
CS3331 Concurrent Computing Solution 1 – Fall 2015 1

CS3331 Concurrent Computing Solution 1

Fall 2015

1. Basic Concepts

(a) [10 points] Explain interrupts and traps, and provide a detailed account of the procedure that an

operating system handles an interrupt.

Answer: An interrupt is an event that requires the attention of the operating system. These

events include the completion of an I/O, a key press, the alarm clock going off, division by zero,

accessing a memory area that does not belong to the running program, and so on. Interrupts

may be generated by hardware or software. A trap is an interrupt generated by software (e.g.,

division by 0 and system call).

When an interrupt occurs, the following steps will take place to handle the interrupt:

• The executing program is suspended and control is transferred to the operating system.

Mode switch may be needed.

• A general routine in the operating system examines the received interrupt and calls the

interrupt-specific handler.

• After the interrupt is processed, a context switch transfers control back to a suspended

process. Of course, mode switch may be needed.

See pp. 6–7 02-Hardware-OS.pdf.

(b) [10 points] What is an atomic instruction? What would happen if multiple CPUs/cores execute

their atomic instructions?

Answer: An atomic instruction is a machine instruction that executes as one uninterruptible

unit without interleaving and cannot be split by other instructions. When an atomic instruction

is recognized by the CPU, we have the following:

• All other instructions being executed in various stages by the CPUs are suspended (and

perhaps re-issued later) until this instruction finishes.

• No interrupts can occur.

If two such instructions are issued at the same time on different CPUs/cores, they will be exe-

cuted sequentially in an arbitrary order determined by the hardware.

See pp. 12–13 of 02-Hardware-OS.pdf.

2. Processes

(a) [10 points] What is a context? Provide a detail description of all activities of a context switch.

Answer: A process needs some system resources (e.g., memory and files) to run properly.

These system resources and other information of a process include process ID, process state,

registers, memory areas (for instructions, local and global variables, stack and so on), various

tables (e.g.,, PCB), a program counter to indicate the next instruction to be executed, etc. They

form the environment or context of a process. The steps of switching process A to process B are

as follows:

• The operating system suspends A’s execution. A CPU mode switch may be needed.

• Transfer the control to the CPU scheduler.

• Save A’s context to its PCB and other tables.

• Load B’s context to register, etc. from B’s PCB.

CS3331 Concurrent Computing Solution 1 – Fall 2015 2

• Resume B’s execution of the instruction at B’s program counter. A CPU mode switch may

be needed.

See page 10 and page 11 of 03-Process.pdf.

(b) [10 points] Draw the state diagram of a process from its creation to termination, including all

transitions. Make sure you will elaborate every state and every transition in the diagram.

Answer: The following state diagram is taken from my class note.

Waiting

New Ready Running Term.

blocks for some events
(e.g., input/output)

CPU is free

time is up

process
terminates

reclaim system
resouces and
destroy process

create new
process and
allocate system
resources

event occurs

process created
and ready to run

There are five states: new, ready, running, waiting, and terminated.

• New: The process is being created.

• Ready: The process has everything but the CPU, and is waiting to be assigned to a proces-

sor.

• Running: The process is executing on a CPU.

• Waiting: The process is waiting for some event to occur (e.g., I/O completion or some

resource).

• Terminated: The process has finished execution.

The transitions between states are as follows:

• New→Ready: The process has been created and is ready to run.

• Ready→Running: The process is selected by the CPU scheduler and runs on a CPU/core.

• Running→Ready: An interrupt has occurred forcing the process to wait for the CPU.

• Running→Waiting: The process must wait for an event (e.g., I/O completion or a re-

source).

• Waiting→Ready: The event the process is waiting has occurred, and the process is now

ready for execution.

• Running→Terminated: The process exits.

See page 5 and page 6 of 03-Process.pdf.

3. Threads

(a) [10 points] Enumerate the major differences between kernel-supported threads and user-level

threads.

Answer: Kernel-supported threads are threads directly handled by the kernel. The kernel does

thread creation, termination, joining, memory allocation, and scheduling in kernel space. User

threads are supported at the user level and are not recognized by the kernel, and thread creation,

termination, joining, memory allocation, and scheduling are done in the user space. Usually, a

library running in user space provides all support. Due to the kernel involvement, the overhead

of managing kernel-supported threads is higher than that of user threads.

CS3331 Concurrent Computing Solution 1 – Fall 2015 3

Since there is no kernel intervention, user threads are more efficient than kernel threads. On the

other hand, in a multiprocessor environment, the kernel may schedule kernel-supported threads

to run on multiple processors, which is impossible for user threads because the kernel does

not schedule user threads. Additionally, since the kernel does not recognize and schedule user

threads, if the containing process or its associated kernel-supported thread is blocked, all user

threads of that process (or kernel thread) are also blocked. However, blocking a kernel-supported

thread will not cause all threads of the containing process to be blocked.

See pp. 5–6 and pp. 9–12 04-Thread.pdf.

4. Synchronization

(a) [10 points] Define the meaning of a race condition? Answer the question first and use execution

sequences with a clear and convincing argument to illustrate your answer. You must explain

step-by-step why your example causes a race condition.

Answer: A race condition is a situation in which more than one processes or threads access a

shared resource concurrently, and the result depends on the order of execution.

The following is a simple counter updating example discussed in class. The value of count may

be 9, 10 or 11, depending on the order of execution of the machine instructions of count++

and count--.

int count = 10; // shared variable

Process 1 Process 2

count++; count--;

The following execution sequence shows a race condition. Two processes run concurrently (con-

dition 1). Both processes access the shared variable count concurrently (condition 2) because

count is accessed in an interleaved way. Finally, the computation result depends on the order of

execution of the SAVE instructions (condition 3). The execution sequence below shows the result

being 9; however, switching the two SAVE instructions yields 11. Since all conditions are met,

we have a race condition. Note that you have to provide TWO execution sequences, one for

each possible result, to justify the existence of a race condition.

Thread_1 Thread_2 Comment

do somthing do somthing count = 10 initially

LOAD count Thread_1 executes count++

ADD #1

LOAD count Thread_2 executes count--

SUB #1

SAVE count count is 11 in memory

SAVE count Now, count is 9 in memory

Stating that “count++ followed by count--” or “count-- followed by count++” produces

different results and hence a race condition is at least incomplete, because the two processes do

not access the shared variable count concurrently. Note that the use of higher-level language

statement interleaved execution may not reveal the key concept of “sharing” as discussed in

class. Therefore, use instruction level interleaved instead.

See pp. 5–10 of 05-Sync-Basics.pdf.

CS3331 Concurrent Computing Solution 1 – Fall 2015 4

(b) [10 points] Explain the progress and bounded waiting conditions and enumerate their differ-

ences. Note that there are two questions.

Answer:

• Progress: If no process is executing in its critical section and some processes wish to enter

their corresponding critical sections, then

– Only those processes that are waiting to enter can participate in the competition (to

enter their critical sections).

– No other processes can influence this decision.

– This decision cannot be postponed indefinitely (i.e., making a decision in finite time).

• Bounded Waiting: After a process made a request to enter its critical section and before it

is granted the permission to enter, there exists a bound on the number of times that other

processes are allowed to enter. Hence, even though a process may be blocked by other

waiting processes, it will only wait a bounded number of turns before it can enter.

The progress condition only guarantees the decision of selecting a process to enter a critical

section will not be postponed indefinitely. It does not mean a waiting process will enter its

critical section eventually. In fact, a process may wait forever because it may never be selected,

even though every decision is made in finite time.

On the other hand, the bounded waiting condition guarantees that a process will enter the

critical section after a bounded number of turns. Bounded waiting does not guarantee that

progress will be satisfied because if the decision process takes an infinite amount of time to

make none of the waiting processes can enter even though there is a bound. See pp. 16–18 of

05-Sync-Basics.pdf.

5. Problem Solving:

(a) [15 points] Consider the following two processes, A and B, to be run concurrently using a shared

memory for the int variable x.

Process A Process B

--------- ---------

for (i = 1; i <= 2; i++) x = 2*x;

x++;

Assume that load and store of x is atomic, x is initialized to 0, and x must be loaded into a

register before further computations can take place. What are all possible values of x after

both processes have terminated. Use a step-by-step execution sequence of the above processes

to show all possible results. You must provide a clear step-by-step execution of the above

algorithm with a convincing argument. Any vague and unconvincing argument receives no

points.

Answer: Obviously, the answer must be in the range of 0 and 4. It is non-negative, because

the initial value is 0 and no subtraction is used. It cannot be larger than 4, because the two x++

statements and x = 2*x together can at most double the value of x twice.

The easiest answers are 2, 3 and 4 if x = 2*x executes before, between and after the two x++

statements, respectively. The following shows the possible execution sequences.

x = 2*x is before both x++

Process 1 Process 2 x in memory

x = 2*x 0

x++ 1

x++ 2

CS3331 Concurrent Computing Solution 1 – Fall 2015 5

x = 2*x is between the two x++

Process 1 Process 2 x in memory

x++ 1

x = 2*x 2

x++ 3

x = 2*x is after both x++

Process 1 Process 2 x in memory

x++ 1

x++ 2

x = 2*x 4

The situation is a bit more complex with instruction interleaving. Process B’s x = 2*x may be

translated to the following machine instructions:

LOAD x

MUL #2

SAVE x

The LOAD retrieves the value of x, and the SAVE may change the current value of x. Therefore,

the results depend on the positions of LOAD and SAVE. The following shows the result being 0.

In this case, LOAD loads 0 before both x++ statements, and the result 0 is saved after both x++

statements.

Process 1 Process 2 x in memory Comments

LOAD x 0 Load x = 2 into register

MUL #2 0 Process 2’s register is 0

x := x + 1 1 Process 1 adds 1 to x

x := x + 1 2 Process 1 adds 1 to x

SAVE x 0 Process 2 saves 0 to x

If the SAVE executes between the two x++ statements, the result is 1.

Process 1 Process 2 x in memory Comments

LOAD x 0 Load x = 2 into register

MUL #2 0 Process 2’s register is 0

x := x + 1 1 Process 1 adds 1 to x

SAVE x 0 Process 2 saves 0 to x

x := x + 1 1 Process 1 adds 1 to x

You may try other instruction interleaving possibilities and the answers should still be in the

range of 0 and 4.

(b) [15 points] Consider the following solution to the mutual exclusion problem for two processes

P1 and P2. This solution uses two global int variables, x and y. Both x and y are initialized to

0.

CS3331 Concurrent Computing Solution 1 – Fall 2015 6

int x = 0, y = 0;

Process 1

START:

x = 1;

if (y != 0) {

repeat until (y == 0);

goto START;

}

y = 1;

if (x != 1) {

y = 0;

repeat until (x == 0);

goto START;

}

// critical section

x = y = 0;

Process 2

START: // All start from here

x = 2; // set my ID to x

if (y != 0) { // if y is non-zero

repeat until (y == 0); // wait until y = 0

goto START; // then try again

} // second section

y = 1; // set y to 1

if (x != 2) { // if x is not my ID

y = 0; // set y to 0

repeat until (x == 0); // wait until x = 0

goto START; // then try again

}

// critical section

x = y = 0; // set x and y to 0

Prove rigorously that this solution satisfies the mutual exclusion condition. You will receive zero

point if (1) you prove by example, or (2) your proof is vague and/or unconvincing.

Answer: We shall prove the mutual exclusion property by contradiction. Consider process P1

first. If P1 is in its critical section, its execution must have passed the first if statement, set y to

1, and seen x != 1 being false (i.e., x = 1 being true). Therefore, if P1 is in its critical section, x

and y must both be 1. By the same reason, if P2 is in its critical section, x and y must be 2 and 1,

respectively. Now, if P1 and P2 are both in their critical sections, x must be both 1 and 2. This is

impossible because a variable can only hold one value. As a result, the assumption that P1 and P2

are both in their critical sections cannot hold, and, the mutual exclusion condition is satisfied.

