An Analysis of Two In-Place Array
Rotation Algorithms

CHING-KUANG SHENE

Department of Computer Science, Michigan Technological University, Houghton, M1 49931-1295, USA
Email: shene@miy edy

uses n — ged(n, A) swaps, while the second version, which uses random access iterators, uses only
n+ged(n, A) array element movements. This paper also proves the optimality of the second version.
A performance comparison is included,

Received January 20, | 997; revised January 16, 1998

1. INTRODUCTION

Rotating an array is a popular exercise of array/string
processing in CS1 and CS2 classes and it is also part of
many commonly seen libraries such as STL [1, 2]. Two
types of solutions are available, one requiring an auxiliary
array and the other being in-place. We shall present an
analysis of two in-place rotation algorithms available in the
STL distribution,

Without loss of generality, we shall assume that the array
to be rotated has n integers (0, 1,2, ... +8 — 1) and use A
to denote a rotation offset. Thus, rotating an array of six
(n = 6) elements (0,1,2,3,4,5) to the right four positions
(A = 4) yields (2, 3, 4,5,0,1). Since rotating an array of n
elements to the left n — A positions is equivalent to rotating
the same array to the right A positions, only right rotations
will be considered.

One way of measuring the complexity of a rotation
algorithm is to count the number of array element
movements, since these are the only explicitly involved
operations. An array element movement involves either
assigning a value into an array element or copying an array
element to elsewhere. For simplicity, we shall use movement
for array element movement.

A trivial in-place algorithm rotates the array to the right
one position A times. This uses (n + 1)A movements,
Another solution is using an auxiliary array. The last A
elements are saved to an auxiliary array, the remaining n— A
elements are moved right, and finally the saved A elements
are copied back from the auxiliary array to the beginning of
the given one. It uses n + A movements,

There are two in-place algorithms in the STL distribution,
It will be shown that the first STL rotation algorithm, which
uses forward iterators, uses n — ged(n, A) array element
Swaps, Note that each SWap needs three movements. The
Second STL version, which uses random access iterators, can
be derived from an analysis of permutations. We shall prove
that thjs version uses only n + gcd(n, A) movements and,

in fact, we shall also show that it is optimal. This version
is faster than the first one and theoretically it is also faster
than the one mentioned earlier which uses an auxiliary array,
Since the GCD computation may increase the computational
cost, an experimental analysis is necessary to determine its
impact.

In what follows, Section 2 provides an analysis of the
first STL version, Section 3 derives the second version
and presents a variation in which the GCD computation is
implicit, Section 4 Proves its optimality, Section 5 compares
these algorithms, and Section 6 contains our conclusion.

2. THE FIRST STL VERSION

Figure 1 is a version equivalent to the first STL rotation
algorithm in which swap () is a macro for swapping two
given elements. It is known that the number of swaps is no
more than 7 [1]. The aim of this section is to show that the
number of swaps is actually n — ged(n, A),

This algorithm is based on two types of section-swapping.
Given an array of n elements and a number < n, the first
type subdivides the array, from right to left, into ln/k) +1
sections with mod(n, k) elements in the first section and k
elements in each of the remaining sections. The second type
also subdivides the array into (n/k) + 1 sections; however,
the second section has mod(n, k) elements while each of the
remaining sections has k elements,

The first type of section-swapping, working from right to
left, swaps two adjacent sections until the left section is the
first one. After completing this step, elements in the right-
most |n/k| — 1 sections are rotated to the right k positions
and the original rotation problem is reduced to rotating
the new array of the first two sections (of k + mod(n, k)
elements) to the right k positions, or equivalently to the left
mod(n, k) positions.

The second type of section-swapping, also working from
right to left, Swaps sections with the first one until the second
section is reached, After completing this step, the original

THE COMPUTER JOURNAL, Vol. 40, No.9, 1997

542 C. -K. SHENE
void rotate(char a[], int size, int offset)
{
int left, middle, right;
right = size - 1;
left = middle = right - offset;
for (;:) {
SWAP(a[left], alrightl]);
left--;
right--;
if (right == middle) {
if (left < 0)
return;
middle = left;
}
else
if (left < 0)
left = middle;
}
)

FIGURE 1. The first STL rotation algorithm: STL,.

first section is moved to the end, the original third section
is moved to the first, and all other sections, except for the
second one which is fixed, are moved to the left one section.
As a result, except for the k¥ + mod(n, k) clements in the
first two sections, all other elements are rotated to the left k
positions. Thus, the problem is reduced to rotating the array
of the first two sections to the right mod(n, k) positions and
this can be handled by the first type.

The algorithm in Figure 1, beginning with the first type,
alternately uses these two types to rotate the array. Let [n, k};
denote the type i (i = 1 or 2) section-swapping of array size
n and section size k. For convenience, we shall use a e b to
denote mod(a, b). Note that (a + b) ¢ b = a e b. Then, the
rotation process can be described as follows:

[n.ALy, = [A+neA,neA],
= [neA+Ae(neA),Ae(neA)]
= [Ae(neA)+(neA)e(Ae(neA)),
(neA)e(Ae(ne Al

= [n],kI]i

This process will continue until n; e k; = 0. In this case,
bothright == middleand left < O are true and the
function returns.

The section sizes in the above sequence are n, A, n e A,
Ae(neA), (neA)e(Ae(neA)) and so on, where n is added
for convenience. It is not difficult to see that the ith term is
the remainder of dividing the (i — 2)th term by the (i — 1)th
term. This is exactly the Buclidean division algorithm for
computing the GCD: gcd(a, b) = gcd(b,aeb) ifaeb # 0;
otherwise, gcd(a, b) = b. Therefore, if n; is a multiple of
k; in the above sequence, k; = ged(n, A).

Note that each decrement of variable right corresponds
to exactly one swap. Since the un-rotated sections are always
the left-most two and since the last iteration has section size
ged(n, A), variable right stops at location gcd(n, A) and
the value of 1left is less than zero. Hence, the number of
swaps is n — gcd(n, A). In summary, we have the following
proposition.

PROPOSITION 2.1. The STL rotation algorithm using
forward iterators uses n—gcd(n, A) swaps to rotate an array
of n elements to the right A positions.

3. THE SECOND STL VERSION

In this section, we shall derive the second STL rotation
algorithm (Subsection 3.1) and prove that it uses n +
ged(n, A) movements and one extra memory location. This
algorithm computes gcd(n, A) as a preprocessing step. A
variation which does not compute gcd(n, A) explicitly is
presented in Subsection 3.2.

3.1. Deriving the algorithm

For convenience, we shall use Z,, the additive group with
modular arithmetic, as the domain of a rotation throughout
this section. A rotation can be considered as a one-to-
one function f : Z, + Z, such that, for any i € Z,,
f(@) is equal to (i 4+ A) modulo n (ie. f(i) = i +
A (modulo n)). Thus, a rotation is a special permutation
on Z,, Since every permutation can be decomposed into
disjoint cycles [3], a rotation can also be decomposed into
disjoint and shorter rotations, and our problem is reduced to
finding these disjoint cycles.

Consider an arbitrary element i € Z,. Starting with i, it
is mapped to f(i), f(i) is mapped to f(f(i)) = f2(i) and

THE COMPUTER JOURNAL, Vol. 40, No.9,

1997

B

e

-

SO 01
i
at a

i =

exist:
kA =
of be
that
multi
k=i
n/ge
n/gc
ged(r
fact.

LE
decor

n/ge

Ex
right
ged(§
show

Af
disjoi
findin
remai
The fi

ANALYSIS OF TWO IN-PLACE ARRAY ROTATION ALGORITHMS 543

void Rotate(char a[], int size, int offset)

{

int Cycles, Moves, From, To, i;

char Save;

Cycles = GCD(size, offset);
Moves = size / Cycles;
for (i = 0; i < Cycles; i++) {

To = i;

Save = a[To];

From = To - offset + size;

for (int j =
a[To] =

1; j < Moves; j++) {
a[From];
To = From;

From -= offset;
if (From < 0) From += size;

)

a[To] = Save;

FIGURE 2. The second STL rotation algorithm: STL,.

so on. Since Z, is finite, the sequence i = f9(), f(i),
F%(@i), ..., cannot be of infinite length and must repeat itself
at a certain point. Let k be the minimum value such that
i = f*() holds. Then, i = i + kA (modulo n) and there
exists p > O such that i + kA = pn + i holds. Therefore,
kA = pn, which is independent of i. Since kA is a multiple
of both A and n and since k is the smallest value such
that kA = pn holds, kA is the LCM (i.e. least common
multiple) of A and 5. Since lem(n, A) = nA /gcd(n, A),
k = n/gcd(n, A). Therefore, starting with i, it always takes
n/ged(n, A) steps to return to i, This is a cycle of length
n/ged(n, A). Since there are n elements in Z,, there are
ged(n, A) cycles. The following lemma summarizes this
fact.

LEMMA 3.1. Cycle length. Any rotation on Z, can be
decomposed into ged(n, A) disjoint cycles each of which has
n/ged(n, A) elements.

EXAMPLE 1. Consider rotating (0, 1,2, 3, ... » 1) to the
right six positions. This rotation can be decomposed into
gcd(8, 6) = 2 cycles each of which has 8/2 = 4 elements as
shown below.

01234567)._
6 7012345)
0246 1357
6 02 4 7135

After knowing that a rotation can be decomposed into
disjoint cycles, we shall next find these cycles. Fortunately,
finding one element for each cycle is enough, since the
remaining ones can be generated from this ‘representative’.
The following lemma shows that elements in the range of 0

and ged(n, A) — 1 belong to different cycles.

LEMMA 3.2. Representative elements. Let i and J betwo
distinct integers in the range of 0 and ged(n, A) — 1. Then,
i and j belong to different cycles.

Proof. If i and j belong to the same cycle, then j = i +
kA (modulo n) holds for some k > 0. Thus, i + kA =
pn + j holds for some p > 0. Ifi > J» we have
0<i—j=pn—kA < gcd(n, A). Dividing this expression
by ged(n, A) yields the following:

¥ i—-j _ n A K <
= god(n, A) ~ ged(n, &) T ged(n, A)

Since both n/gcd(n, A) and A/ged(n, A) are integers, the
above must be identical to zero, and i — J = 0 holds. This
is a contradiction and hence i and j cannot be members of
the same cycle. The same argument works for the case of
j>i. O

Therefore, the ith cycle contains and can be generated by
i, where 0 < i < ged(n, A). Example 1 has two cycles
generated by 0 and 1. Since these cycles are disjoint, they
can be rotated separately. Since one temporary location is
needed to complete a rotation, rotating a cycle of length k
uses k + 1 movements, Since there are ged(n, A) cycles,
each of which has n/ged(n, A) elements, the total number
of movements is n + ged(n, A).

1.

REMARK 1. There is an interesting and different deriva-
tion of this algorithm. Consider the cyclic subgroup H
generated by A € Z,. It can be shown with the technique
in Lemma 3.1 that H is of order n/ged(n, A). Hence,
by the Counting Lemma [3], the number of co-sets with
respect to H is gcd(n, A) and each co-set is of order
n/ged(n, A). The co-set of i € Z, contains elements of

THE COMPUTER JOURNAL, Vol. 40, No.9, 1997

544 C. -K. SHENE

form i + pA (modulo n), where 0 < P < n/ged(n, A).
By Lemma 3.1, these elements are all distinct and form
a cycle, and by Lemma 3.2, 0, 1,..., ged(n, A) — 1 are
‘representatives’ in different co-sets. Therefore, each co-set
(and H itself) is a cycle.

Figure 2 is an algorithm based on the above idea, where
variables size, of fset, Cycles and Moves correspond
to n, A, ged(n, A) and n/ged(n, A). Each iteration of the
outer for handles one cycle and the inner for rotates that
cycle.

3.2. A variation

Recall that elements 0,1,..., gcd(n, A) — 1 belong to
different cycles (Lemma 3.2). As a result, the minimum of
all values that From can take is gcd(n, A). Therefore, a
new variable Bound is used and is updated when From <
Bound holds. Variable Start, with initial value zero, is
the ‘representative’ of the current cycle and is always less
than Bound. Figure 3 is an algorithm based on this idea.
The i£ part is equivalent to the inner for loop in Figure 2.
If the new value of From is not equal to the value of Start,
rotation of the current cycle has not yet been completed;
otherwise, the else part starts a new cycle.

4. OPTIMALITY

This section proves that every algorithm that rotates an array
of n elements to the right A positions with one extra memory
location performs no less than n + ged(n, A) movements,
Thus, the algorithm presented in Subsection 3.1 is optimal.
In the following, for each rotation algorithm, we construct
an associated graph whose edges represent the movements
of array elements. Then, we shall show that of all these
associated graphs, the one with minimum number of edges
consists of a set of gcd(n, A) disjoint cycles each of which
has n/gcd(n, A) vertices. The existence of such a rotation
algorithm is obvious, since the associated graph of the
algorithm in Subsection 3.1 satisfies this condition.

Let A be an algorithm that rotates V = ©,1,2,...,n-1)
to the right A positions. The associated graphof 4, G4 =
(V, E), is constructed as follows. The set of vertices is
V. If A moves i to j, or if A moves an element itoa
temporary location and then moves it to J» a directed edge
from i to j is added to the edge set E. Therefore, the
number of movements is equal to or larger than | E|. We shall
assume that there are no loops (i.e. directed edges whose
starting and ending vertices are identical). This assumption
is reasonable because such movements are redundant in any
algorithm. Note that G A is not simple, since there may
be more than one edge of the same direction between two
vertices. This construction establishes a mapping from the
set of all rotation algorithms that rotate 0,1,2,...,n-1)
to the right A positions to the set of their associated graphs.
However, this mapping is not one-to-one, since two or more
algorithms may have the same associated graph.

The following are important properties of an associated
graph,

LEMMA 4.1. Let G4 be the associated graph of an
algorithm A. Let in(v) and out(v) be the in-degree and out-
degree of vertex v € V. Then, we have

1. For every vertexv e V, in(v) = out(v) > 0 holds.

2. The minimum number of edges G 4(V, E) can have
is |E| = |V|.

3.Iif GA(V,E) has the minimum number of edges,
then in(v) = out(v) = 1 holds Jor every vertex,
and G 5(V, E) consists of ged(n, A) directed cycles of
length n/gcd(n, A).

Proof. For each location i, since the content of i is moved
to a new location and a new value is moved into i from
elsewhere, there is an edge starting at i and an edge with
i its destination. Hence, in(i) = out(i). If the in-degree
(and out-degree) of a vertex, say i, is zero, then algorithm .4
never moves anything into (and out from) i. This can only
happen when A = 0. Thus, Property (1) holds,

Since 2|E| = Y, ., (in(v) + out(v)), from Property (1),
2|E| 2 3 ,ey(1+ 1) =2|V] and |E| = |V|. Therefore, the
minimum value of | E| is |V | and Property (2) holds.

The first part of Property (3) is easy to prove. If there is a
vertex p with in(p) = out(p) = 1 + k, where k > 0, then
2|E| = (in(p) + out(p)) + 2vev—(p)in(v) + out(v)) =
20+ k) +2(IV) = 1) = 2(k + IV]) > 2|V|, which is a
contradiction.

Letp>g— ... be a path with maximum length.
Since in(p) = out(p) = 1, there must be an edge x — p.
If x # r, then we have two cases to consider. First, if x is
not a vertex on the path, then the path length is extended by
one, causing a contradiction. Second, if x is a vertex on the
path, then the out-degree of x becomes 2, violating the first
part. Therefore, x must be r and we have a directed cycle.
Note that since in(v) = out(v) = 1 holds for every vertex,
this cycle can be removed from G A(V, E). Repeating this
process, G 4(V, E) will eventually be decomposed into a set
of disjoint directed cycles.

If i is an arbitrary vertex of a cycle, its content is moved
toi + A (modulo 7). By Lemma 3.1, the length of this cycle
is n/ged(n, A) and there are ged(n, A) cycles.

]

Since the algorithm presented in Section 3 can be
decomposed into disjoint directed cycles, the existence of
an algorithm whose associated graph satisfies Property (3)
is obvious. Therefore, the minimum number of edges is
achievable and we have the following theorem,

THEOREM 4.1, Optimality. Since rotating a cycle uses
one temporary location, the minimum number of movements
performed by an algorithm that rotates ©12,...,n-1
to the right A positions is n + ged(n, A).

5. AN EXPERIMENTAL ANALYSIS

Since the number of movements might not completely reflect
the time complexity of an algorithm due to the fact that
there are other supporting computations, we shall look at the
actual running time data in this section. Four algorithms are

THE COMPUTER JOURNAL, Vol.40, No. 9, 1997

R s il g b

—————

e e

compa
iterato
using 1
for cor
STL, i
the alg
algoritt
perforn
200 Mi
compili

51. A

In this ;
ged(n, .
data wit
input siz
and n/2
called 1t
Althoug
two posi
STL,.
Figure
that Spa
except fc
only use
if A =
A =n/
the cost
high. E:
followed
Therefore
not wortt

e

ANALYSIS OF TWO IN-PLACE ARRAY ROTATION ALGORITHMS 545

void rotate(char al], int size, int offset)

= To + Dist;

if (From < Bound) Bound = From;
To = From; From -= offset;
if (From < 0) From += size;

if (Start »>= Bound) return;
To = Start; From = To + Dist;

{
int Start = 0, Bound = size;
int Dist = size - offset;
int To = Start, From
char Save = alTo];
for (;;)
if (From 1= Start) {
a[To] = a[From);
}
else {
a[To] = save;
Start++;
Save = a[To];
}
}

FIGURE 3. A variation of STL,: STL,.

compared: (1) STL,: the first STL version using forward
iterators (Figure 1), (2) STL,: the second STL version
using random access iterators and the Euclidean algorithm
for computing GCD (Figure 2), (3) STL;: a variation of
STL; in which the GCD computation is incorporated into
the algorithm body (Figure 3) and (4) Space: a simple
algorithm using an auxiliary array. The machine with which
performance data are collected is an SGI Indigo? with a
200 MHz MIPS R4400 CPU and the compiler is SGI's C
compiler with option set to -02,

5.1. A general comparison

In this general case, n and A are not relatively prime (i.e.
ged(n, A) > 1). The array to be rotated contains character
data with n = 5000, 10,000, 15,000 and 20,000, For each
input size n, the offset values are n/10,2n/10, 3n/10, 4n/10
and n/2. For each pair of n and A, the rotation function is
called 10,000 times and the user time of one call is recorded.
Although there are other methods for computing the GCD of
WO positive integers [4], the Euclidean algorithm is used in
STL,.

Figure 4 shows the timing data of n = 20,000, It is clear
that Space is uniformly faster than all three other algorithms
except for A = n/2 in the STL, case. This is because STL,
only uses n — ged(n, A) = n/2 swaps (1.5n movements)
if A = n/2 (Section 2). On the other hand, the case of
A = n/2 is the slowest for STL,. This is perhaps because
the cost of initializing the inner for loop n/2 times is
high, Except for this extreme case, Space is the fastest,
followed by STL,, then STL; and STL; is the slowest.
Therefore, making the GCD computation implicit is perhaps
fot worth it, since the cost of supporting computations is

FIGURE 4. Timing data of the general case,

too high. Note that STL,’s timing increases very slowly as
A increases. Perhaps some other optimization techniques
could be used to accelerate STL,.

REMARK 2. It is well-known that the Euclidean algorithm
iterates O(log, n) times to compute the GCD of n and
A [4]. Each iteration uses one division. On the other
hand, in STL,, the computation of GCD is incorporated
into the algorithm with the help of variable Bound, which
is maintained n times, Thus, Figure 4 shows that the cost
of maintaining Bound n times is larger than the cost of
performing O(log, n) divisions. Note that it is not clear
whether STL; is the best way of incorporating GCD into
STL,.

THE COMPUTER J OURNAL, Vol.40, No. 9, 1997

|

546 C. -K. SHENE

02

0.16
0.141
NI el
0.121 \
//J/Xf STL2
0.1 &

FIGURE 5. Timing data of the relatively prime case.

5.2. The relatively prime case

In this section, we shall study the effect of n and A being
relatively prime. We shall use n = 20,000 and A = 997,
1997, 2997, ..., 9997. Thus, n and A are relatively prime.

Figure 5 contains the timing data of the relatively prime
case. Since Space always uses n + A movements and STL,
only needs n + 1, although Space is faster than STL, when
A is small, it becomes slower when A is close to n/2 and is
much slower when A 2 n/2. STL, is always slower than
both Space and STL,. Note that there seems a constant gap
between STL, and STL3, which may be interpreted as the
extra cost for computing the GCD implicitly. This gap can
be characterized with a simple regression model:

Dependent var. Constant Offset/1000 R?
STL;-STL, 0.051569 0.000706 0.59
(0.0002)*

*Standard error of coefficient,

Thus, the average of these gaps is 0.051569 and, as
offset increases, this gap increases very slowly at a rate of
0.000706/1000. Note that this rate is significant even though
its value is very small. Asa result, the extra cost of implicitly
computing the GCD is significantly higher than computing
it explicitly as a preprocessing step.

6. CONCLUSION

In this paper, we have presented a complexity analysis
of two STL rotation algorithms and proved that the one
using random access iterators is optimal. Theoretically,
this optimal algorithm is the fastest, Practically, it also
compares favourably against other algorithms, including the
one requiring an auxiliary array. Performance data indicate
that this could be the fastest in-place rotation algorithm for
larger size,

ACKNOWLEDGEMENTS

This work was partially supported by the National Science
Foundation under grant CCR-9696084 (formerly CCR-
9410707) and grant DUE-9653244, The author thanks the
anonymous referees for suggesting the ideas in Remark 1
and Remark 2,

REFERENCES

(1] Musser, D, R. and Saini, A. (1996) STL Tutorial and
Reference Guide. Addison-Wesley, Reading, MA,

[2] Stepanov, A. A. and Lee, M. (1995) The Standard Template
Library. Technical Report HPL-94-34, April 1994, revised
July 7, 1995,

[3] Artin, M. (1991) Algebra, Prentice-Hall, Upper Saddle River,
NIJ.

{4] Bach, E. and Shallit, J. (1996) Algorithmic Number Theory:
Volume 1, Efficiens Algorithms. MIT Press, Massachusetts,
MA,

THE COMPUTER JOURNAL, Vol 40, No.9, 1997

e

ety oty

1. IN

Cluster;
partitio]
clusters
data in
of cons!
(K)are:
well for
when ap
other ha
for large
smaller s
Cluste
the selec
the numt
the choic
the last s
(clusters)
as vector
resource ¢
The data s
but the ai;
clusters sg
Many o
the case w
out. For ex
applied to
The cluster
to any suit:
the researc]
have also b
stochastic ¢
for which ¢
clustering s

————
—————

