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ABSTRACT 
 

Since detecting race conditions in a multithreaded or multiprocess 
program is an NP-hard problem, there is no efficient algorithm that can 
help detect race conditions in a program.  As such, there are no easy-to-
use pedagogical tools. Most operating systems and concurrent 
programming textbooks only provide a formal definition and some trivial 
examples. This is insufficient for students to learn how to detect race 
conditions.  This paper attempts to fill this gap by presenting a set of well-
organized examples, each of which contains one or more race conditions, 
for instructors to use in the classroom.  This set of materials has been 
classroom tested for two years and the student’s reaction has been very 
positive. 
 

 
1.  INTRODUCTION 
 

Race condition detection is an important topic in an operating systems or 
concurrent programming course [1,2,5,9-13].  Our experience shows that it is easy to 
provide students with a formal definition; but it is always difficult for students to 
pinpoint race conditions in their programs [9,10].  This is largely due to the lack of 
realistic examples and the dynamic behavior of a multithreaded or multiprocess 
program.  Worse, race conditions cannot be detected at run time because a detection 
program must monitor every memory access.  Additionally, statically detecting race 
conditions in programs that use multiple semaphores is NP-hard [7], meaning an 
efficient solution is unlikely.  If the synchronization mechanism is weaker than 
semaphores, an exact and efficient algorithm can be found [6]; otherwise, only 
heuristic algorithms that scan the source programs statically are available [3,4].  
Unfortunately, a heuristic algorithm can only find potential race conditions, meaning 
the detection program may report many race conditions that are not actually race 
conditions.  As a result, there are few pedagogical aids designed for teaching students 
about race conditions.  Since there are no reasonable algorithms and universally 
applicable techniques that can help students pinpoint race conditions, they are left 
frustrated trying to debug their programs. 
 

A race condition is defined as the situation in which multiple threads or 
processes read and write a shared data item and the final result depends on the order of 
execution.  An obvious example is updating a shared counter as follows: 
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int  count = 0; 
 
Thread_A(…)                    Thread_B(…) 
{                              { 
   ……….                           ………. 
   count++;                       count--; 
   ……….                           ………. 
}                              } 

 
Unfortunately, this example only illustrates the most obvious effect of a race 
condition.  Many race conditions that appear in student programs are subtle and very 
difficult to find.  To help students pinpoint race conditions, we have developed a 
sequence of non-trivial examples.  These examples originate from an exam problem 
that asks students to design a program that permits threads in two groups to exchange 
integer messages.  We anticipated that our students could apply what they learned in 
class (e.g., the bounded-buffer problem) to solve this problem; however, most of them 
attempted to reinvent the wheel and came up with all kinds of correct and incorrect 
solutions.  Most incorrect ones are due to race conditions. We believe that discussing 
these incorrect solutions will provide our students with an opportunity to learn more 
about pinpointing race conditions.   This set of materials has become part of our 
lecture notes in an introduction to operating systems course for two years with a very 
positive impact.  In this paper, we share these materials with other educators.  In the 
following, Section 2 provides the problem statement, Section 3 to Section 6 discuss 
four attempts in the order of increasing complexity of the “solution,” Section 7 
presents the line of thinking using the bounded-buffer problem in order to reach a 
correct solution, Section 8 polishes this solution to make it more efficient, and, finally, 
Section 9 contains our conclusion. 
 
 
2.  PROBLEM STATEMENT 
 

Suppose we have two groups of threads A and B.  Each thread in A (resp., B) 
runs a function Thread_A() (resp., Thread_B()).  Both Thread_A() and 
Thread_B() contain an infinite loop in which a thread exchanges an integer 
message with a thread in the other group.  Thus, Thread_A() and Thread_B() 
have a structure as follows: 
 

Thread_A(…)                    Thread_B(…) 
{                              { 
   while (1) {                    while (1) { 
      ……….                           ………. 
      Ex. Message;                   Ex. Message; 
      ……….                           ………. 
   }                              } 
}                              } 

 
There are two important notes.  First, once an instance A of Thread_A() makes a 
message available, A can continue only if it receives a message from an instance B of 
Thread_B() who has successfully retrieved A’s message.  Similarly, an instance B 
of Thread_B() can continue only if it receives a message from A rather than from 
any other threads in group A.  Second, once an instance A1 of Thread_A() makes 
its message available, we have to make sure that the next instance A2 of  



Thread_A(), which might come a little later, will not overwrite the existing 
message before it is retrieved by an instance of Thread_B().  
 

Each of the four attempts to be discussed below will contain an execution 
sequence that can correctly perform a message exchange.  However, since there are 
data items shared by all involved threads, a race condition occurs if we can find an 
alternative execution sequence that does not correctly exchange messages.  Moreover, 
there is no difference between the use of threads and the use of processes.  We choose 
threads because multithreaded programming is part of our operating systems course 
[9]. 
 
 
3.  FIRST ATTEMPT 
 

The idea of this attempt is quite simple: threads shake hands and exchange 
messages.  It uses two semaphores A and B, with initial values 0.  When 
Thread_A() arrives at the message exchange section, it uses Signal(B) to tell  
Thread_B() that it is ready and then waits for Thread_B()’s reply.  Once this 
signal comes, Thread_A() continues, and Thread_B() should already be there 
for message exchange.  Thus, the Signal/Wait sequence simulates a hand-shaking 
protocol.  In the message exchange section, Thread_A() copies its message into 
Buf_A for Thread_B() to retrieve and then copies Thread_B()’s message from 
Buf_B into its local variable Var_A. 
 

semaphore  A = 0, B = 0; 
int        Buf_A, Buf_B; 
 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B; 
 
   while (1) {                while (1) { 
      ……….                       ………. 
      Var_A = …;                 Var_B = …; 
      Signal(B);                 Signal(A); 
      Wait(A);                   Wait(B); 
      Buf_A = Var_A;             Buf_B = Var_B; 
      Var_A = Buf_B;             Var_B = Buf_A; 
      ……….                       ………. 
   }                          } 
}                          } 

 
The following execution sequence shows a typical race condition, which is 

caused by grabbing the value of a shared variable too fast before it can be filled with a 
new value.  The first two rows indicate that A reaches Wait(A) and is switched out.  
Then,  B comes in, executes Wait(B), and is switched out.  This causes A to 
continue and move its message from Var_A to Buf_A; A then copies B’s message 
from Buf_B to Var_A.  However, since B has not yet reached the statement that fills 
Buf_B, the content in Buf_B that A retrieves is the previous message.  This is a race 
condition. 
 

Thread A Thread B 



Signal(B)  
Wait(A)  
 Signal(A) 
 Wait(B) 
Buf_A = Var_A  
Var_A = Buf_B  
 Buf_B = Var_B 

 
The following execution sequence shows another typical race condition in 

which two threads in group A may exchange messages with the same thread in group 
B.  As a result, we cannot be sure what message thread B will receive.  A1’s signal 
causes B1 to pass through Wait(B), and B1’s signal makes A1 pass through 
Wait(A).  Thus, A1 and B1 have a match and are supposed to exchange their 
messages.  However, right after these two waits, A2 comes into the scene and executes 
Signal(B) and Wait(A), which makes B2  execute Signal(A) to release A2 
from Wait(A).  Thus, A1 and A2 can put different messages into the shared variable 
Buf_A and we have a race condition.  By changing the order of execution, one can 
easily find other race conditions. 
 

Thread A1 Thread A2 Thread B1 Thread B2 
Signal(B)    
Wait(A)    
  Signal(A)  
  Wait(B)  
 Signal(B)   
 Wait(A)   
  Buf_B = …  
   Signal(A) 
Buf_A = …    
 Buf_A = …   

 
Lesson learned: When a variable is shared by many threads, without a proper mutual 
exclusion protection, race conditions are likely to occur.  In both execution sequences 
above, messages received may not be the correct ones. 
 
4.  SECOND ATTEMPT 
 

Let us use a semaphore Mutex, with initial value 1, to protect the shared 
variables.  This makes sure that the access to Buf_A and Buf_B is mutually 
exclusive.  Before a thread can exchange a message, it follows the hand-shaking 
protocol in the first attempt, and adds its own message into a shared variable.  Then, it 
performs a second hand-shaking protocol to receive a message from a thread in the 
other group. 
 

semaphore  A = 0, B = 0; 
semaphore  Mutex = 1; 
int        Buf_A, Buf_B; 
 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B; 



 
   while (1) {                while (1) { 
      ……….                       ………. 
      Signal(B);                 Signal(A); 
      Wait(A);                   Wait(B); 
         Wait(Mutex);               Wait(Mutex); 
            Buf_A = Var_A;             Buf_B = Var_B; 
         Signal(Mutex);             Signal(Mutex); 
      Signal(B);                 Signal(A); 
      Wait(A);                   Wait(B); 
         Wait(Mutex);               Wait(Mutex); 
            Var_A = Buf_B;             Var_B = Buf_A; 
         Signal(Mutex);             Signal(Mutex); 
      ……….                       ………. 
   }                          } 
}                           } 

 
The use of semaphore Mutex prevents two threads in group A from accessing 

Buf_A and Buf_B at the same time.  However, this protection is inadequate.  Once A 
and B complete the first stage of message exchange and signal each other, the values 
of semaphores A and B are both 1s.  Consequently, we cannot be sure if (1) A and B 
will continue with the second stage of message exchange, (2) another pair of threads 
will start their first stage, or (3) one of the current pair will continue and exchange a 
message with a newcomer in the other group.  All of these possibilities can cause race 
conditions.  The following execution sequence shows a race condition of (3).  Right 
after A1 and B make their messages available, A2 starts its first stage and signals and 
waits.  Then, B enters its second stage and signals and waits.  This may release A2 
rather than A1.  As a result, A2‘s message overwrites A1’s and we have a race 
condition. 
 

Thread A1 Thread A2 Thread B 
Signal(B)   
Wait(A)   
  Signal(A) 
  Wait(B) 
Buf_A = …   
  Buf_B = … 
 Signal(B)  
 Wait(A)  
  Signal(A) 
  Wait(B) 
 Buf_A = …  

 
 
Lesson learned: Protecting each shared variable separately may be insufficient if the 
use of that variable is part of a long execution sequence.  Protect the whole execution 
rather than each individual variable. 
 
 
5.  THIRD ATTEMPT 
 

Because a thread may come in and ruin a message before the previous message 
exchange completes, we need to expand the critical section so that it can cover the 



complete message exchange section. In the attempt below, semaphore Aready 
(resp., Bready), with initial value 1, is used to block any other A’s (resp., B’s) from 
performing a message exchange if there is a A (resp., B) exchanging a message.  We 
cannot use only one semaphore in both groups, because a deadlock may occur 
(Section 7). Semaphore Adone (resp., Bdone) is used to inform a B (resp., A) that a 
message is there.  Thus, a thread A waits until Buf_A is available, deposits a message, 
informs a B that a message is there with Signal(Adone), waits on semaphore 
Bdone until a B deposits its message, takes the message, and finally releases the 
message exchange critical section. 
 

semaphore  Aready = 1, Bready = 1; 
semaphore  Adone  = 0, Bdone  = 0; 
int        Buf_A, Buf_B; 
 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B; 
 
   while (1) {                while (1) { 
      ……….                       ………. 
      Wait(Aready);              Wait(Bready); 
         Buf_A = Var_A;             Buf_B = Var_B; 
         Signal(Adone);             Signal(Bdone); 
         Wait(Bdone);               Wait(Adone); 
         Var_A = Buf_B;             Var_B = Buf_A; 
      Signal(Aready);            Signal(Bready); 
      ……….                       ………. 
   }                          } 
}                          } 

 
Does this attempt work?  No! Suppose both A and B successfully deposit their 

messages and reach the second wait.  At this point, semaphores Adone and Bdone 
are both 1’s.  Assume that A passes through Wait(Bdone), takes the message from 
Buf_B, executes Signal(Aready) to indicate the completion of a message 
exchange of A, and then loops back.  If this A or another A is lucky enough to pass 
through this Wait(Aready) and deposits a new message into Buf_A before any B 
can retrieve the previous one, we lose a message and a race condition occurs.   
 

Thread A Thread B 
Buf_A = …  
Signal(Adone)  
Wait(Bdone)  
 Signal(Bdone) 
 Wait(Adone) 
… = Buf_B  
Signal(Aready)  
…. loop back …  
Wait(Aready)  
Buf_A = …  
 … = Buf_A 

 



Lesson learned: If we have a number of cooperating thread groups, mutual exclusion 
guaranteed for one group may not prevent threads in other groups from interacting 
with a thread in the group, even though the latter thread still is in its critical section.  
Think globally when setting up mutual exclusion. 
 
6.  FOURTH ATTEMPT 
 

The critical sections in the third attempt are not good enough because they 
cannot block threads in the same group from rushing in and overwriting the existing 
message before it is taken.  So, we might want to force a thread in group A (resp., 
group B) to wait until a thread in group B (resp., group A) completes its task.  The 
following is an attempt similar to the previous one, except that a different hand-
shaking protocol is used and that message exchange happens within this hand-shaking 
protocol. 
 

semaphore  Aready = 1, Bready = 1; 
semaphore  Adone  = 0, Bdone  = 0; 
int        Buf_A, Buf_B; 
 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B; 
 
   while (1) {                while (1) { 
      ……….                       ………. 
      Wait(Bready);              Wait(Aready); 
         Buf_A = Var_A;             Buf_B = Var_B; 
         Signal(Adone);             Signal(Bdone); 
         Wait(Bdone);               Wait(Adone); 
         Var_A = Buf_B;             Var_B = Buf_A; 
      Signal(Aready);            Signal(Bready); 
      ……….                       ………. 
   }                          } 
}                          } 

 
In the following execution sequence, right after A1 deposits its message into 

Buf_A and informs B, B retrieves the message, and signals the semaphore Bready.  
This permits A2 to start a message exchange.  However, A2 may run faster than A1 
does and retrieve the message that is supposed to be retrieved by A1.  Therefore, we 
have a race condition. 
 

Thread A1 Thread A2 Thread B 
Wait(Bready)   
Buf_A = …   
Signal(Adone)   
  Signal(Bdone) 
  Wait(Adone) 
  … = Buf_A 
  Signal(Bready) 
 Wait(Bready)  
 ……….  
 Wait(Bdone)  
 … = Buf_B  



 
Lesson learned: Mutual exclusion is important!   If the lock for mutual exclusion is 
not released by its owner, race conditions are likely to occur.  In the above, the lock 
Bready (resp., Aready) is acquired by a thread in group A (resp., B) and released 
by a thread in group B (resp., A).  This is a very risky programming practice if mutual 
exclusion is the central concern. 
 
 
7.  A GOOD ATTEMPT 
 

Some may notice that this problem is a variation of the bounded-buffer 
problem, also known as the producer-consumer problem, because a thread in group A 
puts an integer into a buffer for a thread B to retrieve and then waits for a message 
from a thread in group B.  This is a good observation; however, we still have two 
questions that need to be answered.  First, how many buffers are required?  Second, 
how many slots are in each buffer?  An obvious answer to the first question is two 
buffers, one for a thread in A (producer) sending an integer to a thread in B 
(consumer) and the other for a thread in B (producer) sending an integer to a thread in 
A (consumer).  As for the second question, consider the way of sending and receiving 
a message.  Because there is no ordering assumption for releasing threads from a 
synchronization primitive, if a buffer has more than one slot, we cannot guarantee that 
the message sent by a thread in group B, who received a message from a thread in 
group A, will be received by that thread in group A.  Therefore, the number of slots in 
each buffer should be exactly one!   
  

int  Buf_A, Buf_B; 
 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B; 
 
   while (1) {                while (1) { 
      ……….                       ………. 
      PUT(Var_A,Buf_A);          PUT(Var_B,Buf_B); 
      GET(Var_A,Buf_B);          GET(Var_B,Buf_A); 
      ……….                       ………. 
   }                          } 
}                          } 

 
The above code reflects this idea, where PUT(a,b) means adding the value 

of  a into a one-slot buffer b and GET(a,b) means retrieving a value from a one-slot 
buffer b into a. However, this is not a correct solution as demonstrated by the 
following execution sequence: (1) A1 and B both successfully execute their PUT() 
calls, (2) B executes its GET() to retrieve A1’s message, which causes A2 to 
execute its PUT() call, and (3) A2 continues and retrieves the message which is 
supposed to be received by A1.  A critical section may be used to make sure that while 
A and B are exchanging messages no other threads can enter (the third attempt).  
There are two possibilities: (1) a single semaphore to enforce mutual exclusion for all 
threads in both groups A and B, or (2) two semaphores, one for each group.  The first 
option is not a good idea as shown below. 
 

semaphore  Mutex = 1; 
int        Buf_A, Buf_B; 



 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B; 
  
   while (1) {                while (1) { 
      ……….                       ………. 
      Wait(Mutex);               Wait(Mutex); 
         PUT(Var_A,Buf_A);          PUT(Var_B,Buf_B); 
         GET(Var_A,Buf_B);          GET(Var_B,Buf_A); 
      Signal(Mutex);             Signal(Mutex); 
      ……….                       ………. 
   }                          } 
}                          } 

 
Suppose thread A successfully passes through Wait(Mutex) and calls 

PUT(Var_A, Buf_A) to deposit its message.  Because A is the only thread that 
owns the lock (i.e., in its critical section), no other A’s and B’s can enter, and, as a 
result, Buf_B contains no message from a thread in group B.  Hence, A and none of 
the other threads can continue and the whole system locks up.  Because of this 
problem, we use two semaphores: 
 

semaphore  Amutex = 1, Bmutex = 1; 
int        Buf_A, Buf_B; 
 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B; 
 
   while (1) {                while (1) { 
      ……….                       ………. 
      Wait(Amutex);              Wait(Bmutex); 
         PUT(Var_A,Buf_A);          PUT(Var_B,Buf_B); 
         GET(Var_A,Buf_B);          GET(Var_B,Buf_A); 
      Signal(Amutex);            Signal(Bmutex); 
      ……….                       ………. 
   }                          } 
}                          } 

 
This solution is an extension to the third attempt (Section 5).  Does this 

solution work?  Yes, it works.  To prove this, we need to address the following issues: 
(1) the message exchange section is mutually exclusive within the thread group, (2) 
once two threads enter their critical section, they exchange messages without the 
interference from any other threads, and (3) after one thread exits its critical section, 
no thread in the same group can rush in and ruin the existing message.  Because of the 
use of semaphores Amutex and Bmutex, (1) holds.  Once A and B execute 
Signal(Amutex) and Signal(Bmutex), their messages have been exchanged 
successfully.  This addresses point (2).   As for (3), assume that A exits its critical 
section while B is still in its critical section.  Because A exits, A must have retrieved 
B’s message, meaning B has completed its PUT() call.  However, before B can 
successfully complete its GET() call, buffer Buf_A is not empty, and, consequently, 
any new A that passes through Wait(Amutex) is blocked by the PUT() call until B 
completes its GET() call.  Therefore, no other A’s can ruin the message before it is 
retrieved by B.    We shall call this the symmetric solution. 



 
The following is a non-symmetric solution.  It forces a sequential execution of 

the following activities: (1) A deposits a message, (2) B receives A’s message, (3) B 
deposits a message, and (4) A receives B’s message.  Because A and B are in their 
critical sections, this sequence is not interrupted by any other threads in A and in B.  
Thus,  before the completion of a message exchange, threads A and B that are 
exchanging messages will not be interrupted, and message exchange is correctly 
implemented. 
 

semaphore  Amutex = 1, Bmutex = 1; 
int        Buf_A, Buf_B; 
 
Thread_A(…)                Thread_B(…) 
{                          { 
   int  Var_A;                int  Var_B, Temp; 
 
   while (1) {                while (1) { 
      ……….                       ………. 
      Wait(Amutex);              Wait(Bmutex); 
         PUT(Var_A,Buf_A);          GET(Temp,Buf_A); 
         GET(Var_A,Buf_B);          PUT(Var_B,Buf_B); 
      Signal(Amutex);            Signal(Bmutex); 
      ……….                       ………. 
   }                          } 
}                          } 

 
 
Lesson learned:  Review the solutions to well-known problems, because a correct 
solution to the problem in hand may be a variation of a well-known problem.  Classic 
problems are designed to illustrate frequently encountered problems and their 
solutions. 
 
 
8.  A MINOR VARIATION BUT MORE EFFICIENT DESIGN 
 

The solutions discussed in the previous section look simple; however, it is not 
very efficient.  We can count at least three semaphore waits for each message 
exchange, one for waiting on semaphore Amutex, one for waiting on the first buffer 
until it is not full, and one for waiting on the second buffer until it is not empty.  Since 
more semaphore wait means less program efficiency, we shall polish these solutions to 
make them more efficient in the following two subsections. 
 
8.1  Polishing the Symmetric Solution 
 

For buffer Buf_A (resp., Buf_B), two semaphores NotFull_A and 
NotEmpty_A (resp., NotFull_B and NotEmpty_B) are required.  Semaphore 
NotFull_A (resp., NotFull_B) blocks threads (i.e., producers) when buffer 
Buf_A (resp., Buf_B) is full, and semaphore NotEmpty_A  (resp., NotEmpty_B) 
blocks threads (i.e., consumers) when buffer Buf_A (resp., Buf_B) is empty.  
Replacing the PUT() and GET() calls yields the following solution: 
 

semaphore  Amutex = 1, Bmutex = 1; 
semaphore  NotFull_A  = NotFull_B  = 1; 



semaphore  NotEmpty_A = NotEmpty_B = 0; 
int        Buf_A, Buf_B; 
 
Thread_A(…)                 Thread_B(…) 
{                           { 
  int  Var_A;                 int  Var_B; 
 
  while (1) {                 while (1) { 
    ……….                        ………. 
    Wait(Amutex);               Wait(Bmutex); 
      Wait(NotFull_A);            Wait(NotFull_B); 
        Buf_A = Var_A;              Buf_B = Var_B; 
        Signal(NotEmpty_A);         Signal(NotEmpty_B); 
      Wait(NotEmpty_B);           Wait(NotEmpty_A); 
        Var_A = Buf_B;              Var_B = Buf_A; 
        Signal(NotFull_B);          Signal(NotFull_A); 
    Signal(Amutex);             Signal(Bmutex); 
    ……….                        ………. 
  }                           } 
}                           } 

 
8.2  Polishing the Non-Symmetric Solution 
 

Since A deposits its message into a buffer for B to retrieve, once B takes this 
message, B can deposit its message into the same buffer for A to retrieve.  Thus, one 
buffer is sufficient, and is denoted as Shared. 
 

Let us first concentrate on the buffer operations.  A thread in group A needs a 
semaphore NotFull to control whether Shared is full or not.  Because threads in 
group A are allowed to deposit messages first, the initial value of NotFull is one.  
After depositing a message, a thread in group A must notify a thread in group B to 
proceed.  We shall use a semaphore NotEmpty_A for this purpose.  Because threads 
in group B must wait until notified, the initial value of NotEmpty_A must be zero.  
After this notification, this thread in group A must wait until B’s message becomes 
available.  Thus, a third semaphore NotEmpty_B, with initial value zero, is used for 
this purpose.   On the other hand, a thread in group B waits until A’s message arrives, 
retrieves this message, deposits its own message, and notifies the waiting A to 
continue.  Thus, the message exchange sections look like the following: 
 

Wait(NotFull);          
   Shared = Var_A;      
   Signal(NotEmpty_A);   Wait(NotEmpty_A); 
                            Temp = Shared; 
                            Shared = Var_B; 
   Wait(NotEmpty_B);     Signal(NotEmpty_B); 
   Var_A = Shared;      
Signal(NotFull);       

 
Are semaphores Amutex and Bmutex necessary?   Because the initial value 

of NotFull is one, only one thread in group A can pass through Wait(NotFull) 
and hence mutual exclusion among threads in group A is guaranteed.  Because the 
initial value of  NotEmpty_A is zero and NotEmpty_A is only signaled once by a 
thread in group A  in its critical section, the value of NotEmpty_A  is either zero or 
one.  Hence, no more than one thread in group B can pass through 



Wait(NotEmpty_A) and  mutual exclusion among threads in group B is also 
guaranteed.  As a result, semaphore Amutex and Bmutex are redundant.  The 
following is a complete solution: 
 

semaphore  NotFull = 1, NotEmpty_A = NotEmpty_B = 0; 
int        Shared; 
 
Thread_A(…)                 Thread_B(…) 
{                           { 
   int  Var_A;                 int  Var_B, Temp; 
 
   while (1) {                 while (1) { 
      ……….                        ………. 
      Wait(NotFull);              
         Shared = Var_A; 
         Signal(NotEmpty_A);      Wait(NotEmpty_A); 
                                     Temp = Shared; 
                                     Shared = Var_B; 
         Wait(NotEmpty_B);        Signal(NotEmpty_B); 
         Var_A = Shared; 
      Signal(NotFull); 
      ……….                        ………. 
   }                           } 
}                           } 

 
 
8.3  A Simple Comparison 
 

Both correct solutions, especially the non-symmetric one, are no more complex 
than the incorrect ones.  The symmetric version has six statements in each critical 
section, and the non-symmetric one has four in Thread_A()’s critical section and 
two in Thread_B()’s.  However, because the statements in the non-symmetric 
version are executed sequentially, there are actually six statements.  Hence, in terms of 
statements count, both versions are similar.  Since the symmetric solution has three 
waits and the non-symmetric one has only two, in terms of synchronization efficiency, 
the non-symmetric version is better.  On the other hand, since the message exchange 
sections are identical in both thread groups, the symmetric version may be easier to 
understand. 
 
 
9.  CONCLUSIONS 
 

Although detecting race conditions is an important topic in operating systems 
and concurrent programming courses, most textbooks only provide a definition and a 
number of trivial examples without further elaboration.  Moreover, since detecting 
race conditions is an NP-hard problem, no software is able to pinpoint exactly those 
race conditions in a program.  Consequently, students frequently have difficulty in 
finding potential, especially subtle, race conditions in their programs. To address this 
problem, this paper presents a sequence of well-organized examples based on a simple 
problem, each of these examples contains one or more race conditions.   
 

These examples share a single design merit: how to set up mutual exclusion 
among threads in different groups.  The first example shows a naive idea that a simple 



hand-shaking can solve the problem without noticing that the shared buffers are the 
best places for race conditions to occur.  The second example tries to protect each 
individual buffer.  This is a common beginner problem that only focuses on the shared 
data rather than the combined effects of the program execution and the shared data 
items.  After two attempts, students might realize that the protection should be 
extended to cover the whole message exchange section.  However, reaching a correct 
solution is still not easy as shown by the third and fourth attempts.  So, what is the 
major problem?  Students learn the solutions to classic problems such as the bounded-
buffer problem, the smoker problem, the philosophers problem, the readers-writers 
problem and so on without recognizing the merit of each solution.  As a result, each of 
these solutions remains the solution of that particular problem instead of using it as a 
vehicle for solving other problems (i.e., seeing the trees without seeing the forest).  
Once we point out that this message exchange problem has a very simple solution that 
they have already learned in class, many students can immediately solve this problem 
without any difficulty.  This is exactly the lesson we want to tell our students:  
understand the solutions to the classic problems and extract the idea and merit so that 
these solutions can be used in other applications.  Finally, we analyze a simple idea 
(Section 7) and polish its solutions to use semaphores only.  Then, students realize that 
they reinvented the wheel and that some of their incorrect solutions are very close to 
the correct ones except for the presence of race conditions.  Through the use of these 
materials, our students have become more confident and more capable in dealing with 
race conditions in their programs.  We hope this set of materials will help other 
educators who are teaching similar courses and are looking for more examples.   
 

This paper is part of our on-going NSF concurrent computing project.  The 
interested readers can find more information and software tools for teaching 
multithreaded programming at http://www.cs.mtu.edu/~shene/NSF-
3/index.html. 
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