
1 

Part IV 

Other Systems: III 
Pthreads: A Brief Review 

Fall 2015 

An algorithm must be seen to be believed. 

 

Donald Erwin Knuth 



2 

The POSIX Standard: 1/2 

 POSIX (Portable Operating System 

Interfaces) is a family of standards for 

maintaining compatibility between 

operating systems. 

 POSIX is a Unix-like operating system 

environment and is currently available on 

Unix/Linux, Windows, OS/2 and DOS. 



3 

The POSIX Standard: 2/2 

 Pthreads (POSIX Threads) is a POSIX 

standard for threads. 

 The standard, POSIX.1c thread extension, 

defines thread creation and manipulation. 

 This standard defines thread management,  

mutexes, conditions, read/write locks, 

barriers, etc. 

 Except for the monitors, all features are 

available in Pthreads. 



4 

Thread Creation 

 Always includes the pthread.h header file. 

 

 

 

 pthread_create() creates a thread and runs 

function start() with argument list arg. 

 attr specifies optional creation attributes. 

 The ID of the newly created thread is returned 

with tid. 

 Non-zero return value means creation failure. 

int pthread_create( 

     pthread_t             *tid, 

     const pthread_attr_t  *attr, 

     void                  *(*start)(void *), 

     void                  *arg);  



5 

Thread Join 

 Use pthread_join() to join with a thread. 

 The following waits for thread to complete, and 

returns thread’s exit value if value_ptr is not 

NULL.  Use NULL if you don’t use exit value. 

 Join failed if pthread_join() returns a non-

zero value. 

 

 

 

int pthread_join( 

     pthread_t  thread, 

     void       **value_ptr);  



6 

Thread Exit 

 Use pthread_exit() to terminate a thread and 

return the value value_ptr to any joining thread. 

 Exit failed if pthread_exit() returns a non-

zero value. 

 Use NULL for value_ptr if you don’t use exit 

value. 

 

 

 

 

int pthread_exit( 

     pthread_t  thread, 

     void       *value_ptr);  



7 

Mutex: 1/2 

 A mutex has a type pthread_mutex_t. 

 Mutexes initially are unlocked. 

 Only the owner can unlock a mutex. 

 Since mutexes cannot be copied, use pointers. 

 Use pthread_mutex_destroy() to destroy a 

mutex.  Make sure no thread is blocked inside. 

 

 

 

pthread_mutex_t   mutex = PTHREAD_MUTEX_INITIALIZER; 

 

int pthread_mutex_init( 

     pthread_mutex_t      *mutex, 

     pthread_mutexattr_t  *attr);  

int pthread_mutex_destroy( 

     pthread_mutex_t      *mutex); 



8 

Mutex: 2/2 

 If pthread_mutex_trylock() returns EBUSY, 

the lock is already locked.  Otherwise, the calling 

thread becomes the owner of this lock. 

 With pthread_mutexattr_settype(),  the 

type of a mutex can be set to allow recursive locking 

or report deadlock if the owner locks again. 

 

 

int pthread_mutex_lock( 

     pthread_mutex_t      *mutex); 

int pthread_mutex_unlock( 

     pthread_mutex_t      *mutex); 

int pthread_mutex_trylock( 

     pthread_mutex_t      *mutex); 



9 

Condition Variables: 1/2 

 Conditions in Pthreads are usually used with a 

mutex to enforce mutual exclusion. 

 

 

 

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;  

 

int pthread_cond_init( 

     pthread_cond_t            *cond, 

     const pthread_condattr_t  *attr); 

int pthread_cond_destroy( 

     pthread_cond_t            *cond); 

int pthread_cond_wait( 

     pthread_cond_t            *cond, 

     pthread_mutex_t           *mutex); 

int pthread_cond_signal( 

     pthread_cond_t            *cond); 

int pthread_cond_broadcast( 

     pthread_cond_t            *cond); 



10 

Condition Variables: 2/2 

 pthread_cond_wait() and 

pthread_cond_signal() are the wait() 

and signal() methods in ThreadMentor, 

and are wait() and notify() in Java. 

 pthread_cond_signal() uses Mesa type and 

the released thread must recheck the condition. 

 

 

 

 

int pthread_cond_wait( 

     pthread_cond_t            *cond, 

     pthread_mutex_t           *mutex); 

int pthread_cond_signal( 

     pthread_cond_t            *cond); 

int pthread_cond_broadcast( 

     pthread_cond_t            *cond); 



11 

Simulating a Mesa Monitor: 1/2 

 Use a mutex for protecting the monitor. 

 Lock and unlock this mutex upon entering and 

exiting the monitor. 

 When a thread calls a condition wait, it 

relinquishes the monitor mutex.  Once blocked, the 

monitor mutex becomes available to other threads. 

 The released thread (from a condition wait) 

becomes the new owner of the monitor mutex.  



12 

Simulating a Mesa Monitor: 2/2 
pthread_mutex_t MonitorLock = PTHREAD_MUTEX_INITIALIZER; 

Pthread_cond_t  cond = PTHREAD_COND_INITIALIZER; 

 

pthread_mutex_lock(&MonitorLock); // enter the monitor 

   // other statements 

   while (condition is not met)       // this is a Mesa type  

      pthread_cond_wait(&cond, &MonitorLock); 

   // other statements 

pthread_mutex_unlock(&MonitorLock);  // exit monitor 

 

pthread_mutex_lock(&MonitorLock); // enter the monitor 

   // other statements 

   // cause condition to happen 

   pthread_cond_signal(&cond); 

   // other statements 

pthread_mutex_unlock(&MonitorLock);  // exit monitor 

monitor procedure 

monitor procedure 



13 

Simulating a Hoare Monitor 

 Simulating a Hoare type monitor requires the use 

of general semaphores. 

 The Pthreads standard does not have semaphores.  

Instead, POSIX.1b standard has the Unix 

semaphores. 

 With POSIX.1b semaphores, it is easy to simulate 

a Hoare type monitor.  Many OS textbooks discuss 

such a simulation.  Also see our reading lists for 

such a solution. 



14 

Languages vs. Libraries: 1/2 

 Libraries are extension to a sequential language. 

 Programmers may try various approaches that fit 

his/her needs.  Programs can be deployed without 

requiring any changes in the tools (e.g., compiler). 

 Libraries may not be well-defined and completely 

portable.  Some features may be difficult to define 

and/or implement (e.g.,  Hoare type monitors). 

 Programs may be difficult to understand because 

API function calls can scatter everywhere and 

sometimes cryptic. 

 

 



15 

Languages vs. Libraries: 2/2 

 With the language-based approach, the intent of 

the programmer is easier to express and 

understand, both by other programmers and by 

program analysis tools. 

 Languages usually require the standardization of 

new constructs and perhaps new keywords. 

 Language features are fixed.  Each language may 

only support one or a few concurrent 

programming models, and may not be very flexible. 

 

 

 



16 

The End 


