Each vertex has one entry in

Each entry has a pomter to incident edge (in
the edge table) of that Vertex.

JEach face has one entry in the face table. Each

entry has a pointer to an incident edge (in the
edge table) of that face. 29



e Winged-Edge Data Structure: 2/6
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1 The vertex table entry for vertex X may be the
edge table entry of edges C, b, e or any other
incident edge.

30




e Winged-Edge Data Structure: 3/6
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(1 The face table entry for face 1 may be the edge
table entry of edges a, b, C, or any other
incident edge.

31




Vinged-Edge Data Structure: 4/6
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(1 The following tetrahedron has four vertices A,
B, C and D, six edges a, b, c, d, e, f, and four
faces 1, 2, 3 and 4.

D Vertex Table
face 3: ACD Y Vertex | Edge

face 4: ABC A a Face Table
B b Face Edge

C d 1 a

D 3 2 C

A C 3 a

~~~~~~ 4 b

a9 32




The Winged-Edge Data Struct
face 3: ACD
face 4: ABC

A
Edge Table
Edge | Start | End | L. R. L. L. R. R.
vtx | Vix | Face | Face | Pred | Succ | Pred | Succ

a A D 3 1 e f b C

b A B 1 4 C a f d

C B D 1 2 a b d e

d B C 2 4 e C b f

e C D 2 3 C d f a

f A C 4 3 d b a e 33




e Winged-Edge Data Structure: 6/6

(1 The winged-edge data structure seems to be
very “unstructured;” however, it does record
the incidence relations in a clever way.

1 This clever way permits a program to answer
many topological inquires very efficiently.

dIf (1) V, E and F are the numbers of vertices,
edges, and faces and (2) each entry in the table
uses one memory unit, the vertex table, edge
table, and face table require V, 8E and F
memory units, respectively.

34
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inquiry Exampil le 1
dFind all incident edges of a given

vertex X.

JFind oneincident edge of X from its vertex
table entry.

(1 Then, find the next incident edge, and “loop
around” to find other incident edges.

get this one from

vertex table \

find next

find next

35
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inquiry Exampil le 1

dHow do we find the next edge from
the current one?

JLet us use the counter clock-wise order.

JWe have two cases to consider:

~/ © ~/ ©

D 2 D~
@ next = @ next =
§ | left succ § | right succ
36
current current
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(1 Here is a possible algorithm:

Given vertex X;
Retrieve an incident edge e of X from vertex table;
Let s be €;
do
Output s;
if start vertex of Sis equal to X then
S = the successor of the left face of S

else
S = the successor of the right face of S;
end if

while S+# €

37
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 This algorithm finds all incident edges of a
vertex by scanning those edges in the
neighborhood of the given vertex. In fact, this
algorithm scans exactly the incident edges.

1 Since the number of incident edges of a vertex
is usually small for most vertices, this
algorithm is fast and of (almost) constant
complexity!

J Compared with a conventional data structure,
the winged-edge data structure wins hands-
down in this case.

38



inquiry E

dFind all edges (and vertices, of
course) of a given face f

1 Find one edge of f from its face table entry.
1 Then, find the next incident edge, and “move

forward” edge by edge to find all other edges.

D mind that thao varficoae nf nanh Fana 3¢
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oriented clock-wise.

39
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1 Suppose we wish to list the edges in counter
clock-wise order.

1 The given face should always be on the left
hand side of each edge.
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\ /co:mter clock-wise 4



ample 2: 3/4

Q.D

eme 2 e
ry Ex

inqu

(1 Since the meaning of “left” and “right” face of
an edge is based on that edge’s orientation, we
have to find the true meaning of “to the left” of
an edge when traversing.

\ -
right face of current edge left face of current edge

use right predecessor use left predecessor

41
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(1 Here is a possible algorithm:

Given face f;

Retrieve an incident edge € of f from face table;
Let Sbe ¢

do

utput S;
if f is the left face of Sthen
S = the predecessor of the left face of S

else
S= the predecessor of the right face of s;
end if

while S+# €

42




Discussions

1 Both examples list elements in counter clock-
wise order. Itis easy to change to clock-wise.

(1 The second example obviously requires more
processing than a conventional data structure
does; however, the first one is much faster.

(dBased on what you know, do this inquiry:

Given a vertex X, find
all “outer” edges of X
(i.e., the link) in counter
clock-wise order.

43



Exercise

1 The half-edge data structure is an extension to
the winged-edge data structure, and is more
popular and widely used today.

11t splits each edge into two, each of which is
referred to as an half-edge.

JSearch the web to learn more about this data
structure.

(1 An open source software, OpenMesh,
developed by Prof. Leif Kobbelt, is available

here: www.openmesh.org






