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The Law of CosineThe Law of Cosine

Here are some commonly used formulas.
First, we learn that c2 = a2 + b2 – 2abcos(θ), where ( )
θ is the angle opposite to side c.
Vector form: |X−Y|2 = |X|2+|Y|2−2|X|⋅|Y|cos(θ).Vector form: |X Y|  |X| |Y| 2|X| |Y|cos(θ). 
Note that |X|2 = X⋅X, where ⋅ is the inner product.
Si (X Y) (X Y) X X+Y Y 2X Y h X YSince (X−Y)⋅(X−Y) =X⋅X+Y⋅Y-2X⋅Y, we have X⋅Y 
= |X|⋅|Y|cos(θ).

a b
θ

X Y
θ

2c X−Y



Projection of a Vector to AnotherProjection of a Vector to Another

Let A and B be two vectors.  We wish to compute 
the length of projecting A to B.
It is obvious that the length is L = |A|cos(θ) .
Since A⋅B=|A|⋅|B|cos(θ), we haveSince A B |A| |B|cos(θ), we have 

| | cos( ) | |L θ ⋅= = =A B BA A A
A

θ

| | cos( ) | |
| | | | | |

L θ= = =
⋅

A A A
A B B

B
L = |A|cos(θ)
θ
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Point to a Plane Distance: 1/2Point to a Plane Distance: 1/2

Let a plane P be represented by a base point B
and a normal vector n, where |n| = 1. 
Compute the distance from a point X to P.
Projecting X to n yields the distance |X−B|cos(θ).Projecting X to n yields the distance |X B|cos(θ).
Since cos(θ)=(X−B)⋅n/(|X−B| ⋅|n|)=(X−B)⋅n/|X−B|), 
the distance is simply (X−B)⋅nthe distance is simply (X−B)⋅n.

X

θ
B

X−Bn|X−B|cos(θ)

Compute the perpendicular foot
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from X to plane P.  Easy!



Point to Plane Distance: 2/2Point to Plane Distance: 2/2
Sometimes the plane is given by ax+by+cz+d = 0, where a2So e es e p e s g ve by ax by cz d 0, w e e a
+ b2 + c2 = 1 (i.e., normalized). 
The normal vector of this plane is n = < a, b, c >.p
If B = < u, v, w > is a point in this plane, we have au + bv + 
cw + d = 0 and au + bv + cw = -d.
The distance from X = < x, y, z > to this plane is (X – B)•n.
Plugging B and n into this equation yields:

(X - B)•n = (<x,y,z> - <u,v,w>) •<a,b,c>
<x y > •<a b c> <u v w> • <a b c>= <x,y,z> •<a,b,c> - <u,v,w> • <a,b,c>

= (ax+by+cz) – (au+bv+cw)
= (ax+by+cz) – (-d)

5

 (ax by cz) ( d)
= ax + by + cz + d



Volume of a Parallelepiped: 1/2Volume of a Parallelepiped: 1/2
A parallelepiped is defined by three vectors u, v and w.p e ep ped s de ed by ee vec o s u, v d w.

uv
w

The parallelogram defined by u and v has an area of 
|u|⋅|v|sin(θ), which is the length of vector u×v, where θ is 

v

| | | | ( ), g ,
the angle between u and v.

u

v
θ

|v|sin(θ)
area = base×height = |u|(|v|sin(θ))

= |u||v|sin(θ) = |u×v|
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Volume of a Parallelepiped: 2/2Volume of a Parallelepiped: 2/2
The volume of a parallelepiped is the product of its base e vo u e o p e ep ped s e p oduc o s b se
area and its height.  
The base area is |u×v| .| |
Projecting w to u×v  yields the height (u×v)⋅w/|u×v|.
Therefore, the volume is:,

w
u×v= ×Volume BaseArea Height

u

v

w

(u×v)⋅w
( )| |

| |
× ⋅= ×
×

u v wu v
u v

u
( )= × ⋅u v w
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Volume of a TetrahedronVolume of a Tetrahedron
A tetrahedron is also defined by three vectors u, v and w.e ed o s so de ed by ee vec o s u, v d w.
The volume of a tetrahedron is (BaseArea×Height)/3.
Base area is half of the parallelogram defined by u and v,Base area is half of the parallelogram defined by u and v, 
and is equal to |u×v|/2.
Height is our old friend, projecting w to u×v, which is g , p j g ,
(u×v)⋅w/|u×v|.
Therefore, the volume is

w

u×v1
3

= ×

⎛ ⎞

Volume BaseArea Height

u
v(u×v)⋅w/| u×v|1 1 ( )| |

3 2 | |
1

× ⋅⎛ ⎞= ×⎜ ⎟ ×⎝ ⎠
u v wu v

u v
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Mesh Simplification: 1/2Mesh Simplification: 1/2

M h i lifi i /d i i i l fMesh simplification/decimation is a class of 
algorithms that transform a given polygonal 
mesh into another with fewer faces edges andmesh into another with fewer faces, edges, and 
vertices.
The simplification process is usually controlledThe simplification process is usually controlled 
by a set of user-defined quality criteria that can 
preserve specific properties of the originalpreserve specific properties of the original 
mesh as much as possible (e.g., geometric 
distance, visual appearance , etc)., pp , )
Mesh simplifications reduces the complexity of a 
given mesh.
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Mesh Simplification: 2/2Mesh Simplification: 2/2

Si lifi i h ll k i i lSimplification schemes usually work iteratively 
(i.e., removing a vertex/edge at a time) and can 
be reversed Thus one can transmit the finalbe reversed.  Thus, one can transmit the final 
result followed by the “reversed” operators.
A mesh simplification scheme can be viewed as aA mesh simplification scheme can be viewed as a 
decomposition operator to obtain a low frequency
component (i.e., the decimated mesh) and a highcomponent (i.e., the decimated mesh) and a high 
frequency component  (i.e., the difference 
between the original and decimated meshes).  g )
Then, a reconstruction operator can perform the 
inverse decimation to recover the original data 
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from its low frequency component.



Mesh Simplification ApproachesMesh Simplification Approaches

Vertex Clustering: It is in general fast, robust and 
of O(n), where n is the number of vertices; 
however, quality is not always satisfactory.
Incremental Decimation: It can deliver higher g
quality meshes in most cases, and can take 
arbitrary user-defined criteria into account 
according to how the next removal operation is 
chosen.  However, complexity may be O(nlog2n) or 2
even O(n2).
Resampling: The most general approach; however, 
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esa p g: e ost ge e a app oac ; oweve ,
new samples may be freely distributed.



Vertex Clustering: 1/4Vertex Clustering: 1/4

Gi t l > 0 thGiven a tolerance ε > 0, the 
bounding space of the given 

h i titi d i t llmesh is partitioned into cells 
with diameter ≤ ε.
For each cell a representative 
vertex is computed (will talk 

εabout this later).  If a cell has 
more than one vertices, they 

ε

ε

are all mapped to this 
representative vertex.

representative vertex
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Vertex Clustering: 2/4Vertex Clustering: 2/4

Th d i lThen, degenerate triangles 
are removed.
If P d Q hIf P and Q are the 
representative vertices of 
p p p and q qp0, p1, …, pm and q0, q1, …, 
qn, respectively, P and Q
are connected in theare connected in the 
decimated mesh if at least 
one pair of vertices (pi,qj) solid: original meshp (pi,qj)
was connected in the 
original mesh.

g
dotted: new mesh
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Vertex Clustering: 3/4Vertex Clustering: 3/4

The resulting mesh may not 
be a 2-manifold even though 
the original one is, because a 
portion of a surface could 
collapse to a point.
However, it can reduce the 
complexity of a mesh 
significantly, and guarantee solid: original mesh
a global approximation of 
the original mesh.

g
dotted: new mesh
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V t Cl t i 4/4Vertex Clustering: 4/4

How to compute those representatives?
The easiest way is to average the vertices in the same 
cell.  If P1, P2, …, Pk are vertices in the same cell, then 
the representative is P = (P1 + P2 + … + Pk)/k.
O d di th i t f h t ( fOr, depending on the importance of each vertex (of 
the mesh) one might assign a weight wi ≥ 0 to vertex 
Pi Then the representative of P1 P2 Pk in thePi.  Then, the representative of P1, P2, …, Pk in the 
same cell is their weighted average:

P P P
P

P P P
=

+ + +
+ + +

w w w
w w w

k k

k

1 1 2 2

1 2

…
…
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Incremental Decimation: 1/2Incremental Decimation: 1/2

Incremental algorithms remove one vertex or 
edge at a time based on user-specified criteria.
Criteria can be binary or continuous.
Binary criteria determine if a vertex is allowed toBinary criteria determine if a vertex is allowed to 
remove (i.e., yes or no), while a continuous one 
rates the quality of the mesh (i.e., roundness ofrates the quality of the mesh (i.e., roundness of 
triangles, small normal changes between 
neighboring triangles) before/after removal.neighboring triangles) before/after removal.
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Incremental Decimation: 2/2Incremental Decimation: 2/2

Th f h i hThe surface geometry changes in the 
neighborhood of the removed vertex/edge, and 
the quality criteria have to be re evaluatedthe quality criteria have to be re-evaluated.
To make the re-evaluation process more efficient, 
the candidates for removal are usually stored inthe candidates for removal are usually stored in 
a heap with the best removal operation on top.
In this way each update only costs O(log n) forIn this way, each update only costs O(log n) for 
large meshes if the criteria evaluation has 
constant time complexity.constant time complexity.
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Topological OperatorsTopological Operators

There are a number of removal operators, 
some of which can preserve the mesh topology.  
These decimation operators are referred to as 
Euler-Operators.  See CS3621 course page.
Commonly used topological operators include:

Vertex removal (inverse: vertex insertion)Vertex removal (inverse: vertex insertion)
Edge collapse (inverse: edge split)
H lf d ll (i t i t d tHalf edge collapse (inverse: restricted vertex 
split)
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Vertex RemovalVertex Removal

Vertex removal deletes a 
vertex and its adjacent 
edges and faces, creating a 
k-side hole, where k is the 
valence of the vertex.
This hole is triangulated by 
adding k-2 triangles back.  
Thus, the # of vertices and #Thus, the # of vertices and # 
of triangles are reduced by 
1 and 2, respectively.

19
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Edge CollapseEdge Collapse

Edge collapse selects an 
edge and collapses it to a 
new vertex.  Its two 
adjacent triangles also 
collapse to two edges.
Thus, the # of vertices and 
# of triangles are reduced 
by 1 and 2, respectively.
However, we are allowed to 
choose a new vertex! new vertex

20

c oose a new ve te ! new vertex



Half Edge CollapseHalf-Edge Collapse

Given a selected edge with 
adjacent vertices p and q, the 
half-edge collapse operator 
moves p to q or q to p.
This is a special case of the 
edge collapse operator.

same vertex

Note that moving p to q and 
moving q to p are twomoving q to p are two
different operations.
Note also that no degree of

21

Note also that no degree of 
freedom is available.



Decimation Operator Notes: 1/2Decimation Operator Notes: 1/2

While the half-edge collapse operator is a special 
case of the edge collapse operator, its effect 
becomes noticeable only for extremely strong 
decimation where the exact location of individual 
vertices really matters.
The global optimization that uses user specified 
criteria to make selections is completely separate 
from the decimation operator.  This makes the 
design of decimation more orthogonal.
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Decimation Operator Notes: 2/2Decimation Operator Notes: 2/2

All three operators preserve mesh topology and 
the topology of the underlying surface may 
change near the end of decimation.
Non-Euler operators CAN change mesh topology.p g p gy
The vertex contraction operator merges two 
arbitrary vertices into one even if they are notarbitrary vertices into one even if they are not 
connected by an edge is a good example.
The vertex contraction operator reduces the # ofThe vertex contraction operator reduces the # of 
vertices by 1 but preserves the # of faces/edges.
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A Vertex Decimation Algorithm 
for Triangular Mesh: 1/15

O f th li t d i ti l ith d tOne of the earliest decimation algorithm was due to 
Schroeder, Zarge and Lorensen published in 
SIGGRAPH 1992.
This algorithm uses vertex removal only and has a 
scheme as follows. 

while there is a vertex X that can be removed dowhile there is a vertex X that can be removed do
begin

apply the vertex removal operator to X;
this creates a hole, not necessary planar;
re-triangulate the hole;

end
24

end



A Vertex Decimation Algorithm 
for Triangular Mesh: 2/15

Not all vertices are candidates for 
decimation.
E h t i i d f fi

a simple vertex

Each vertex is assigned one of five 
possible classifications: simple, 
complex boundary interior edge orcomplex, boundary, interior edge, or 
corner vertex.
A simple vertex is surrounded by a p y
closed fan of triangles.
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A Vertex Decimation Algorithm 
for Triangular Mesh: 3/15

If d i h d bIf an edge is shared by 
more than two triangles, 
or if a vertex is used by a 
t i l th t i t i th

complex vertex

triangle that is not in the 
fan, this vertex is a 
complex vertex.
If a mesh contains a 
complex vertex, it is not a 
2-manifold.  We only deal y
with 2-manifolds in this 
course.
If a vertex is on the

boundary vertex
If a vertex is on the 
boundary of a mesh, it is a 
boundary vertex.

26



A Vertex Decimation Algorithm 
for Triangular Mesh: 4/15 

User Specified Criteria (Basic Idea): XUser Specified Criteria (Basic Idea):
Do not remove sharp corners
If vertex X is “far” away from its

X

If vertex X is far  away from its 
adjacent vertices, X should not be 
removed because removing Xg
flattens the vicinity of vertex X.
Thus, good candidates should be 

removing X flattensvertices in “flat” regions.
The “flatness” is measured by a 

removing X flattens
the mesh

plane, an average plane, 
representing the vicinity of X’s 
adjacent vertices

27

adjacent vertices.



A Vertex Decimation Algorithm 
for Triangular Mesh: 5/15 

U S ifi d C it iUser Specified Criteria:
If X is a simple vertex, the distance from X to an “average” 

l i t d If thi di t i ll th thplane is computed.  If this distance is smaller than the 
given distance (i.e., reasonably flat), X is removed.
If X is a boundary vertex then use the distance from thisIf X is a boundary vertex, then use the distance from this 
vertex to the boundary edge line.

average
plane

X

p
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A Vertex Decimation Algorithm 
for Triangular Mesh: 6/15 

Compute the “Average Plane”:Compute the Average Plane :
Let X be the vertex under consideration.
Let Ti be a triangle in the fan of X.
Let ci, Ai and ni be the center, area and i, i i ,
normal vector of triangle Ti, respectively.
The base point B and normal vector n of theThe base point B and normal vector n of the 
average plane are calculated as follows:

∑ A∑i i

i

A c
B

A
×

=∑
∑

i i

i

A n
n

A
×

=∑
∑
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A Vertex Decimation Algorithm 
for Triangular Mesh: 7/15

S lit Li d S lit PlSplit Line and Split Plane:
A split line is a line joining two non-
adjacent vertices.

split line
j

A split plane is the plane that 
satisfies two conditions: 
1) it contains a split line and is split plane1) it contains a split line and is 

perpendicular to the chosen 
average plane

p p

2) it divides the loop into two 
separate links such that all 
vertices of one link are in one 

average plane

side of the split plane and the 
remaining vertices are in the 
other.
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A Vertex Decimation Algorithm 
for Triangular Mesh: 8/15

Aspect Ratio: 
Given a split line and its split plane, 

split line

the aspect ratio is defined as the 
minimum distance of the loop 
vertices to the split plane divided

b
vertices to the split plane, divided 
by the length of the split line.
The “best” choice of a split line is

a

The best  choice of a split line is 
the one that can produce the 
maximum aspect ratio.

split plane

31
average plane

aspect ratio = a/b



A Vertex Decimation Algorithm 
for Triangular Mesh: 9/15

split line

Re-triangulation
Find a split line with a maximal aspect 
ratio.
Each of these two links and the split 
line forms a loop.
Recursively re-triangulate each loop.
If re-triangulation fails, do not remove 
this vertex.

split

32do it recursively



A Vertex Decimation Algorithm 
for Triangular Mesh: 10/15

A Few Notes:  1/5
Repeated decimation may produce 
a tetrahedron.  Further 
decimation reduces it to a triangle.  
So we have two identical triangles!So, we have two identical triangles!
This is a change of topology.
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A Vertex Decimation Algorithm 
for Triangular Mesh: 11/15

A Few Notes: 2/5
If a mesh has holes like a torus, the boundary of a hole 
could reduce to a triangle (i.e., triangular hole).  Removing 
a vertex from the boundary could create a non-manifold.

remove this
vertex

34



A Vertex Decimation Algorithm 
for Triangular Mesh: 12/15

A Few Notes: 3/5
If a mesh has holes like a torus, the boundary of a hole 
could reduce to a triangle (i.e., triangular hole).  Removing 
a vertex from the boundary could create a non-manifold.

non-manifold edge

ll l

remove this

yellow polygon
shows the hole
to be retriangulated;
but, the rectangle is
already a face!new edges

35
The Right Half



A Vertex Decimation Algorithm g
for Triangular Mesh: 13/15

A Few Notes: 4/5
If a mesh has holes like a torus, the boundary of a hole y
could reduce to a triangle (i.e., triangular hole).  Removing 
a vertex from the boundary could create a non-manifold.

remove this
vertex
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A Vertex Decimation Algorithm 
for Triangular Mesh: 14/15

A Few Notes: 5/5
If a mesh has holes like a torus, the boundary of a hole 
could reduce to a triangle (i.e., triangular hole).  Removing 
a vertex from the boundary could create a non-manifold.

The sides of this triangle 
close the hole and creates 

a non-manifolda non manifold

yellow polygony p yg
shows the hole
to be retriangulated
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A Vertex Decimation Algorithm 
for Triangular Mesh: 15/15

A Few Notes: 4/4
Thus, in the decimation process, a check must p
be made to prevent duplicated triangles and 
triangle edges.  In this way, the topology of the g g y p gy
mesh can be preserved.
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Vertex Error
small error Small vertex error

means flat area, and 
can be simplified

small error

can be simplified
first.

large error
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Some Results: 1/4Some Results: 1/4
Note that flat portions are simplified first.

V=3602, E=10776, F=7184V 3602, E 10776, F 7184

V=4632, E=13872, F=9248

40



Some Results: 2/4Some Results: 2/4
Note that flat portions are simplified first.

V=2570, E=7680, F=5120

V 3602 E 10776 F 7184V=3602, E=10776, F=7184
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Some Results: 3/4Some Results: 3/4
Note that flat portions are simplified first.

V=506, E=1488, F=992

V=2570, E=7680, F=5120
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Some Results: 4/4Some Results: 4/4
Note that flat portions are simplified first.

V=306, E=888, F=592

V=506, E=1488, F=992
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Quadric Error Metric Decimation: 1/9Quadric Error Metric Decimation: 1/9

Thi l i h i d Mi h l G l d dThis algorithm is due to Michael Garland and 
Paul S. Heckbert, published in IEEE 
Visualization 1998Visualization 1998.
This algorithm uses the quadric error distance 
measure and the edge collapse operatormeasure and the edge collapse operator.
Each vertex of a given mesh is associated with an 
error metric a 4×4 symmetric matrix and aerror metric, a 4×4 symmetric matrix, and a 
quadric (i.e., second degree) error.
For each edge a new vertex with minimum errorFor each edge, a new vertex with minimum error 
value (based on the error metric) is found and 
used for selecting an edge to be collapsed.

44

used for selecting an edge to be collapsed.



Quadric Error Metric Decimation: 2/9Quadric Error Metric Decimation: 2/9

Since this algorithm uses edge collapse, we need 
a criterion for selecting an edge.
Given two vertices, p and q, a pair (p,q) is a valid 
pair for collapsing, ifp p g

pq is an edge, or
|p q| < ε where ε is a user-defined constant|p – q| < ε, where ε is a user-defined constant

If ε > 0, two very close vertices may be collapsed 
t th (i t t ti ) titogether (i.e., vertex contraction), creating a non-
manifold mesh.  Thus, if vertex contraction is 

t d t t 0!
45

unwanted, set ε to 0!



Quadric Error Metric Decimation: 3/9Quadric Error Metric Decimation: 3/9

Wh i i ?What is an error metric?
It is a 4×4 symmetric matrix Q!
Each vertex v has an error metric matrix Qv.  
We shall show how to find it later.
The error at a vertex v = [v1,v2,v3,1]T, ∆(v), is 
defined as vTQvv.
Since Qv is a 4×4 matrix, ∆(v) = vTQvv = δ is a 
surface of second degree in v, where δ is a 

i lgiven value.
Hence, this error metric is referred to as a 

d i t i
46

quadric error metric.



Quadric Error Metric Decimation: 4/9Quadric Error Metric Decimation: 4/9

H d ll d ?How do we collapse an edge?
If (p,q) is a valid pair, a simple way is to move 

d ( )/2p to q, move q to p, or move p and q to (p+q)/2.
However, there is a better way.  We may move 

i h i i i h ∆( )to a new point v that minimizes the error ∆(v) = 
(vTQpv + vTQqv)/2 = [vT(Qp+Qq)v]/2, where Qp
and Q are the error metric matrices ofand Qq are the error metric matrices of 
vertices p and q.
After v is computed edge pq is collapsed and vAfter v is computed, edge pq is collapsed and v
receives the error value ∆(v) and error metric 
matrix Q +Q

47

matrix Qp+Qq



Quadric Error Metric Decimation: 5/9Quadric Error Metric Decimation: 5/9
compute error and error matrix for each vertex of the mesh;

l t ll lid d h th t | |select all valid edges pq such that |p – q| < ε;
for each selected edge pq do

beginbegin
minimize ∆(r) = [rT(Qp + Qq)r]/2 to find r;
let ∆(r) = (∆(p) + ∆(q))/2 and Qr= Qp + Qq;p q
place all selected edges in a heap using ∆(r) as a key;

end;
hil th d th h dwhile there are edges on the heap do

begin
remove the top edge pq;remove the top edge pq;
collapse it to the computed r;
update the mesh and the keys;

48
end



Quadric Error Metric Decimation: 6/9Quadric Error Metric Decimation: 6/9

How do we find Qv for v, initially? 1/3v , y
Given a plane P: ax+by+cz+d=0, where a2+b2+c2=1 (i.e., 
normalized), and a point v=(v1,v2,v3), the error (i.e., 1 2 3
distance) from v to P is ∆P(v) = av1 + bv2 + cv3 + d.
Let P = < a, b, c, d > and v = < v1,v2,v3,1 >.  Then, we 
have ∆P(v) = av1 + bv2 + cv3 + d = P•v.
Thus, the error at v with respect to P is calculated by 

l i ’ di i P’ i If P iplugging v’s coordinates into P’s  equation.  If P•v is 
zero, v is in P.  Otherwise, P•v gives the signed
“distance” from v to Pdistance  from v to P.
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Quadric Error Metric Decimation: 7/9Quadric Error Metric Decimation: 7/9

How do we find Qvv
for v, initially? 2/3

Since error may T 2 T T T( ) ( ) ( )⋅ = ⋅ ⋅P v P v P vSince error may 
be negative, we use 
its square!

T T

T T

( ) ( ) ( )
( )( )

( )
= ⋅ ⋅
=

P v P v P v
v P P v

v PP vits square!
Since P•v can be 
rewritten into a

2

2

( )

a ab ac ad
ab b bc bd
⎡ ⎤
⎢ ⎥
⎢ ⎥

v PP v

rewritten into a 
matrix form PTv, 
where P and v are

2

2

T ab b bc bd
ac bc c cd
ad bd cd d

⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

v v

where P and v are 
row matrices, we 
have this

ad bd cd d⎣ ⎦
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have this
MP(v)



Quadric Error Metric Decimation: 8/9Quadric Error Metric Decimation: 8/9

How do we find Qv for v, initially? 3/3v , y
The error metric matrix of v w.r.t. P is the 
matrix shown earlier rather than the errormatrix shown earlier rather than the error 
value itself!  Let this matrix be MP(v).
Now for each vertex v in the given meshNow, for each vertex v in the given mesh, 
the error metric matrix of vertex v is the 
sum of all M (v) where P is a plane thatsum of all MP(v), where P is a plane that 
contains an incident triangle of v:

ll i id

( )= ∑v P
P'

vQ M
51

all  incident to P's v



Quadric Error Metric Decimation: 9/9Quadric Error Metric Decimation: 9/9

How do we find a v that minimizes vTQvv? v

Once Qv is computed from Qp and Qq, 
where pq is the edge to be collapsed, wewhere pq is the edge to be collapsed, we 
need to find a new vertex v such that vTQvv is 
minimized.minimized.
Since vTQvv is a second degree function in v, 
its minimum can easily be found Computeits minimum can easily be found.  Compute 
and set the partial derivatives of vTQvv to 
zero and solve for x y and z!zero, and solve for x, y and z!
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The Minimum of a Quadric FunctionThe Minimum of a Quadric Function
The vector v in the function vTQvv has three v
variables, i.e., v = (x, y, z), and the function 
itself is of second degree.g
Therefore, function vTQvv has a form of

2 2 2( ) 2 2 2 2 2 2F x y z ax by cz dxy exz fyz gx hy iz j= + + + + + + + + +

Setting the partial derivatives to zero and 
l i f d i ld th t

( , , ) 2 2 2 2 2 2F x y z ax by cz dxy exz fyz gx hy iz j= + + + + + + + + +

solving for x, y and z yield the vector v.
0F ax dy ez g

x
∂ = + + + =
∂

0

x
F dx by fz h
y

∂
∂ = + + + =
∂
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y
F ex fy cz i
z

∂ = + + + =
∂



Quadric Error Metric
small errorsmall error

large error
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Decimation vs Error Metric

t d i tivertex decimation

55quadric error metric



Results and Comparisons: 1/3

error metric: V=3555error metric: V 3555

vertex decimation: V=3602
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Results and Comparisons: 2/3

error metric: V=2476

t d i ti V 2570vertex decimation: V=2570
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Results and Comparisons: 3/3

error metric: V=599error metric: V=599

t d i ti V 1538vertex decimation: V=1538
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More Comparisons: 1/2More Comparisons: 1/2

error metric:
V=703,E=2106,F=1398

vertex decimation:vertex decimation:
V=703,E=2106,F=1401
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More Comparisons: 2/2More Comparisons: 2/2
vertex decimation error metrice o e c

V=311
E=927E 927
F=618
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The EndThe End
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