
GEOMETRIC COMPUTING IN THE UNDERGRADUATE
COMPUTER SCIENCE CURRICULA

John L. Lowther and Ching-Kuang Shene
Department of Computer Science

Michigan Technological University
Houghton, MI 49931-1295

(john|shene)@mtu.edu

Abstract

 Geometric computing is a rapidly evolving interdisciplinary field involving computer science, engineering and
mathematics. It has relationships to many other areas within computer science such as computational geometry,
computer-aided design, computer graphics, computer vision, geometric/solid modeling, robotics, and visualization. Due
to its interdisciplinary nature, geometric computing also serves as a vehicle for engineering students to approach
important topics in manufacturing processes (e.g., NC-machining, molding, and milling), geometric design/modeling
(e.g., feature-based design and constraint solving), and computational metrology (e.g., sampling strategy and tolerancing
design). Unfortunately, in a typical computer science curriculum, computing with geometry is virtually missing in spite
of its tremendous impact to computer science and the other fields mentioned above and its importance to increase
students' employability.

 This paper investigates this issue and suggests a possible remedy by designing an elementary and interdisciplinary
intermediate level geometric computing course. The rationale, goals and objectives, and the impact and significance
of the proposed course are discussed. A review of previous work, including textbooks, software systems, and other
media materials, is included. Finally, after presenting the merit of designing this course, this paper proposes a sample
ten-week syllabus with software modules for lab use.

1. INTRODUCTION

 Geometric computing is a rapidly evolving interdisciplinary field involving computer science,
engineering and mathematics. It has relationships to many other areas within computer science such
as computational geometry, computer-aided design, computer graphics, computer vision,
geometric/solid modeling, robotics, and visualization. Due to its interdisciplinary nature, geometric
computing also serves as a vehicle for engineering students to approach important topics in
geometric and mechanical design, manufacturing processes (e.g., NC-machining, molding, milling,
cutting, stereolithography, and photochemical machining), geometric design/modeling (e.g.,
feature-based design and constraint solving), and computational metrology (e.g., sampling strategy,
tolerance checking and statistical tolerancing). Since geometric computing deals with geometric
objects, geometry and topology have already provided a solid foundation and many techniques.

 Unfortunately, in a typical computer science curriculum, computing with geometry is virtually
missing in spite of its tremendous impact to computer science and the other fields mentioned above
and its importance to increase students' employability. In this paper, we shall investigate this issue
and suggest a possible remedy by designing an intermediate level interdisciplinary geometric
computing course that addresses this problem. We shall consider software support for this course
as well.

1 Allen B. Tucker (editor), Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum
Task Force, ACM Press, New York, 1991.

2 Juris Hartmanis and Herbert Lin (editors), Computing in the Future: A Broader Agenda for Computer
Science and Engineering, National Academy Press, Washington, D.C., 1992.

 In this paper, Section 2 discusses the rationale of introducing such a course. Section 3 presents
the course's goals and objectives. Section 4 addresses its potential impact and significance. Then,
Section 5 reviews existing work that is related to our work, including textbooks, software systems
and other media materials. This is followed by a discussion of our course design in Section 6,
including the merit of our design (Section 6.1), a brief sample of a ten-week course syllabus (Section
6.2) and possible software modules for lab use (Section 6.3). Finally, Section 7 has our conclusion.

2. RATIONALE

 A geometric computing course is important to computer science and should have a position in
computer science curricula. The following sections will focus on several issues, namely:
recommendations by renown computer scientists on adding continuous computation back to
computer science curricula (Section 2.1); the fundamental role geometric computing plays in the new
emerging manufacturing technology and which has been identified as vital to this country in order
to regain the competitiveness in the global economy (Section 2.2); the opportunity a geometric
computing course provides for consolidating many existing but scattered materials in a coherent way
(Section 2.3); and, due to its interdisciplinary nature, the foundation a geometric computing course
provides to students in many departments/disciplines (Section 2.4).

2.1 Recommendations from National Research Council

 Over the past decades, computer science curricula have been changed emphasizing their discrete
nature. Non-discrete topics have been gradually shifted to other disciplines. The ACM/IEEE
Computing Curricula1 is a good example in which only very limited hours are spent on computing
with the continuum, although it does manage to preserve some basics of symbolic and numeric
computing. This trend has also been observed by the Computer Science and Telecommunications
Board and National Research Council:2

Moreover, as discrete mathematics (e.g., logic, set theory, graph theory) has
found its way into the CS&E curriculum, continuous mathematics (e.g., calculus,
differential equations, statistics) has been slighted. This is unfortunate, because
continuous mathematics is essential in important subfields in CS&E such as
performance analysis, computational geometry, numerical analysis, and robotics.
Furthermore, continuous mathematics is the language of many scientific and
engineering fields, and an adequate understanding of continuous mathematics is
needed to approach computing applications in such areas with confidence.

2.2 Geometric Computing is a Foundation of the New Manufacturing Technologies

3 Chee Yap, Report on NSF Workshop on Manufacturing and Computational Geometry, Department of
Computer Science, New York University, January 1995.

4 Avner Friedman, James Glimm and John Lavery, The Mathematical and Computational Sciences in
Emerging Manufacturing Technologies and Management Practices, SIAM, Philadelphia, PA, 1992.

5 Forman S. Acton, REAL Computing Made REAL, Princeton University Press, 1996.

 Recent geopolitical factors have led to a shift from defense-based industries to consumer-based
production. As a result, manufacturing has been recognized as a priority for US competitiveness
in the new global economy.3 Although the computing communities are paying increasing attention
to manufacturing problems, the pace of this work is not sufficient for this country to meet the
demands. Friedman, Glimm and Lavery4 listed six emerging manufacturing technologies of which
intelligent machines and solid modeling are basic technologies that underlie other emerging
manufacturing technologies.

 Geometry is a key component of manufacturing. It enters at two distinct levels: in the design of
the manufacturing process and in the manufacturing of products. Although computer science
students might not directly participate the work of designing and manufacturing products, they will
be part of the underlying software development process.

2.3 Geometric Computing Knowledge Are Scattered in Many Courses

 Computer science curricula do have some basic elements of geometric computing scattered
throughout many courses and lacking a coherent point of view. For example, in calculus, students
would learn some curve/surface representations (e.g., parametric and implicit forms), continuity,
and curvatures. Other representations such as procedural representations (e.g., fractals) and
polyhedra only appear in a computer graphics course. An application oriented computational
geometry course may introduce to the students the way of representing and generating a polyhedron
(resp., polyline) from a surface (resp., curve) and some other tessellation techniques (e.g., Voronoi
diagrams and Delauny triangulations).

 There is a more serious problem regarding accuracy and robustness of algorithms. Except for
some introductory material or in a numerical analysis/methods course, students might never learn
what will happen when a real world object, which is usually part of the continuum, is converted to
a discrete computer representation. Students may never know the impact of finite precision to
algorithms dealing with geometric objects. As a key example, writing a program for solving a
quadratic equation that could handle extreme cases without losing significant digits might not be as
easy and as trivial as one may expect at a first glance.5

 Therefore, a coherent way must be found for organizing these missing or scattered but rarely
taught materials. A geometric computing course seems a very reasonable choice.

2.4 Bridging the Gap Among Various Departments

 Computer science focuses on the “algorithmic” or the “computational” aspects of geometric
computing, mathematics supplies the necessary foundation, and engineering disciplines offer
applications. Although different disciplines may approach the same problem with different
viewpoints, the fundamental geometric aspects are all the same. Therefore, designing an
intermediate
level geometric computing course would help students in different disciplines to consolidate
fundamental geometric knowledge and skills. For example, computer science students would learn
the way of handling geometric problems, mathematics students would know the application and
computation aspects of their geometric knowledge, and engineering students would understand the
underlying geometric nature and skills for their design and product manufacturing process.

 Rather than separated courses, a single course in which all important issues are covered, including
basic concepts, fundamental skills, computational techniques and applications in various fields,
would be more helpful and save time and effort. In such an interdisciplinary course with students
coming from various departments, cross discipline discussion will not only inject ingredients into
the course, but also generate new research problems and projects. After taking this course, equipped
with interdisciplinary knowledge of geometric computing, students will be able to handle their future
study within their home department in a more flexible and creative way.

3. GOALS AND OBJECTIVES

 The primary goal of this on-going project is to design a comprehensive and elementary geometric
computing course to address interdisciplinary issues for students in computer science, engineering
and mathematics. A secondary goal is to develop accompanying software systems for students to
visualize and to experiment various concepts in geometric computing. To achieve these goals over
the next few years, the following six-fold objectives are planned:

1. Design course material for an elementary and comprehensive course for computer science,
engineering, and mathematics students.

2. Design and implement lab programs and experiments illustrating important concepts (e.g.,
loss of significance digits, numerical instability, and robustness of computation algorithms)
and visualizing and interrogating geometric objects.

3. Initiate a cross disciplinary research/education effort to absorb other issues and application
areas to further enhance this course. Some possibilities include applications in
computer-aided design and terrain modeling in geographical information systems (GIS).

4. Design a number of interactive animation sequences showing the fundamental concepts of
geometric computing. These will include, but not be limited to, losing significant digits in
floating number computation and its impact to the robustness of geometric algorithms,
tracing a curve/surface interactively, showing the curvature, inflection, umbilic, and other
geometric characteristics of a curve/surface.

5. As a long term effort, produce several video programs so that some of the most time
consuming computation and the most complex concepts will be presented to our students as
well as educators/students in other institutions. These topics include spline curve and surface
design, knot insertions, degree reduction/elevation, and characteristics of implicit surfaces
(e.g., singularities, curvature computation, curve tracing, and surface intersection), and other

topics.
6. The ultimate goal is to design a virtual reality system for students walking into the virtual

world so that they could gain direct experience of the critical geometric and topological
concepts to further enhance their understanding of geometric computing.

4. IMPACT AND SIGNIFICANCE

 Given the current trend of 3D computer graphics and the need of geometric computing skills in
manufacturing, the addition of an intermediate interdisciplinary geometric computing course to
computer science curriculum will have an important impact. It will not only address the need of
other areas but also expand the knowledge of computer science students. As a result, the problems
and recommendations of National Research Council are addressed and computer science curricula
will be improved.

 Such a geometric computing course will improve students' understanding of the use and the
theory of computers in the non-discrete world. It would also consolidate some basic knowledge in
computer science (the algorithmic and computational aspects), mathematics (geometry and
topology), and engineering (design, manufacturing, and robotics). Although it is difficult to estimate
the number
of universities where this course might be adopted, there will be a high possibility that some
universities would shift their current course offerings by incorporating some topics from our
geometric computing course.

 The innovative part of our course's software systems involves providing to the students an
interactive environment so that they can visualize many fundamental concepts and carry out
trial-and-error experiments. There are programs available that illustrate some of these concepts;
however, these programs either address only a few issues and are not up to our expectation or have
a totally different focus (Section 5.2). High powered computer-aided design and computer aided
geometric design systems, although good for real world designers, may cost too much for an
education environment and may not permit student experimentation. Moreover, these systems in
general do not have pedagogy as their main concern. Therefore, our courseware and interactive
animation systems will be working examples to other institutions. This, in turn, will stimulate the
development of pedagogical software exploring other aspects of geometric computing.

 Although our effort may be a small step toward the right direction, its impact on adding
continuous mathematics topics to computer science curricula, promoting interdisciplinary courses,
and consolidating materials from various disciplines may be significant in the foreseeable future.

5. PREVIOUS WORK

 This section reviews previous works in three categories: namely, textbooks and course materials,
system systems, and other media materials.

5.1 Textbooks and Course Materials

6 Richard H. Bartels, John C. Beatty, and Brian A. Barsky, An Introduction to Splines for use in Computer
Graphics and Geometric Modeling, Morgan Kaufmann, 1987; Gerald Farin, Curves and Surfaces for Computer
Aided Geometric Design, third edition, Academic Press, 1993; I. D. Faux and M. J. Pratt, Computational Geometry
for Design and Manufacture, Ellis Horwood, Chichester, England, 1979; Christoph M. Hoffmann, Geometric &
Solid Modeling: An Introduction, Morgan Kaufmann, 1989; and, Michael E. Mortenson, Geometric Modeling, John
Wiley & Sons, 1985.

7 H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987 and F. P. Preparata and
M. I. Shamos, Computational Geometry: an Introduction, corrected and expanded second printing,
Springer-Verlag, 1988.

8 Wolfgang Boehm and Hartmut Prautzsch, Geometric Concepts for Geometric Design, A K Peters, 1994.

9 Eugene Fiume, An introduction to Scientific, Symbolic, and Graphical Computation, A K Peters, 1995.

10 Michael J. Laszlo, Computational Geometry and Computer Graphics in C++, Prentice Hall, 1996.

11 Joseph O'Rourke, Computational Geometry in C, Cambridge University Press, 1994.

12 Adrian Bowyer and John Woodwark, Introduction to Computing with Geometry, Information
Geometers, 1993.

13 Marc H. Brown and Robert Sedgewick, A System for Algorithm Animation, Computer Graphics, Vol.
18 (1984), No. 3 (July), pp. 177-186.

 During the past decade, there have been a number of textbooks published to address different
aspects of geometric computing.6 These are excellent senior and graduate level textbooks focusing
on specific topics (i.e., design and manufacture, CAGD, geometric or solid modeling). There are
some computational geometry textbooks as well,7 focusing on the theory/algorithmic side of
discrete geometry with an emphasis on computational complexity issues.

 The new wave of texts are more accessible than the previous ones, although they still are not up
to our expectation. Of these new textbooks, Boehm and Prautzsch8 provides a complete view of the
necessary geometric background for geometric design. Fiume9 covers both symbolic and numerical
computation; however, the geometric content which forms the fundamental part of geometric
computing is at best minimal. Laszlo10 and O'Rourke11 focus on the computational geometry.
Finally, Bowyer and Woodwark12 more or less addresses our need. To be used as a comprehensive
elementary textbook, the following two shortcomings must be addressed: (1) its focus still is too
narrow (i.e., computer-aided design related), and (2) more materials such as representations of
shapes, algorithm robustness, symbolic and algebraic computations must be added.

5.2 Software Systems

 Designing software, especially animation systems, for course work has been very popular during
the past decade. Ever since BALSA,13 there have been many important and general algorithm

14 Marc H. Brown, Zeus: A System for Algorithm Animation and Multi-View Editing, 1991 IEEE
Workshop on Visual Languages, October, 1991, pp. 4-9.

15 John T. Stasko, TANGO: A Framework and System for Algorithm Animation, IEEE Computer, Vol. 26
(1990), No. 9 (September), pp. 27-39.

16 James E. Baker, Isabel F. Cruz, Giuseppe Liotta and Roberto Tamassia, A New Model for Algorithm
Animation Over the WWW, ACM Computing Surveys, Vol. 27 (1995), No. 4 (December), pp. 568-572.

17 Blaine A. Price, Ronald M. Baecker, and Ian S. Small, A Principled Taxonomoy of Software
Visualization, Journal of Visual Languages and Computing, Vol. 4 (1993), pp. 211-266.

18 Alyn Rockwood and Peta Chambers, Interactive Curves and Surfaces: A Multimedia Tutorial on CAGD,
Morgan Kaufman, 1996.

19 University Video Communications, Films for Humanities and Sciences, and NOVA have published
many one-hour programs.

20 Geometry Center, Not Knot, Jones and Bartlett, Boston, 1991.

21 Geometry Center, Outside In, A K Peters, 1994.

animation systems, Zeus,14 XTANGO15 and POLKA/SAMBA, and Mocha16 being the best examples.
In addition to these general ones, there have been many others as reported in volumes of ACM
SIGCSE Technical Symposium on Computer Science Education. See Price et al17 for a complete list
up to 1993. Moreover, Journal of Visual Languages and Computing contains more advanced uses
of visual and animation systems, and Journal of Parallel and Distributed Computing has a special
1993 issue on visualizing parallel programs. None of these systems dealt with geometric computing.

 Systems dealing with geometric objects do exist. For example, the Geometry Center at University
of Minnesota maintains a collection of excellent geometric software packages for professional uses
or for visualizing the geometry of some interesting geometric objects rather than teaching aids for
a geometric computing course. One recent addition to the above list is Rockwood and Chamber.18

This is a Windows-based multimedia tutorial, with a special focus on Bézier/B-spline curves and
surfaces.

5.3 Other Media Materials

 There is no shortage of video programs for education purpose. Most of these programs address
one or two topics in an introductory level19 or a collection of animations illustrating certain novel
ideas (e.g., ACM SIGGRAPH has published many selections annually). The ACM Annual
Symposium on Computational Geometry video review usually includes novel animation video
programs illustrating the discrete aspects of geometric algorithms. Not Knot20 and Outside In21 are
two excellent video programs produced by Geometry Center. Although these programs would
certainly serve as a model for our work, they do not address the need of a geometric computing
course.

22 Jonathan Yen, Knotty: A B-Spline Visualization Program, Morgan Kaufmann, San Francisco, 1993.

23 David Hilbert and S. Cohn-Vossen, Geometry and the Imagination, translated from the German edition
Anschauliche Geometrie by P. Nemenyi, Chelsea, New York, 1952.

24 Roger C. Schank, Michael Korcuska and Menachen Jona, Multimedia Applications for Education and
Training: Revolution or Red Herring? ACM Computing Surveys, Vol. 27 (1995), No. 4 (December), pp. 633-635.

25 Inert knowledge is not connected to the situations in which that knowledge would be useful and so is
ultimately forgotten.

 Knotty22 is the only video program that partially addresses our need. The major contribution of
this program is a rather complete animation of important characteristics of B-spline curves. Even
though the surface part is weak, it could serve as a starting point for our course. In fact, these video
programs do not require high-end technology to produce. The thrust behind these programs is
usually careful planning, a good story board with colorful and flashy graphics, and, more
importantly, labor investment.

6. COURSE DESIGN

6.1 Design Merit

 Organizing a course on geometric computing and preparing a well-orchestrated and inspiring set
of undergraduate class room notes is a challenging task. But it is not an impossible mission. At the
turn of this century, Felix Klein wrote many short texts for German high school teachers and students
explaining to them advanced mathematical concepts. Hilbert and Cohn-Vossen published one the
best intuition based geometry lecture notes for German undergraduates, Geometry and the
Imagination,23 in which advanced geometric concepts are all treated with elementary and intuitive
geometric arguments. These great works inspired our ambition of designing an undergraduate
geometric computing course based on essentially the same principles. Modeling our lectures after
these great works would not only enforce us to rethink and to consolidate the current state-of-the-art
research, but also to embark on a new way of teaching geometric computing.

 In a recent inspiring article, Schank, Korcuska and Jona24 warned that there exists a hidden danger
in the commercial juggernaut of current-generation multimedia software. This danger is simply that
these systems often employ a “page-turning architecture,” and as a consequence students only learn
what Alfred Whitehead called “inert knowledge.”25 To address this problem, Schank et al suggested
that multimedia systems can help in four ways: (1) building goal-directed learning systems, (2)
making software failure-driven, (3) making software case-based, and (4) learning-by-doing.

 Based on the above rationale, our course will address the fundamentals of geometric computing
with an intuitive and elementary approach by emphasizing the geometric nature of the subjects and
leaving the complexity of algebraic derivations and computations to software systems. Emphasizing
the geometric nature does have its merit. Most of the algebraic derivations and computations are too
complex or too difficult to be taught in an intermediate level course. However, students could still

learn the fundamentals of geometric computing and, with the help of this basic understanding, they
can pick up the necessary derivation part in later courses easily. Even though the students may stop
after taking our course, they have already acquired enough fundamental knowledge so that they will
feel confident when facing geometric computing problems in their career.

 Through the use of the interactive animation systems, students will be able to (1) visualize the
geometry, (2) understand the impact of finite precision, (3) experiment with geometric concepts, and
(4) discover deeper and subtle properties. In particular, some topics will not be covered in class and
students are encouraged to discover their uses and properties through lab experiments. Our systems
will be designed to address all four suggestions made by Schank et al, although some are not so
obvious (e.g., how to make software failure-driven) and further research is required during the
course of software development.

6.2 Course Contents

 Our course is a 3-credit introduction to geometric computing course for sophomore and junior
students in computer science, engineering and mathematics disciplines. This course includes guest
lectures. The invited speakers are leading figures in geometric computing. A course syllabus for
a 10-week quarter follows. It can easily be made into a 15-week semester syllabus. For example,
contents for Week 5, 6, 7 and 8 can be expanded easily and robust (Week 9) and tessellations (Week
10) are also good candidates for expansion.

 The laboratory part involves the use of the software modules that are currently being designed.
Examples of these software modules are described in the next section.

 Week 1: Week 1 motivates students and introduces fundamental concepts. These include
an overview of the field and its applications, the “theme” of this course (i.e., Geometry
Representation Algebra Algorithm Program), complexity of geometric problems (i.e.,
dimensional, geometrical, and combinatorial), and computing with REALs.

 Week 2: This week reviews some geometric concepts to be used in later weeks. Topics
include coordinate systems, points, lines, and planes, simple curves and surfaces,
homogeneous coordinates, Euclidean transformations (i.e., translations, rotations, and
reflections), and affine and projective transformations.

 Week 3: Representations of geometric objects are the major topics of this week. The
wireframe model, polyhedron model, boundary representation, constructive solid geometry,
and sweeps will be covered.

 Week 4: Parametric curves and surfaces will be covered in Week 4. Major topics are
polynomial curves, rational curves, continuity (i.e., tangential, curvature and geometric), and
parameterizations (arc-length and non-uniform speed).

 Week 5: Parallel to parametric curves, Week 5 addresses parametric surface patches.
 Week 6: Part of Week 5 and Week 6 are dedicated to modern approaches of curve and

surface design. Topics include Bézier curves/surfaces, the de Casteljau algorithm, B-spline
curves/surfaces, and their important properties.

 Week 7: Week 7 focuses on implicit curves and surfaces and their properties and uses. Point
classification, level curves, tangent plane, normal, curvatures, and umbilic are example

topics.
 Week 8: Week 8 will go deeper with implicit curves/surface, covering intersection

computations, blending, offsetting, and their use in practice.
 Week 9: After learning many topics in the previous weeks, Week 9 covers robustness issues,

including problems with inaccuracy, imprecise geometric input, exact arithmetics, and robust
algorithms design.

 Week 10: Week 10 briefly covers the concept of tessellations such as grids, Voronoi
diagrams, Delauny triangulations. If time permits, quad-trees and oct-trees will also be
covered.

6.3 Software Development

 The software system accompanying this course consists of the following five components:

 MODULE-1: This module explains effect of losing significant digits and shows the impact
of finite precision arithmetic on geometric computing.

 MODULE-2: This module allows students to design and display polyhedra on the screen.
Students can move the camera position and rotate the object about any one of the three
coordinate axes.

 MODULE-3: This parametric curve tracing system allows students to trace curves freely by
varying a parameter. On the screen, the students can see the tangent vector, normal vector,
bi-normal vector (resp., the Frenet frame), curvature sphere, and inflection points. When the
students are tracing Bézier and B-spline curves, the Bernstein/spline basis and the
partition-of-unity characteristics will be shown. Students will also be able to see the effects
of arc-length and non-arc-length parameterizations.

 MODULE-4: This parametric surface tracing system permits students to see the tangent
plane, normal vector, cross-section curvature, mean and Gaussian curvatures, isoparametric
lines, umbilic points, singularities, and, if it is possible, geodesics and lines of curvatures.
Students will be tracing the (u,v) parameter in the domain. When it is used for Bézier and
B-spline surfaces, control points will be shown and allowed to be moved in order to change
the shape of the resulting surface and to design a new one. Students will be asked to use this
system to design their own favorite object, showing their understanding of the B-spline
systems.

 MODULE-5: This system is similar to the previous one, but for implicit surfaces. It will
also be able to show the structure of an implicit surface, which is more difficult than the
parametric part. An intersection curve tracing module is planned. Other operations such as
intersection and offset may be performed with raytracing systems (e.g., POV-Ray and
Radiance).

 Although students will design geometric objects and write some codes as lab experiments or
homeworks, they are not writing the whole system. In fact, all mentioned systems will either let the
students design the object directly through point-and-click technique or add their components
through dynamic linking.

 To produce video programs, pre-selected clips obtained from these modules will be saved in

digital format and later edited into several short sequences, one for each important concepts. A
sound track will be added later when the digital format is converted to the conventional analog
format on video tapes. At the beginning of this project, virtual reality will not be considered;
however, it will be considered seriously in the later part of this project after the software modules
are stabilized.

7. CONCLUSION

 In previous sections, we have presented the rationale and design of an intermediate level
introduction to geometric computing course for computer science, mathematics and engineering
students. This course will be initially offered as a special topics course in computer science in the
forthcoming Winter quarter. We have started course design and software development. A
preliminary version of our software will be tested sometime this Fall and will be made available on
the Internet to the public. Technical details of these systems will be presented elsewhere as well.

 We believe that computer science students who are equipped with the basic knowledge and skills
of geometric computing would have a better chance on the job market, especially at the time when
new manufacturing technology, computer aided design and animation software development are
entering a new era.

 Students in engineering departments usually take engineering graphics in their first year and later
computer aided design. Our course will also serve as intermediate step for these courses, especially
for those students who want to know how their CAD system creates and manipulates geometric
objects.

 In addition to computer science and engineering students, our course may be very attractive to
mathematics students as well. This course could provide a gateway for them to practice their
geometric knowledge, to understand how finite precision computers process geometric objects, and
to learn a skill in an applied and practical field for their career. With these basics in their hand, they
could proceed to a practical computer aided design course or a more theoretical and fundamental
geometric modeling course.

ACKNOWLEDGMENTS

 This work was partially supported by the National Science Foundation under grant
DUE-9653244. The second author was also partially supported by the National Science Foundation
under grant CCR-9696084, formerly CCR-9410707.

