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Curve Corner Cuttingg
Take two points on different edges of a polygon and 
j i h i h li Th hi lijoin them with a line segment.  Then, use this line 
segment to replace all vertices and edges in between.  
This is corner cutting!This is corner cutting!
Corner cutting can be local or non-local.
A i l l if i l dA cut is local if it removes exactly one vertex and 
adds two new ones.  Otherwise, it is non-local.

all local cuts non-local cut
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Simple Corner Cutting: 1/5p g
On each edge, choose two numbers u ≥ 0 and v ≥ 0
and u+v ≤ 1, and divide the edge in the ratio of u:1-
(u+v):v.

u v1-(u+v)

Here is how to cut a corner.
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Simple Corner Cutting: 2/5p g
Suppose we have a polyline P0.  Divide its edges 

i h h b h i ldi l li Pwith the above scheme, yielding a new polyline P1.  
Dividing P1 yields P2, …., and so on.  What is

P Li i PP∞ = Limit Pi

The u’s and v’s do not have to be the same for every
i→∞

The u’s and v’s do not have to be the same for every 
edge.  Moreover, the u’s and v’s used to divide Pi do 
not have to be equal to those u’s and v’s used tonot have to be equal to those u s and v s used to 
divide Pi+1.

4



Simple Corner Cutting: 3/5p g

P
u = 1/3 and v = 1/4

P0

P

1/4

P1

P2

1/3
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Simple Corner Cutting: 4/5p g
For a polygon, one more leg from the last point 
to the first must also be divided accordingly.

u = 1/3 and v = 1/4u = 1/3 and v = 1/4
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Simple Corner Cutting: 5/5p g
The following result was proved v
by Gregory and Qu, de Boor, 
and Paluszny, Prautzsch and 
S f

1
2u+v ≤ 1

Schäfer.
If all u’s and v’s lies in the 

1/2

u+2v ≤ 1
interior of the area bounded by 
u ≥ 0, v ≥ 0, u+2v ≤ 1 and 2u+v ≤

u1
1/2

u+2v ≤ 1

1, then P∞ is a C1 curve.
This procedure was studied by 

1/2

p y
Chaikin in 1974, and was later 
proved that the limit curve is a Chaikin used u = v = 1/4
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B-spline curve of degree 2.



FYI
Subdivision and refinement has its first significant 
use in Pixar’s Geri’s Gameuse in Pixar s Geri s Game.  
Geri’s Game received the Academy Award for Best 
Animated Short Film in 1997Animated Short Film in 1997.

http://www.pixar.com/shorts/gg/
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Facts about Subdivision Surfaces
Subdivision surfaces are limit surfaces:

It starts with a mesh
It is then refined by repeated subdivision

Since the subdivision process can be carried out 
infinite number of times, the intermediate ,
meshes are approximations of the actual 
subdivision surface.
Subdivision surfaces is a simple technique for 
describing complex surfaces of arbitrarydescribing complex surfaces of arbitrary 
topology with guaranteed continuity.
Also supports Multiresolution
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Also supports Multiresolution.



What Can You Expect from …?p
It is easy to model a large number of surfaces 

f i tof various types.
Usually, it generates smooth surfaces.
It has simple and intuitive interaction with 
models.
It can model sharp and semi-sharp features of 
surfaces.
Its representation is simple and compact (e.g., 
winged-edge and half-edge data structures etc)winged-edge and half-edge data structures, etc).
We only discuss 2-manifolds without boundary.
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Regular Quad Mesh Subdivision: 1/3g Q
Assume all faces in a mesh are quadrilaterals 
and each vertex has four adjacent faces.
From the vertices C1, C2, C3 and C4 of  a 1, 2, 3 4
quadrilateral, four new vertices c1, c2, c3 and c4
can be computed in the following way (mod 4):p g y ( )

If we define matrix Q as follows:
1 1 2

3 9 3 1
16 16 16 16i i i i i− + += + + +c C C C C

If we define matrix Q as follows:
9 /16 3 /16 1/16 3 /16
3 /16 9 /16 3 /16 1/16
⎡ ⎤
⎢ ⎥3 /16 9 /16 3 /16 1/16
1/16 3 /16 9 /16 3 /16
3 /16 1/16 3 /16 9 /16

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q =
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3 /16 1/16 3 /16 9 /16⎢ ⎥
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Regular Quad Mesh Subdivision: 2/3g Q
Then, we have the following relation:

1 1

2 2

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅
⎢ ⎥ ⎢ ⎥

c C
c C

Q
3 3

4 4

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Q
c C
c C

C4

C3c3

c4

C1 C

c1 c2
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Regular Quad Mesh Subdivision: 3/3g Q
New vertices c1, c2, c3 and c4 of the current face 
are connected to the ci’s of the neighboring 
faces to form new, smaller faces.
The new mesh is still a quadrilateral mesh.

original mesh

13new mesh
this corner is cut!



Arbitrary Grid Meshy
If a vertex in a quadrilateral (resp., triangular) 
mesh is not adjacent to four (resp., six) neighbors, 
it is an extraordinary vertex.
A non-regular quad or triangular mesh has 
extraordinary vertices and extraordinary faces.y y

extraordinary vertices
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quad mesh triangular mesh



Doo-Sabin Subdivision: 1/6
Doo and Sabin, in 1978, suggested the following 
for computing ci’s from Ci’s:

n

∑ C

where α ’s are defined as follows:
1

i ij j
j
α

=

=∑c C

where αij ’s are defined as follows:

5n i j
⎧ + =⎪

4
ij

i j
n

α

=⎪
⎪⎪=⎨
⎪ ⎡ ⎤⎛ ⎞1 2 ( )3 2cos otherwise
4

i j
n n

π⎪ ⎡ − ⎤⎛ ⎞⎪ + ⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩
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Doo-Sabin Subdivision: 2/6
There are three types F-face

V f of faces in the new 
mesh.
A F f i bt i d

V-face

A F-face is obtained 
by connecting the ci’s 
of a face.of a face.
An E-face is obtained 
by connecting the ci’s y g i
of the faces that 
share an edge.
A V-face is obtained 
by connecting the ci’s 
th t d
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that surround a 
vertex.E-face



Doo-Sabin Subdivision: 3/6
Most faces are quadrilaterals.  None four-sided 
faces are those V-faces and converge to points 
whose valency is not four (i.e., extraordinary 
vertices).
Thus, a large portion of the limit surface are , g p
covered by quadrilaterals, and the surface is mostly 
a B-spline surfaces of degree (2,2).  However, it is p g ( , ) ,
only G1 everywhere.
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Doo-Sabin Subdivision: 4/6

1 2 3

184 5 6



Doo-Sabin Subdivision: 5/6

1 2 3

19
4 5



Doo-Sabin Subdivision: 6/6

1 2 31 2 3

204 5



Catmull-Clark Algorithm: 1/10g
Catmull and Clark proposed another algorithm 
in the same year as Doo and Sabin did (1978).
In fact, both papers appeared in the journal , p p pp j
Computer-Aided Design back to back!
Catmull-Clark’s algorithm is rather complex ItCatmull Clark s algorithm is rather complex.  It 
computes a face point for each face, followed by 
an edge point for each edge, and then a vertexan edge point for each edge, and then a vertex 
point for each vertex.
Once these new points are available a new meshOnce these new points are available, a new mesh 
is constructed.
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Catmull-Clark Algorithm: 2/10Cat u C a go t / 0
Compute a face point for each face.  This face 
point is the gravity center or centroid of the face, 
which is the average of all vertices of that face:
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Catmull-Clark Algorithm: 3/10Cat u C a go t 3/ 0
Compute an edge point for each edge.  An edge point is 
the average of the two endpoints of that edge and the two 
face points of that edge’s adjacent faces.
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Catmull-Clark Algorithm: 4/10Cat u C a go t / 0
Compute a vertex point for each vertex v as 
follows:

' 1 2 3n −=v Q + R + v
n n n

=v Q + R + v

m1

Q – the average of all new face 
points of v

R the average of all mid-points
Q

f2

f1
m3

R – the average of all mid-points
(i.e., mi’s) of vertex v

v - the original vertexv

m2

3 g
n - # of incident edges of v

f
24R

f3



Catmull-Clark Algorithm: 5/10Cat u C a go t 5/ 0
For each face, connect its face point f to each 
edge point and connect each new vertex v’ to theedge point, and connect each new vertex v to the 
two edge points of the edges incident to v.

e

ff
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Catmull-Clark Algorithm: 6/10

face point
edge pointedge point

vertex point

vertex-edge
ticonnection

26
face-edge connection



Catmull-Clark Algorithm: 7/10
After the first run, all faces are four sided.
If all faces are four-sided, each has four edge points e1, e2, e3

d f ti d d tand e4, four vertices v1, v2, v3 and v4, and one new vertex v.  
Their relation can be represented as follows:

A vertex at any level converges to the following:
4 42

1 1
4 j jj j

n
= =

+ +
=

∑ ∑v e f
v

27The limit surface is a B-spline surface of degree (3,3).
( 5)n n∞ = +

v



Catmull-Clark Algorithm: 8/10g

1 2 31 2 3

4 5 6
28

4 5 6



Catmull-Clark Algorithm: 9/10g

1 2 31 2 3

29
4 5



Catmull-Clark Algorithm: 10/10g

1 2 32 3

30
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Loop’s Algorithm: 1/6Loop s Algorithm: 1/6
Loop’s (i.e., Charles Loop’s) algorithm only 
works for triangle meshes.
Loop’s algorithm computes a new edge point p g p g p
for each edge and a new vertex for each vertex.
Let v1v2 be an edge and the other vertices ofLet v1v2 be an edge and the other vertices of 
the incident triangles be vleft and vright.  The 
new edge point e is computed as follows.new edge point e is computed as follows.

v13

vleft
vright

1
1( ) ( )1 2 left right

3 1
8 8

+ + +e = v v v v

31v2

left

3
8 8



Loop’s Algorithm: 2/6Loop s Algorithm: 2/6
For each vertex v, its new vertex point v’ is 
computed below, where v1, v2, …, vn are 
adjacent vertices α

α α

1 nα

'

1
(1 )

n

j
j

nα α
=

= − + ∑v v v

where α is α α
1-nαj

3
⎧
⎪ 3 3
16

n

α

⎪ =⎪
⎪=⎨

21 5 3 1 2cos 3
8 8 4

n
n n

α

π
⎨
⎪ ⎡ ⎤⎛ ⎞⎪ − + >⎢ ⎥⎜ ⎟⎪ ⎝ ⎠⎢ ⎥⎣ ⎦⎩
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Loop’s Algorithm: 3/6Loop s Algorithm: 3/6
Let a triangle be defined byLet a triangle be defined by 
X1, X2 and X3 and the 
corresponding new vertex 

i t b d
v1

points be v1, v2 and v3.   
Let the edge points of edges 
v v v v and v v be e e

e2X1

v1v2, v2v3 and v3v1 be e3, e1
and e2.  The new triangles 
are v1e2e3, v2e3e1, v3e1e2 and e1

e3

1 2 3, 2 3 1, 3 1 2
e1e2e3.  This is a 1-to-4
scheme.
Thi l ith

v3
e1

X2 X3

This algorithm was 
developed by Charles Loop 
in 1987.

v2

33

in 1987.



Loop’s Algorithm: 4/6Loop s Algorithm: 4/6
Pick a vertex in the original or an intermediate 
mesh.  If this vertex has n adjacent vertices v1, 
v2, …, vn, it converges to v∞:

1

3 8( 1) 8
3 8 3 8

n

j
n

n n
α α

α α∞
+ −= +
+ + ∑v v

If all vertices have valency 6, the limit surface is 
a collection of C2 Bézier triangles

13 8 3 8 jn nα α =+ +

a collection of C2 Bézier triangles.
However, only a torus can be formed with all 

l 6 ti V ti ith diff tvalency 6 vertices.  Vertices with different 
valencies converge to extraordinary vertices 

h th f i l G1
34

where the surface is only G1.



Loop’s Algorithm: 5/6Loop s Algorithm: 5/6

35Doo-Sabin Catmull-Clark



Loop’s Algorithm: 6/6p g

36Doo-Sabin Catmull-Clark



Peters-Reif Algorithm: 1/4g
This is an extremely simple 
algorithmalgorithm.

Compute the midpoint 
of each edgeof each edge
For each face, create a 
face by connecting the y g
midpoints of it edges

There are two types of faces: 
faces inscribed to the 
existing ones and faces 

hose ertices are thewhose vertices are the 
midpoints of edges that are 
incident to a common

37

incident to a common 
vertex.



Peters-Reif Algorithm: 2/4g
The original and new vertices has a 
relationship as follows:

'

1 1 0
2 2
⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤'

11
'

22

'

1 10 0
2 2

1 1

⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

vv
vv

vv 11
'

1 10
2 2

1 10 0
2 2

nn

nn

−− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

vv
vv

The limit of this process consists of a set of 
regular planar polygons that are the tangent 
planes of the limit surface, which is G1.
Peters-Reif algorithm was developed by J. 
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g p y
Peters and U. Reif in 1998.



Peters-Reif Algorithm: 3/4g
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Peters-Reif Algorithm: 4/4g

40Doo-Sabin Catmull-Clark



√3-Subdivision of Kobbelt: 1/8√

This algorithm was developed by Leif 
Kobbelt in 2000, and only works for triangle 
meshes.
This simple algorithm consists of three steps:

1) Dividing each triangle at the center into 31) Dividing each triangle at the center into 3 
more triangles

2) Perturb the vertices of each triangle2) Perturb the vertices of each triangle
3) “Flip” the edges of the perturbed triangle 

( t lid )(see next slide).
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√3 Subdivision of Kobbelt: 2/8√3-Subdivision of Kobbelt: 2/8
Step 1: Subdividing

For each triangle, V1

compute its center: 
C = (V1+V2+V3)/3
Connect the center 
to each vertex to 

C

create 3 triangles.
This is a 1-to-3

V2 V3

This is a 1 to 3
scheme!new edge
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√3 Subdivision of Kobbelt: 3/8√3-Subdivision of Kobbelt: 3/8
Step 2: Flipping Edges

Since each original 
edge is adjacent to 
two triangles, 
“flipping” an edge 
means removing the 
original edge and 
replacing it by the 
new edge joining 
the centers.

43Dotted: original    Solid: “flipped”



√3 Subdivision of Kobbelt: 4/8√3-Subdivision of Kobbelt: 4/8
Final Result

Remove the 
original edges and 
we have a new 
triangle mesh!
But, the original , g
vertices must also 
be “perturbed” a p
little to preserve 
“smoothness”.
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√3 S bdi ision of Kobbelt 5/8√3-Subdivision of Kobbelt: 5/8
Actual Computation

For each triangle with vertices V1, V2 and V3, 
compute its center C:

For each vertex V and its neighbors V1, V2, …, 
( )1 2 3

1
3

= +C V V + V

g 1, 2, ,
Vn, compute a perturbed V’ as follows:

( )' 1
n

n
n i

αα= − + ∑V V V

where αn is computed as follows:
( )

1
n i

in =
∑

1 2π⎛ ⎞⎛ ⎞

Replace V ’s with V’ ’s and do edge flipping

1 24 2cos
9n n

πα ⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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Replace Vi’s with V’i’s and do edge flipping.



√3 Subdivision of Kobbelt: 6/8√3-Subdivision of Kobbelt: 6/8
Important Results

The √3-subdivision converges!
The limit surface is C2 everywhere except for 
extraordinary points.y p
It is only C1 at extraordinary points (i.e., 
vertices with valance ≠ 6).vertices with valance ≠ 6).
The √3-subdivision can be extended to an 
adaptive scheme for finer subdivision controladaptive scheme for finer subdivision control.
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√3-Subdivision of Kobbelt: 7/8√3 Subdivision of Kobbelt: 7/8

1 2 32

4 5 5 d d
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√3-Subdivision of Kobbelt: 8/8

1 2 31 2 3

484 5 5 rendered



The EndThe End
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