Mesh Simplification
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he Law of Cosine

1Here are some commonly used formulas.

d First, we learn that ¢ = a* + b? — 2abcos(6), where
Ois the angle opposite to side c.

dVector form: [ X-Y|? = | X+ Y|*-2|X]|-|Y|cos(H).

(dNote that |X|> = X-X, where - is the inner product.

VA Ve X 7\

dSince (X-Y)-(X-Y) =X-X+Y-Y-2X-Y, we have X-Y
= |X|-|Y|cos().
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1 Let A and B be two vectors. We wish to compute
the length of projecting A to B.

11t is obvious that the length is L = |A|cos(6) .
1 Since A-B=|A|:|B|cos(8), we have

A-B _ BA
Al-[B] [B] Ar

L =| A]cos(6) = A |

—0 . .B
L =|A|cos(6)




nt to a Plane Distance: 1/2
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J Compute the distance from a pomt X to &.
dProjecting X to n yields the dlstance IX—B|cos(6).
u Slnce cos(O)= ( B)-n/|X-Bj),

Compute the perpendicular foot
from X to plane &. Easy!
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1 Sometimes the plane is given by ax+by+cz+d = 0, where a?
+ b* + ¢?> =1 (i.e., normalized).

(] The normal vector of this plane is n =<a, b, c >.

u
-----
.......

O Plugging B and n into this equation yields:

(X N B)‘Il = (<x9yaz> - <‘t‘l9v9W>) 0<a,b,c>
= <X, ),7> o<a;'b,c> - <u,y,w> e <a,b,c>
= (ax+by+cz) —(au+bv+cw)
= (ax+by+cz) —(-d)
=ax+by+cz +d



VUIUITITC Ul a ralalicicpipcu. 41/4
] A parallelepiped is defined by three vectors u, v and w.

<>
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(] The parallelogram defined by u and v has an area of
lu|-|v|sin(&), which is the length of vector uxv, where 8 is
the angle between u and v.

v . area = basexheight = |u|(|v|sin(&))
[visin(&) = [ul}Visin(6) = uxv]
0 >
u




VUIUITIT Ul a ralalicicpipcu. 4/ic

1 The volume of a parallelepiped is the product of its base
area and its height.

(] The base area is [uxv]|.
1 Projecting w to uxv yields the height (uxv)-w/|uxv|.
(J Therefore, the volume is:

Volume = BaseAreaxHeight

(uxv) -w

luxv|

luxv|

(uxv)-w
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] A tetrahedron is also defined by three vectors u, v and w.

 The volume of a tetrahedron is (BaseAreaxHeight)/3.

(] Base area is half of the parallelogram defined by u and v,
and is equal to |uxv|/2.

(] Height is our old friend, projecting w to uxv, which is
(uxv)-w/|uxv]|.

(J Therefore, the volume is

1 uxva
Volume = gBaseAreaxHeight

<o

) %(E |luxv |j (UXV) W (wxv)wi] uxv

luxv|

1
= —(uxv)-w
5 (uxv)
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Simplif

A Mesh simplification/decimation is a class of
algorithms that transform a given polygonal
mesh into another with fewer faces, edges, and
vertices.

(1 The simplification process is usually controlled
by a set of user-defined quality criteria that can
preserve specific properties of the original
mesh as much as possible (e.g., geometric
distance, visual appearance , etc).

1 Mesh simplifications reduces the complexity of a
given mesh.
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 Simplification schemes usually work iteratively
(i.e., removing a vertex/edge at a time) and can
be reversed. Thus, one can transmit the final
result followed by the “reversed” operators.

(1 A mesh simplification scheme can be viewed as a
decomposition operator to obtain a low frequency
component (i.e., the decimated mesh) and a high
frequency component (i.e., the difference
between the original and decimated meshes).
Then, a reconstruction operator can perform the
inverse decimation to recover the original data

from its low frequency component.
10
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 Vertex Clustering: It is in general fast, robust and
of O(n), where n is the number of vertices;
however, quality is not always satisfactory.

dIncremental Decimation: It can deliver higher
quality meshes in most cases, and can take
arbitrary user-defined criteria into account
according to how the next removal operation is

chosen. However, complexity may be O(nlog,n) or
even O(n?).

(1 Resampling: The most general approach; however,
new samples may be freely distributed. 1



Vertex Clustering: 1/4
A Given a tolerance ¢ > 0, the
bounding space of the given

mesh is partitioned into cells
with diameter < ¢.

dFor each cell a representative
vertex is computed (will talk
about this later). If a cell has
more than one vertices, they
are all mapped to this
representative vertex.

representative vertex

12
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(1 Then, degenerate triangles
are removed.

JIf P and Q are the
representative vertices of

Pos P15 +++s P, and g5 Gy <o

q,, respectively, P and Q
are connected in the
decimated mesh if at least
one pair of vertices (p;q;)
was connected in the
original mesh.

F o cmclle Fea Y M -y o Y &Y, |
vertex ciusterir . £/4

solid: original mesh
dotted: new mesh

13
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(1 The resulting mesh may not
be a 2-manifold even though
the original one is, because a
portion of a surface could
collapse to a point.

JdHowever, it can reduce the
complexity of a mesh
significantly, and guarantee solid: original mesh
a global approximation of dotted: new mesh
the original mesh.

14



Vertex Clustering: 4/4

JHow to compute those representatives?

> The easiest way is to average the vertices in the same
cell. If P, P,, ..., P, are vertices in the same cell, then
the representativeis P= (P, + P, + ... + P, )/k.

» Or, depending on the importance of each vertex (of
the mesh) one might assign a weight w, > 0 to vertex
P.. Then, the representative of P,, P,, ..., P, in the
same cell is their weighted average:

~ WP, +W,P,+...+W, P,
W, + W, +...+W,

P

15



ncremental Decimation: 1/2

)

dIncremental algorithms remove one vertex or
edge at a time based on user-specified criteria.

 Criteria can be binary or continuous.

L Binary criteria determine if a vertex is allowed to
remove (i.e., yes or no), while a continuous one
rates the quality of the mesh (i.e., roundness of
triangles, small normal changes between
neighboring triangles) before/after removal.

16
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(1 The surface geometry changes in the
neighborhood of the removed vertex/edge, and
the quality criteria have to be re-evaluated.

1 To make the re-evaluation process more efficient,
the candidates for removal are usually stored in
a heap with the best removal operation on top.

1 1In this way, each update only costs O(log n) for
large meshes if the criteria evaluation has
constant time complexity.

17



1 There are a number of removal operators,
some of which can preserve the mesh topology.
These decimation operators are referred to as
Euler-Operators. See CS3621 course page.

1 Commonly used topological operators include:
“*Vertex removal (inverse: vertex insertion)
“*Edge collapse (inverse: edge split)

“»Half edge collapse (inverse: restricted vertex
split)

18



Vertex Remo

val

d Vertex removal deletes a
vertex and its adjacent

edges and faces, creating a
k-side hole, where £ is the
valence of the vertex.

 This hole is triangulated by
adding &-2 triangles back.

JThus, the # of vertices and #
of triangles are reduced by
1 and 2, respectively.

19



Edge Collaps

)
(D

1 Edge collapse selects an
edge and collapses it to a
new vertex. Its two
adjacent triangles also
collapse to two edges. 1

J Thus, the # of vertices and
# of triangles are reduced
by 1 and 2, respectively.

(JHowever, we are allowed to

choose a new vertex! new vertex

20



Edge Collap
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1 Given a selected edge with
adjacent vertices p and q, the
half-edge collapse operator

moves p to q or g to p.

 This is a special case of the 1 same vertex
edge collapse operator.

1 Note that moving p to q and
moving ¢ to p are ftwo
different operations.

1 Note also that no degree of
freedom is available. 21



Decimation Opere

1 While the half-edge collapse operator is a special
case of the edge collapse operator, its effect
becomes noticeable only for extremely strong
decimation where the exact location of individual
vertices really matters.

1 The global optimization that uses user specified
criteria to make selections is completely separate
from the decimation operator. This makes the
design of decimation more orthogonal.

22



Decimation Operator

1 All three operators preserve mesh topology and
the topology of the underlying surface may
change near the end of decimation.

(1 Non-Euler operators CAN change mesh topology.

(1 The vertex contraction operator merges two
arbitrary vertices into one even if they are not

connected by an edge is a good example.

(1 The vertex contraction operator reduces the # of
vertices by 1 but preserves the # of faces/edges.

23



A Vertex Decimation Algorithm
for Triangular Mesh: 1/15

(] One of the earliest decimation algorithm was due to

Schroeder, Zarge and Lorensen published in
SIGGRAPH 1992.

] This algorithm uses vertex removal only and has a
scheme as follows.

while there is a vertex X that can be removed do
begin
apply the vertex removal operator to X;
this creates a hole, not necessary planar;
re-triangulate the hole;

end
24



A Vertex Decimation Algorithm
for Triangular Mesh: 2/15

] Not all vertices are candidates for
decimation. a simple vertex

] Each vertex is assigned one of five
possible classifications: simple,
complex, boundary, interior edge, or
corner vertex.

] A simple vertex is surrounded by a
closed fan of triangles.

25



A Vertex Decimation Algorithm
for Triangular Mesh: 3/15

] If an edge is shared by
more than two triangles,
or if a vertex is used by a
triangle that is not in the
fan, this vertex is a
complex vertex.

] If a mesh contains a
complex vertex, it is not a
2-manifold. We only deal
with 2-manifolds in this

course. boundary vertex

] If a vertex is on the
boundary of a mesh, itis a
boundary vertex.

26




A Vertex Decimation Algorithm
for Triangular Mesh: 4/15

1 User Specified Criteria (Basic Idea):
» Do not remove sharp corners

» If vertex X is “far” away from its
adjacent vertices, X should not be
removed because removing X
flattens the vicinity of vertex X.

» Thus, good candidates should be
vertices in “flat” regions.

w 1
1

removing X flattens
the mesh
» The “flatness” is measured by a
plane, an average plane,
representing the vicinity of X’s
adjacent vertices.
27



A Vertex Decimation Algorithm
for Triangular Mesh: 5/15

1 User Specified Criteria:

“*If X is a simple vertex, the distance from X to an “average”
plane is computed. If this distance is smaller than the
given distance (i.e., reasonably flat), X is removed.

“*If X is a boundary vertex, then use the distance from this

vertex to the boundary edge line.
28




A Vertex Decimation Algorithm
for Triangular Mesh: 6/15

J Compute the “Average Plane”:
“*Let X be the vertex under consideration.
“*Let T, be a triangle in the fan of X.

“*Let c;, A; and n, be the center, area and
normal vector of triangle T, respectively.

“*The base point B and normal vector n of the
average plane are calculated as follows:

DY I ZA

29



A Vertex Decimation Algorithm
for Triangular Mesh: 7/15

d Split Line and Split Plane:

7

adjacent vertices.

7

* A split plane is the plane that

satisfies two conditions:

1)

2)

it contains a split line and is
perpendicular to the chosen
average plane

it divides the loop into two
separate links such that all
vertices of one link are in one
side of the split plane and the
remaining vertices are in the
other.

* A split line is a line joining two non- split line

split plané

average plane

30



A Vertex Decimation Algorithm
for Triangular Mesh: 8/15

1 Aspect Ratio: split line

“» Given a split line and its split plane,
the aspect ratio is defined as the
minimum distance of the loop
vertices to the split plane, divided
by the length of the split line.

*»The “best” choice of a split line is
the one that can produce the
maximum aspect ratio.

split plane

average plane
aspect ratio = a/b 31



A Vertex Decimation Algorithm
for Triangular Mesh: 9/15

= Split line

1Re-triangulation
“*Find a split line with a maximal aspect
ratio.
“* Each of these two links and the split
line forms a loop.

“*Recursively re-triangulate each loop. :
split

“*If re-triangulation fails, do not remove
this vertex.

do it recursively



A Vertex Decimation Algorithm
for Triangular Mesh: 10/15

(JA Few Notes: 1/5

“*Repeated decimation may produce
a tetrahedron. Further
decimation reduces it to a triangle.
So, we have fwo identical triangles!

“+This is a change of topology.

33



A Vertex Decimation Algorithm
for Triangular Mesh: 11/15

(JA Few Notes: 2/5

“*If a mesh has holes like a torus, the boundary of a hole
could reduce to a triangle (i.e., triangular hole). Removing
a vertex from the boundary could create a non-manifold.

remove this
vertex

34



A Vertex Decimation Algorithm
for Triangular Mesh: 12/15

(JA Few Notes: 3/5

“+If a mesh has holes like a torus, the boundary of a hole
could reduce to a triangle (i.e., triangular hole). Removing
a vertex from the boundary could create a non-manifold.

A\&

new edges

non-manifold edge

remove this

yeiiow poiygon
shows the hole
to be retriangulated;
but, the rectangle is
already a face!

35
The Right Half



A Vertex Decimation Algorithm
for Triangular Mesh: 13/15

(JA Few Notes: 4/5

“+If a mesh has holes like a torus, the boundary of a hole
could reduce to a triangle (i.e., triangular hole). Removing
a vertex from the boundary could create a non-manifold.

remove this
vertex




A Vertex Decimation Algorithm
for Triangular Mesh: 14/15

(JA Few Notes: 5/5

“+If a mesh has holes like a torus, the boundary of a hole
could reduce to a triangle (i.e., triangular hole). Removing
a vertex from the boundary could create a non-manifold.

The sides of this triangle
close the hole and creates

[ ]
a non-manifold
e AAUAR ALAGRARAREAUJANER

yellow polygon
shows the hole
to be retriangulated

37



A Vertex Decimation Algorithm
for Triangular Mesh: 15/15

(JA Few Notes: 4/4

“*Thus, in the decimation process, a check must
be made to prevent duplicated triangles and
triangle edges. In this way, the topology of the
mesh can be preserved.

38
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Vertex Error

small error Small vertex error

means flat area, and
can be simplified
first.

large error

39
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Note that flat portions are simplified first.
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Note that flat portions are simplified first.
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Note that flat portions are simplified first.

V=306, E=888, F=592




Quadric Error Metric Decimation: 1/9

This algorithm is due to Michael Garland and
Paul S. Heckbert, published in /EEE
Visualization 1998.

(This algorithm uses the quadric error distance
measure and the edge collapse operator.

dEach vertex of a given mesh is associated with an
error metric, a 4x4 symmetric matrix, and a
quadric (i.e., second degree) error.

dFor each edge, a new vertex with minimum error

value (based on the error metric) is found and
used for selecting an edge to be collapsed.



Quadric Error Metric Decimation: 2/9

1 Since this algorithm uses edge collapse, we need
a criterion for selecting an edge.

 Given two vertices, p and ¢, a pair (p,q) is a valid
pair for collapsing, if

“*pq is an edge, or

00|n < whowvo © 106 o 15en
L ) IP \1' o~ G, YVVIIRI VN G 1D A UdL

dIf € > 0, two very close vertices may be collapsed
together (i.e., vertex contraction), creating a non-

manifold mesh. Thus, if vertex contraction is

unwanted, set € to 0!
45



Quadric Error Metric Decimation: 3/9

(1 What is an error metric?
It is a 4x4 symmetric matrix Q!

“*Each vertex v has an error metric matrix Q..
We shall show how to find it later.

“*The error at a vertex v = [v,,v,,v;,1]7, A(V), is
defined as viQ,v.

“*Since Q_ is a 4x4 matrix, A(v) =viQ v=49is a
surface of second degree in v, where o is a
given value.

‘*Hence, this error metric is referred to as a

quadric error metric.
46



Quadric Error Metric Decimation: 4/9

JHow do we collapse an edge?

“If (p,q) is a valid pair, a simple way is to move
p to q, move q to p, or move p and q to (p+q)/2.

“*However, there is a better way. We may move
to a new point v that minimizes the error A(v) =
(viQ,V +viQ.v)/2 = [vi(Q,+Q,)V]/2, where Q,
and Q, are the error metric matrices of
vertices p and q.

“* After v is computed, edge pq is collapsed and v
receives the error value A(v) and error metric

matrix Qp+Qq

a7



Quadric Error Metric Decimation: 5/9

compute error and error matrix for each vertex of the mesh;
select all valid edges pq such that [p — q| <¢&;
for each selected edge pq do
begin
minimize A(r) = [r"(Q, + Q,)r]/2 to find r;
let A(r) = (A(p) + A(@))/2 and Q.= Q, + Q;
place all selected edges in a heap using A(r) as a key;
end;
while there are edges on the heap do
begin
remove the top edge pq;
collapse it to the computed r;
update the mesh and the keys;

end
48



Quadric Error Metric Decimation: 6/9

JHow do we find Q, for v, initially? 1/3

“* Given a plane P: ax+by+cz+d=0, where a’>+b*+c*=1 (i.e.,
normalized), and a point v=(v,,v,,v;), the error (i.e.,
distance) from v to P is A,(v) = av, + bv, + cv; + d.

“LetP=<a,b,c,d>and v=<vy,v,v,1> Then, we
have Ap(Vv) = av, + bv, + cv; + d = Pev.

“*Thus, the error at v with respect to P is calculated by
plugging v’s coordinates into P’s equation. If Pev is
zero, v is in P. Otherwise, Pev gives the signed
“distance” from v to P.

49



Quadric Error Metric Decimation: 7/9

JHow do we find O,
for v, initially? 2/3
“*Since error may (PT-v)> = (PT-v)"(P"-V)
be negative, we use = (v -P)(P'-v)
its square! = v (PP")v
“*Since Pev can be 'a® ab ac ad]
rewritten into a T ab b*> bc bd
matrix form Plv, ac bc ¢ cd
where P and v are 'ad bd cd d*

row matrices, we /
have this

Mp(v)

50



Quadric Error Metric Decimation: 8/9

JdHow do we find Q, for v, initially? 3/3

***The error metric matrix of v w.r.t. P is the
matrix shown earlier rather than the error
value itself! Let this matrix be My(v).

“*Now, for each vertex v in the given mesh,
the error metric matrix of vertex v is the
sum of all M,(v), where P is a plane that
contains an incident triangle of v:

Q= 2 MW

al P's incidenttov
51



Quadric Error Metric Decimation: 9/9

JHow do we find a v that minimizes viQ _v?

“*Once Q, is computed from Q_ and Q,,
where pq is the edge to be collapsed, we
need to find a new vertex v such that viQ v is
minimized.

“*Since vrQ,v is a second degree function in v,
its minimum can easily be found. Compute
and set the partial derivatives of viQ,v to
zero, and solve for x, y and 7!

52



The Minimum of a Quadric Function
dThe vector v in the function viO,_v has three
variables, i.e., v = (x, y, 7), and the function
itself is of second degree.

dTherefore, function viQ_ v has a form of
F(X,Y,2)=ax’+by”+cz’ + 2dxy + 2exz+ 2 fyz+ 2gx+ 2hy + 2iz+ |

1 Setting the partial derivatives to zero and
solving for x, y and z yield the vector v.

a—|:=ax+dy+ez+g:0
0X
a—F:dx+by+fz+h:0
dy
oF

— =& + fy + cz + i1 =0 >3
0z



Quadric Error Metric

g3 ove022 small error

—05.32e-018

'— 1.06e-017

2,66e-017

4, 26e-017

4,79e-017

. 32e-017 large error
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Decimation vs Error Metric

vertex decimation
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Results and Comparisons: 3/3
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viore comparisons. 41

error metric:

V=703,E=2106,F=1398

vertex decimation:
V=703,E=2106,F=1401



Mlore Comparisons: 2/2

vertex decimation error metric

V=311
E=927
F=618
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