Subdivision Techniques

Curve Corner Cutting

\square Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices and edges in between. This is corner cutting!
\square Corner cutting can be local or non-local.
\square A cut is local if it removes exactly one vertex and adds two new ones. Otherwise, it is non-local.

Simple Corner Cutting: 1/5

\square On each edge, choose two numbers $u \geq 0$ and $v \geq 0$ and $u+v \leq 1$, and divide the edge in the ratio of $u: 1-$ (u+v):v.

\square Here is how to cut a corner.

Simple Corner Cutting: 2/5

\square Suppose we have a polyline P_{0}. Divide its edges with the above scheme, yielding a new polyline P_{1}. Dividing P_{1} yields P_{2}, \ldots, and so on. What is

$$
\mathrm{P}_{\infty}=\operatorname{Limit}_{i \rightarrow \infty} \mathrm{P}_{i}
$$

DThe u 's and v 's do not have to be the same for every edge. Moreover, the u 's and v 's used to divide P_{i} do not have to be equal to those u 's and v 's used to divide P_{i+1}.

Simple Corner Cutting: 3/5

Simple Corner Cutting: 4/5

GFor a polygon, one more leg from the last point to the first must also be divided accordingly.

Simple Corner Cutting: 5/5

\square The following result was proved by Gregory and Qu, de Boor, and Paluszny, Prautzsch and Schäfer.
\square If all u 's and v 's lies in the interior of the area bounded by $u \geq 0, v \geq 0, u+2 v \leq 1$ and $2 u+v \leq$ 1 , then P_{∞} is a C^{1} curve.
\square This procedure was studied by Chaikin in 1974, and was later proved that the limit curve is a B-spline curve of degree 2.

FYI

\square Subdivision and refinement has its first significant use in Pixar's Geri's Game.
-Geri's Game received the Academy Award for Best Animated Short Film in 1997.

\square http: / /www.pixar.com/shorts / gg /

Facts about Subdivision Surfaces

\square Subdivision surfaces are limit surfaces:
$>$ It starts with a mesh
$>$ It is then refined by repeated subdivision
\square Since the subdivision process can be carried out infinite number of times, the intermediate meshes are approximations of the actual subdivision surface.
\square Subdivision surfaces is a simple technique for describing complex surfaces of arbitrary topology with guaranteed continuity.
\square Also supports Multiresolution.

What Can You Expect from ...?

\square It is easy to model a large number of surfaces of various types.
\square Usually, it generates smooth surfaces.
\square It has simple and intuitive interaction with models.
\square It can model sharp and semi-sharp features of surfaces.
\square Its representation is simple and compact (e.g., winged-edge and half-edge data structures, etc).
\square We only discuss 2-manifolds without boundary.

Regular Quad Mesh Subdivision: 1/3

\square Assume all faces in a mesh are quadrilaterals and each vertex has four adjacent faces.
\square From the vertices C_{1}, C_{2}, C_{3} and C_{4} of a quadrilateral, four new vertices c_{1}, c_{2}, c_{3} and c_{4} can be computed in the following way $(\bmod 4)$:

$$
\mathbf{c}_{i}=\frac{3}{16} \mathbf{C}_{i-1}+\frac{9}{16} \mathbf{C}_{i}+\frac{3}{16} \mathbf{C}_{i+1}+\frac{1}{16} \mathbf{C}_{i+2}
$$

\square If we define matrix \mathbf{Q} as follows:

$$
\mathbf{Q}=\left[\begin{array}{llll}
9 / 16 & 3 / 16 & 1 / 16 & 3 / 16 \\
3 / 16 & 9 / 16 & 3 / 16 & 1 / 16 \\
1 / 16 & 3 / 16 & 9 / 16 & 3 / 16 \\
3 / 16 & 1 / 16 & 3 / 16 & 9 / 16
\end{array}\right]
$$

Regular Quad Mesh Subdivision: 2/3

\square Then, we have the following relation:

$$
\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3} \\
\mathbf{c}_{4}
\end{array}\right]=\mathbf{Q} \cdot\left[\begin{array}{l}
\mathbf{C}_{1} \\
\mathbf{C}_{2} \\
\mathbf{C}_{3} \\
\mathbf{C}_{4}
\end{array}\right]
$$

Regular Quad Mesh Subdivision: 3/3

\square New vertices c_{1}, c_{2}, c_{3} and c_{4} of the current face are connected to the c_{i} 's of the neighboring faces to form new, smaller faces.
\square The new mesh is still a quadrilateral mesh.
new mesh

Arbitrary Grid Mesh

\square If a vertex in a quadrilateral (resp., triangular) mesh is not adjacent to four (resp., six) neighbors, it is an extraordinary vertex.
\square A non-regular quad or triangular mesh has extraordinary vertices and extraordinary faces.

Doo-Sabin Subdivision: 1/6

\square Doo and Sabin, in 1978, suggested the following for computing c_{i} 's from C_{i} 's:

$$
\mathbf{c}_{i}=\sum_{j=1}^{n} \alpha_{i j} \mathbf{C}_{j}
$$

where $\alpha_{i j}$'s are defined as follows:

$$
\alpha_{i j}= \begin{cases}\frac{n+5}{4 n} & i=j \\ \frac{1}{4 n}\left[3+2 \cos \left(\frac{2 \pi(i-j)}{n}\right)\right] & \text { otherwise }\end{cases}
$$

Doo-Sabin Subdivision: 2/6

\square There are three types of faces in the new mesh.
\square A F-face is obtained by connecting the c_{i} 's of a face.
\square An E-face is obtained by connecting the c_{i} 's of the faces that share an edge.
\square A V-face is obtained by connecting the c_{i} ' s that surround a vertex.

Doo-Sabin Subdivision: 3/6

\square Most faces are quadrilaterals. None four-sided faces are those V-faces and converge to points whose valency is not four (i.e., extraordinary vertices).
\square Thus, a large portion of the limit surface are covered by quadrilaterals, and the surface is mostly a B-spline surfaces of degree (2,2). However, it is only G^{1} everywhere.

Doo-Sabin Subdivision: 4/6

Doo-Sabin Subdivision: 5/6

3

4

Doo-Sabin Subdivision: 6/6

Catmull-Clark Algorithm: 1/10

\square Catmull and Clark proposed another algorithm in the same year as Doo and Sabin did (1978).
\square In fact, both papers appeared in the journal Computer-Aided Design back to back!
\square Catmull-Clark's algorithm is rather complex. It computes a face point for each face, followed by an edge point for each edge, and then a vertex point for each vertex.
\square Once these new points are available, a new mesh is constructed.

Catmull-Clark Algorithm: 2/10

\square Compute a face point for each face. This face point is the gravity center or centroid of the face, which is the average of all vertices of that face:

Catmull-Clark Algorithm: 3/10

\square Compute an edge point for each edge. An edge point is the average of the two endpoints of that edge and the two face points of that edge's adjacent faces.

Catmull-Clark Algorithm: 4/10

\square Compute a vertex point for each vertex v as follows:

$$
\mathbf{v}^{\prime}=\frac{1}{n} \mathbf{Q}+\frac{2}{n} \mathbf{R}+\frac{n-3}{n} \mathbf{v}
$$

Q - the average of all new face points of v
R - the average of all mid-points (i.e., m_{i} 's) of vertex v
v - the original vertex
n - \# of incident edges of v

Catmull-Clark Algorithm: 5/10

\square For each face, connect its face point f to each edge point, and connect each new vertex v ' to the two edge points of the edges incident to v.

Catmull-Clark Algorithm: 6/10

face-edge connection

Catmull-Clark Algorithm: 7/10

\square After the first run, all faces are four sided.
\square If all faces are four-sided, each has four edge points e_{1}, e_{2}, e_{3} and e_{4}, four vertices v_{1}, v_{2}, v_{3} and v_{4}, and one new vertex v. Their relation can be represented as follows:

$$
\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{e}_{1}^{\prime} \\
\mathbf{e}_{2}^{\prime} \\
\mathbf{e}_{3}^{\prime} \\
\mathbf{e}_{4}^{\prime} \\
\mathbf{v}_{1}^{\prime} \\
\mathbf{v}_{2}^{\prime} \\
\mathbf{v}_{3}^{\prime} \\
\mathbf{v}_{4}^{\prime}
\end{array}\right]=\frac{1}{16}\left[\begin{array}{ccccccccc}
9 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
6 & 6 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
6 & 1 & 6 & 1 & 0 & 1 & 1 & 0 & 0 \\
6 & 0 & 1 & 6 & 1 & 0 & 1 & 1 & 0 \\
6 & 1 & 0 & 1 & 6 & 0 & 0 & 1 & 1 \\
4 & 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 \\
4 & 0 & 4 & 4 & 0 & 0 & 4 & 0 & 0 \\
4 & 0 & 0 & 4 & 4 & 0 & 0 & 4 & 0 \\
4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{v} \\
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\mathbf{e}_{3} \\
\mathbf{e}_{4} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3} \\
\mathbf{v}_{4}
\end{array}\right]
$$

A vertex at any level converges to the following:

$$
\mathbf{v}_{\infty}=\frac{n^{2} \mathbf{v}+4 \sum_{j=1}^{4} \mathbf{e}_{j}+\sum_{j=1}^{4} \mathbf{f}_{j}}{n(n+5)}
$$

\square The limit surface is a B-spline surface of degree (3,3).

Catmull-Clark Algorithm: 8/10

Catmull-Clark Algorithm: 9/10

Catmull-Clark Algorithm: 10/10

Loop's Algorithm: 1/6

CLoop's (i.e., Charles Loop's) algorithm only works for triangle meshes.
LLoop's algorithm computes a new edge point for each edge and a new vertex for each vertex.
\square Let $v_{1} v_{2}$ be an edge and the other vertices of the incident triangles be $v_{\text {left }}$ and $v_{\text {right }}$. The new edge point e is computed as follows.

$$
\mathbf{e}=\frac{3}{8}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+\frac{1}{8}\left(\mathbf{v}_{\text {left }}+\mathbf{v}_{\text {right }}\right)
$$

Loop's Algorithm: 2/6

\square For each vertex v, its new vertex point v^{\prime} is computed below, where $v_{1}, v_{2}, \ldots, v_{n}$ are adjacent vertices

$$
\mathbf{v}^{\prime}=(1-n \alpha) \mathbf{v}+\alpha \sum_{j=1}^{n} \mathbf{v}_{j}
$$

where α is

$$
\alpha= \begin{cases}\frac{3}{16} & n=3 \\ \frac{1}{n}\left[\frac{5}{8}-\left(\frac{3}{8}+\frac{1}{4} \cos \frac{2 \pi}{n}\right)^{2}\right] & n>3\end{cases}
$$

Loop's Algorithm: 3/6

\square Let a triangle be defined by $\mathrm{X}_{1}, \mathrm{X}_{2}$ and X_{3} and the
 corresponding new vertex points be v_{1}, v_{2} and v_{3}.
\square Let the edge points of edges $v_{1} v_{2}, v_{2} v_{3}$ and $v_{3} v_{1}$ be e_{3}, e_{1} and e_{2}. The new triangles $\operatorname{are} \mathrm{v}_{1} \mathrm{e}_{2} \mathrm{e}_{3}, \mathrm{v}_{2} \mathrm{e}_{3} \mathrm{e}_{1}, \mathrm{v}_{3} \mathrm{e}_{1} \mathrm{e}_{2}$ and $\mathrm{e}_{1} \mathrm{e}_{2} \mathrm{e}_{3}$. This is a 1-to-4 scheme.
\square This algorithm was developed by Charles Loop in 1987.

Loop's Algorithm: 4/6

\square Pick a vertex in the original or an intermediate mesh. If this vertex has \boldsymbol{n} adjacent vertices v_{1}, $v_{\mathbf{2}}, \ldots, v_{\boldsymbol{n}}$, it converges to v_{∞} :

$$
\mathbf{v}_{\infty}=\frac{3+8(n-1) \alpha}{3+8 n \alpha}+\frac{8 \alpha}{3+8 n \alpha} \sum_{j=1}^{n} \mathbf{v}_{j}
$$

\square If all vertices have valency 6 , the limit surface is a collection of C^{2} Bézier triangles.
\square However, only a torus can be formed with all valency 6 vertices. Vertices with different valencies converge to extraordinary vertices where the surface is only G^{1}.

Loop's Algorithm: 5/6

Loop's Algorithm: 6/6

Catmull-Clark

Peters-Reif Algorithm: 1/4

This is an extremely simple algorithm.

* Compute the midpoint of each edge
*For each face, create a face by connecting the midpoints of it edges
\square There are two types of faces: faces inscribed to the existing ones and faces whose vertices are the midpoints of edges that are incident to a common vertex.

Peters-Reif Algorithm: 2/4

\square The original and new vertices has a relationship as follows:

$$
\left[\begin{array}{c}
\mathbf{v}_{1}^{\prime} \\
\mathbf{v}_{2}^{\prime} \\
\vdots \\
\mathbf{v}_{n-1}^{\prime} \\
\mathbf{v}_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{2} & \cdots & \cdots & 0 \\
& \frac{1}{2} & \frac{1}{2} & & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \cdots & 0 & \frac{1}{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{n-1} \\
\mathbf{v}_{n}
\end{array}\right]
$$

\square The limit of this process consists of a set of regular planar polygons that are the tangent planes of the limit surface, which is $G^{\mathbf{1}}$.
\square Peters-Reif algorithm was developed by \mathbf{J}. Peters and U. Reif in 1998.

Peters-Reif Algorithm: 3/4

Peters-Reif Algorithm: 4/4

$\sqrt{3}$-Subdivision of K obbelt: 1/8

\square This algorithm was developed by Leif Kobbelt in 2000, and only works for triangle meshes.
\square This simple algorithm consists of three steps:

1) Dividing each triangle at the center into 3 more triangles
2) Perturb the vertices of each triangle
3) "Flip" the edges of the perturbed triangle (see next slide).

$\sqrt{3}$-Subdivision of Kobbelt: 2/8 Step 1: Subdividing

\square For each triangle, compute its center: $C=\left(V_{1}+V_{2}+V_{3}\right) / 3$
\square Connect the center to each vertex to create 3 triangles.
\square This is a 1-to-3 scheme!

$\sqrt{3}$-Subdivision of K obbelt: 3/8 Step 2: Flipping Edges

Since each original edge is adjacent to two triangles, "flipping" an edge means removing the original edge and replacing it by the new edge joining the centers.

Dotted: original Solid: "flipped"

$\sqrt{3}$-Subdivision of Kobbelt: 4/8 Final Result

\square Remove the original edges and we have a new triangle mesh!
\square But, the original vertices must also be "perturbed" a little to preserve "smoothness".

$\sqrt{ } 3$-Subdivision of K obbelt: 5/8 Actual Computation

\square For each triangle with vertices V_{1}, V_{2} and V_{3}, compute its center C:

$$
\mathbf{C}=\frac{1}{3}\left(\mathbf{V}_{1}+\mathbf{V}_{2}+\mathbf{V}_{3}\right)
$$

\square For each vertex V and its neighbors V_{1}, V_{2}, \ldots, V_{n}, compute a perturbed $V^{\text {' }}$ as follows:

$$
\mathbf{V}^{\prime}=\left(1-\alpha_{n}\right) \mathbf{V}+\frac{\alpha_{n}}{n} \sum_{i=1}^{n} \mathbf{V}_{i}
$$

where $\alpha_{\boldsymbol{n}}$ is computed as follows:

$$
\alpha_{n}=\frac{1}{9}\left(4-2 \cos \left(\frac{2 \pi}{n}\right)\right)
$$

$\square \quad$ Replace V_{i} 's with $\mathrm{V}^{\prime}{ }_{i}$'s and do edge flipping.

$\sqrt{3}$-Subdivision of K obbelt: 6/8 Important Results

\square The $\sqrt{ } 3$-subdivision converges!

- The limit surface is C^{2} everywhere except for extraordinary points.
- It is only C^{1} at extraordinary points (i.e., vertices with valance $\neq 6$).
- The $\sqrt{ } 3$-subdivision can be extended to an adaptive scheme for finer subdivision control.

$\sqrt{ } 3$-Subdivision of K obbelt: 7/8

5 rendered

$\sqrt{3}$-Subdivision of Kobbelt: 8/8

The End

