
1

Part IV

Other Systems: III
Pthreads: A Brief Review

Fall 2015

An algorithm must be seen to be believed.

Donald Erwin Knuth

2

The POSIX Standard: 1/2

 POSIX (Portable Operating System

Interfaces) is a family of standards for

maintaining compatibility between

operating systems.

 POSIX is a Unix-like operating system

environment and is currently available on

Unix/Linux, Windows, OS/2 and DOS.

3

The POSIX Standard: 2/2

 Pthreads (POSIX Threads) is a POSIX

standard for threads.

 The standard, POSIX.1c thread extension,

defines thread creation and manipulation.

 This standard defines thread management,

mutexes, conditions, read/write locks,

barriers, etc.

 Except for the monitors, all features are

available in Pthreads.

4

Thread Creation

 Always includes the pthread.h header file.

 pthread_create() creates a thread and runs

function start() with argument list arg.

 attr specifies optional creation attributes.

 The ID of the newly created thread is returned

with tid.

 Non-zero return value means creation failure.

int pthread_create(

 pthread_t *tid,

 const pthread_attr_t *attr,

 void *(*start)(void *),

 void *arg);

5

Thread Join

 Use pthread_join() to join with a thread.

 The following waits for thread to complete, and

returns thread’s exit value if value_ptr is not

NULL. Use NULL if you don’t use exit value.

 Join failed if pthread_join() returns a non-

zero value.

int pthread_join(

 pthread_t thread,

 void **value_ptr);

6

Thread Exit

 Use pthread_exit() to terminate a thread and

return the value value_ptr to any joining thread.

 Exit failed if pthread_exit() returns a non-

zero value.

 Use NULL for value_ptr if you don’t use exit

value.

int pthread_exit(

 pthread_t thread,

 void *value_ptr);

7

Mutex: 1/2

 A mutex has a type pthread_mutex_t.

 Mutexes initially are unlocked.

 Only the owner can unlock a mutex.

 Since mutexes cannot be copied, use pointers.

 Use pthread_mutex_destroy() to destroy a

mutex. Make sure no thread is blocked inside.

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_init(

 pthread_mutex_t *mutex,

 pthread_mutexattr_t *attr);

int pthread_mutex_destroy(

 pthread_mutex_t *mutex);

8

Mutex: 2/2

 If pthread_mutex_trylock() returns EBUSY,

the lock is already locked. Otherwise, the calling

thread becomes the owner of this lock.

 With pthread_mutexattr_settype(), the

type of a mutex can be set to allow recursive locking

or report deadlock if the owner locks again.

int pthread_mutex_lock(

 pthread_mutex_t *mutex);

int pthread_mutex_unlock(

 pthread_mutex_t *mutex);

int pthread_mutex_trylock(

 pthread_mutex_t *mutex);

9

Condition Variables: 1/2

 Conditions in Pthreads are usually used with a

mutex to enforce mutual exclusion.

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(

 pthread_cond_t *cond,

 const pthread_condattr_t *attr);

int pthread_cond_destroy(

 pthread_cond_t *cond);

int pthread_cond_wait(

 pthread_cond_t *cond,

 pthread_mutex_t *mutex);

int pthread_cond_signal(

 pthread_cond_t *cond);

int pthread_cond_broadcast(

 pthread_cond_t *cond);

10

Condition Variables: 2/2

 pthread_cond_wait() and

pthread_cond_signal() are the wait()

and signal() methods in ThreadMentor,

and are wait() and notify() in Java.

 pthread_cond_signal() uses Mesa type and

the released thread must recheck the condition.

int pthread_cond_wait(

 pthread_cond_t *cond,

 pthread_mutex_t *mutex);

int pthread_cond_signal(

 pthread_cond_t *cond);

int pthread_cond_broadcast(

 pthread_cond_t *cond);

11

Simulating a Mesa Monitor: 1/2

 Use a mutex for protecting the monitor.

 Lock and unlock this mutex upon entering and

exiting the monitor.

 When a thread calls a condition wait, it

relinquishes the monitor mutex. Once blocked, the

monitor mutex becomes available to other threads.

 The released thread (from a condition wait)

becomes the new owner of the monitor mutex.

12

Simulating a Mesa Monitor: 2/2
pthread_mutex_t MonitorLock = PTHREAD_MUTEX_INITIALIZER;

Pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&MonitorLock); // enter the monitor

 // other statements

 while (condition is not met) // this is a Mesa type

 pthread_cond_wait(&cond, &MonitorLock);

 // other statements

pthread_mutex_unlock(&MonitorLock); // exit monitor

pthread_mutex_lock(&MonitorLock); // enter the monitor

 // other statements

 // cause condition to happen

 pthread_cond_signal(&cond);

 // other statements

pthread_mutex_unlock(&MonitorLock); // exit monitor

monitor procedure

monitor procedure

13

Simulating a Hoare Monitor

 Simulating a Hoare type monitor requires the use

of general semaphores.

 The Pthreads standard does not have semaphores.

Instead, POSIX.1b standard has the Unix

semaphores.

 With POSIX.1b semaphores, it is easy to simulate

a Hoare type monitor. Many OS textbooks discuss

such a simulation. Also see our reading lists for

such a solution.

14

Languages vs. Libraries: 1/2

 Libraries are extension to a sequential language.

 Programmers may try various approaches that fit

his/her needs. Programs can be deployed without

requiring any changes in the tools (e.g., compiler).

 Libraries may not be well-defined and completely

portable. Some features may be difficult to define

and/or implement (e.g., Hoare type monitors).

 Programs may be difficult to understand because

API function calls can scatter everywhere and

sometimes cryptic.

15

Languages vs. Libraries: 2/2

 With the language-based approach, the intent of

the programmer is easier to express and

understand, both by other programmers and by

program analysis tools.

 Languages usually require the standardization of

new constructs and perhaps new keywords.

 Language features are fixed. Each language may

only support one or a few concurrent

programming models, and may not be very flexible.

16

The End

