
Race Conditions: A Case Study

Steve Carr, Jean Mayo and Ching-Kuang Shene∗
Department of Computer Science

Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931

E-mail: {carr,jmayo,shene}@mtu.edu

ABSTRACT

Since detecting race conditions in a multithreaded or multiprocess
program is an NP-hard problem, there is no efficient algorithm that can
help detect race conditions in a program. As such, there are no easy-to-
use pedagogical tools. Most operating systems and concurrent
programming textbooks only provide a formal definition and some trivial
examples. This is insufficient for students to learn how to detect race
conditions. This paper attempts to fill this gap by presenting a set of well-
organized examples, each of which contains one or more race conditions,
for instructors to use in the classroom. This set of materials has been
classroom tested for two years and the student’s reaction has been very
positive.

1. INTRODUCTION

Race condition detection is an important topic in an operating systems or
concurrent programming course [1,2,5,9-13]. Our experience shows that it is easy to
provide students with a formal definition; but it is always difficult for students to
pinpoint race conditions in their programs [9,10]. This is largely due to the lack of
realistic examples and the dynamic behavior of a multithreaded or multiprocess
program. Worse, race conditions cannot be detected at run time because a detection
program must monitor every memory access. Additionally, statically detecting race
conditions in programs that use multiple semaphores is NP-hard [7], meaning an
efficient solution is unlikely. If the synchronization mechanism is weaker than
semaphores, an exact and efficient algorithm can be found [6]; otherwise, only
heuristic algorithms that scan the source programs statically are available [3,4].
Unfortunately, a heuristic algorithm can only find potential race conditions, meaning
the detection program may report many race conditions that are not actually race
conditions. As a result, there are few pedagogical aids designed for teaching students
about race conditions. Since there are no reasonable algorithms and universally
applicable techniques that can help students pinpoint race conditions, they are left
frustrated trying to debug their programs.

A race condition is defined as the situation in which multiple threads or
processes read and write a shared data item and the final result depends on the order of
execution. An obvious example is updating a shared counter as follows:

∗ Corresponding author

int count = 0;

Thread_A(…) Thread_B(…)
{ {
 ………. ……….
 count++; count--;
 ………. ……….
} }

Unfortunately, this example only illustrates the most obvious effect of a race
condition. Many race conditions that appear in student programs are subtle and very
difficult to find. To help students pinpoint race conditions, we have developed a
sequence of non-trivial examples. These examples originate from an exam problem
that asks students to design a program that permits threads in two groups to exchange
integer messages. We anticipated that our students could apply what they learned in
class (e.g., the bounded-buffer problem) to solve this problem; however, most of them
attempted to reinvent the wheel and came up with all kinds of correct and incorrect
solutions. Most incorrect ones are due to race conditions. We believe that discussing
these incorrect solutions will provide our students with an opportunity to learn more
about pinpointing race conditions. This set of materials has become part of our
lecture notes in an introduction to operating systems course for two years with a very
positive impact. In this paper, we share these materials with other educators. In the
following, Section 2 provides the problem statement, Section 3 to Section 6 discuss
four attempts in the order of increasing complexity of the “solution,” Section 7
presents the line of thinking using the bounded-buffer problem in order to reach a
correct solution, Section 8 polishes this solution to make it more efficient, and, finally,
Section 9 contains our conclusion.

2. PROBLEM STATEMENT

Suppose we have two groups of threads A and B. Each thread in A (resp., B)
runs a function Thread_A() (resp., Thread_B()). Both Thread_A() and
Thread_B() contain an infinite loop in which a thread exchanges an integer
message with a thread in the other group. Thus, Thread_A() and Thread_B()
have a structure as follows:

Thread_A(…) Thread_B(…)
{ {
 while (1) { while (1) {
 ………. ……….
 Ex. Message; Ex. Message;
 ………. ……….
 } }
} }

There are two important notes. First, once an instance A of Thread_A() makes a
message available, A can continue only if it receives a message from an instance B of
Thread_B() who has successfully retrieved A’s message. Similarly, an instance B
of Thread_B() can continue only if it receives a message from A rather than from
any other threads in group A. Second, once an instance A1 of Thread_A() makes
its message available, we have to make sure that the next instance A2 of

Thread_A(), which might come a little later, will not overwrite the existing
message before it is retrieved by an instance of Thread_B().

Each of the four attempts to be discussed below will contain an execution
sequence that can correctly perform a message exchange. However, since there are
data items shared by all involved threads, a race condition occurs if we can find an
alternative execution sequence that does not correctly exchange messages. Moreover,
there is no difference between the use of threads and the use of processes. We choose
threads because multithreaded programming is part of our operating systems course
[9].

3. FIRST ATTEMPT

The idea of this attempt is quite simple: threads shake hands and exchange
messages. It uses two semaphores A and B, with initial values 0. When
Thread_A() arrives at the message exchange section, it uses Signal(B) to tell
Thread_B() that it is ready and then waits for Thread_B()’s reply. Once this
signal comes, Thread_A() continues, and Thread_B() should already be there
for message exchange. Thus, the Signal/Wait sequence simulates a hand-shaking
protocol. In the message exchange section, Thread_A() copies its message into
Buf_A for Thread_B() to retrieve and then copies Thread_B()’s message from
Buf_B into its local variable Var_A.

semaphore A = 0, B = 0;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 Var_A = …; Var_B = …;
 Signal(B); Signal(A);
 Wait(A); Wait(B);
 Buf_A = Var_A; Buf_B = Var_B;
 Var_A = Buf_B; Var_B = Buf_A;
 ………. ……….
 } }
} }

The following execution sequence shows a typical race condition, which is

caused by grabbing the value of a shared variable too fast before it can be filled with a
new value. The first two rows indicate that A reaches Wait(A) and is switched out.
Then, B comes in, executes Wait(B), and is switched out. This causes A to
continue and move its message from Var_A to Buf_A; A then copies B’s message
from Buf_B to Var_A. However, since B has not yet reached the statement that fills
Buf_B, the content in Buf_B that A retrieves is the previous message. This is a race
condition.

Thread A Thread B

Signal(B)
Wait(A)
 Signal(A)
 Wait(B)
Buf_A = Var_A
Var_A = Buf_B
 Buf_B = Var_B

The following execution sequence shows another typical race condition in

which two threads in group A may exchange messages with the same thread in group
B. As a result, we cannot be sure what message thread B will receive. A1’s signal
causes B1 to pass through Wait(B), and B1’s signal makes A1 pass through
Wait(A). Thus, A1 and B1 have a match and are supposed to exchange their
messages. However, right after these two waits, A2 comes into the scene and executes
Signal(B) and Wait(A), which makes B2 execute Signal(A) to release A2
from Wait(A). Thus, A1 and A2 can put different messages into the shared variable
Buf_A and we have a race condition. By changing the order of execution, one can
easily find other race conditions.

Thread A1 Thread A2 Thread B1 Thread B2
Signal(B)
Wait(A)
 Signal(A)
 Wait(B)
 Signal(B)
 Wait(A)
 Buf_B = …
 Signal(A)
Buf_A = …
 Buf_A = …

Lesson learned: When a variable is shared by many threads, without a proper mutual
exclusion protection, race conditions are likely to occur. In both execution sequences
above, messages received may not be the correct ones.

4. SECOND ATTEMPT

Let us use a semaphore Mutex, with initial value 1, to protect the shared
variables. This makes sure that the access to Buf_A and Buf_B is mutually
exclusive. Before a thread can exchange a message, it follows the hand-shaking
protocol in the first attempt, and adds its own message into a shared variable. Then, it
performs a second hand-shaking protocol to receive a message from a thread in the
other group.

semaphore A = 0, B = 0;
semaphore Mutex = 1;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 Signal(B); Signal(A);
 Wait(A); Wait(B);
 Wait(Mutex); Wait(Mutex);
 Buf_A = Var_A; Buf_B = Var_B;
 Signal(Mutex); Signal(Mutex);
 Signal(B); Signal(A);
 Wait(A); Wait(B);
 Wait(Mutex); Wait(Mutex);
 Var_A = Buf_B; Var_B = Buf_A;
 Signal(Mutex); Signal(Mutex);
 ………. ……….
 } }
} }

The use of semaphore Mutex prevents two threads in group A from accessing

Buf_A and Buf_B at the same time. However, this protection is inadequate. Once A
and B complete the first stage of message exchange and signal each other, the values
of semaphores A and B are both 1s. Consequently, we cannot be sure if (1) A and B
will continue with the second stage of message exchange, (2) another pair of threads
will start their first stage, or (3) one of the current pair will continue and exchange a
message with a newcomer in the other group. All of these possibilities can cause race
conditions. The following execution sequence shows a race condition of (3). Right
after A1 and B make their messages available, A2 starts its first stage and signals and
waits. Then, B enters its second stage and signals and waits. This may release A2
rather than A1. As a result, A2‘s message overwrites A1’s and we have a race
condition.

Thread A1 Thread A2 Thread B
Signal(B)
Wait(A)
 Signal(A)
 Wait(B)
Buf_A = …
 Buf_B = …
 Signal(B)
 Wait(A)
 Signal(A)
 Wait(B)
 Buf_A = …

Lesson learned: Protecting each shared variable separately may be insufficient if the
use of that variable is part of a long execution sequence. Protect the whole execution
rather than each individual variable.

5. THIRD ATTEMPT

Because a thread may come in and ruin a message before the previous message
exchange completes, we need to expand the critical section so that it can cover the

complete message exchange section. In the attempt below, semaphore Aready
(resp., Bready), with initial value 1, is used to block any other A’s (resp., B’s) from
performing a message exchange if there is a A (resp., B) exchanging a message. We
cannot use only one semaphore in both groups, because a deadlock may occur
(Section 7). Semaphore Adone (resp., Bdone) is used to inform a B (resp., A) that a
message is there. Thus, a thread A waits until Buf_A is available, deposits a message,
informs a B that a message is there with Signal(Adone), waits on semaphore
Bdone until a B deposits its message, takes the message, and finally releases the
message exchange critical section.

semaphore Aready = 1, Bready = 1;
semaphore Adone = 0, Bdone = 0;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 Wait(Aready); Wait(Bready);
 Buf_A = Var_A; Buf_B = Var_B;
 Signal(Adone); Signal(Bdone);
 Wait(Bdone); Wait(Adone);
 Var_A = Buf_B; Var_B = Buf_A;
 Signal(Aready); Signal(Bready);
 ………. ……….
 } }
} }

Does this attempt work? No! Suppose both A and B successfully deposit their

messages and reach the second wait. At this point, semaphores Adone and Bdone
are both 1’s. Assume that A passes through Wait(Bdone), takes the message from
Buf_B, executes Signal(Aready) to indicate the completion of a message
exchange of A, and then loops back. If this A or another A is lucky enough to pass
through this Wait(Aready) and deposits a new message into Buf_A before any B
can retrieve the previous one, we lose a message and a race condition occurs.

Thread A Thread B
Buf_A = …
Signal(Adone)
Wait(Bdone)
 Signal(Bdone)
 Wait(Adone)
… = Buf_B
Signal(Aready)
…. loop back …
Wait(Aready)
Buf_A = …
 … = Buf_A

Lesson learned: If we have a number of cooperating thread groups, mutual exclusion
guaranteed for one group may not prevent threads in other groups from interacting
with a thread in the group, even though the latter thread still is in its critical section.
Think globally when setting up mutual exclusion.

6. FOURTH ATTEMPT

The critical sections in the third attempt are not good enough because they
cannot block threads in the same group from rushing in and overwriting the existing
message before it is taken. So, we might want to force a thread in group A (resp.,
group B) to wait until a thread in group B (resp., group A) completes its task. The
following is an attempt similar to the previous one, except that a different hand-
shaking protocol is used and that message exchange happens within this hand-shaking
protocol.

semaphore Aready = 1, Bready = 1;
semaphore Adone = 0, Bdone = 0;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 Wait(Bready); Wait(Aready);
 Buf_A = Var_A; Buf_B = Var_B;
 Signal(Adone); Signal(Bdone);
 Wait(Bdone); Wait(Adone);
 Var_A = Buf_B; Var_B = Buf_A;
 Signal(Aready); Signal(Bready);
 ………. ……….
 } }
} }

In the following execution sequence, right after A1 deposits its message into

Buf_A and informs B, B retrieves the message, and signals the semaphore Bready.
This permits A2 to start a message exchange. However, A2 may run faster than A1
does and retrieve the message that is supposed to be retrieved by A1. Therefore, we
have a race condition.

Thread A1 Thread A2 Thread B
Wait(Bready)
Buf_A = …
Signal(Adone)
 Signal(Bdone)
 Wait(Adone)
 … = Buf_A
 Signal(Bready)
 Wait(Bready)
 ……….
 Wait(Bdone)
 … = Buf_B

Lesson learned: Mutual exclusion is important! If the lock for mutual exclusion is
not released by its owner, race conditions are likely to occur. In the above, the lock
Bready (resp., Aready) is acquired by a thread in group A (resp., B) and released
by a thread in group B (resp., A). This is a very risky programming practice if mutual
exclusion is the central concern.

7. A GOOD ATTEMPT

Some may notice that this problem is a variation of the bounded-buffer
problem, also known as the producer-consumer problem, because a thread in group A
puts an integer into a buffer for a thread B to retrieve and then waits for a message
from a thread in group B. This is a good observation; however, we still have two
questions that need to be answered. First, how many buffers are required? Second,
how many slots are in each buffer? An obvious answer to the first question is two
buffers, one for a thread in A (producer) sending an integer to a thread in B
(consumer) and the other for a thread in B (producer) sending an integer to a thread in
A (consumer). As for the second question, consider the way of sending and receiving
a message. Because there is no ordering assumption for releasing threads from a
synchronization primitive, if a buffer has more than one slot, we cannot guarantee that
the message sent by a thread in group B, who received a message from a thread in
group A, will be received by that thread in group A. Therefore, the number of slots in
each buffer should be exactly one!

int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 PUT(Var_A,Buf_A); PUT(Var_B,Buf_B);
 GET(Var_A,Buf_B); GET(Var_B,Buf_A);
 ………. ……….
 } }
} }

The above code reflects this idea, where PUT(a,b) means adding the value

of a into a one-slot buffer b and GET(a,b) means retrieving a value from a one-slot
buffer b into a. However, this is not a correct solution as demonstrated by the
following execution sequence: (1) A1 and B both successfully execute their PUT()
calls, (2) B executes its GET() to retrieve A1’s message, which causes A2 to
execute its PUT() call, and (3) A2 continues and retrieves the message which is
supposed to be received by A1. A critical section may be used to make sure that while
A and B are exchanging messages no other threads can enter (the third attempt).
There are two possibilities: (1) a single semaphore to enforce mutual exclusion for all
threads in both groups A and B, or (2) two semaphores, one for each group. The first
option is not a good idea as shown below.

semaphore Mutex = 1;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 Wait(Mutex); Wait(Mutex);
 PUT(Var_A,Buf_A); PUT(Var_B,Buf_B);
 GET(Var_A,Buf_B); GET(Var_B,Buf_A);
 Signal(Mutex); Signal(Mutex);
 ………. ……….
 } }
} }

Suppose thread A successfully passes through Wait(Mutex) and calls

PUT(Var_A, Buf_A) to deposit its message. Because A is the only thread that
owns the lock (i.e., in its critical section), no other A’s and B’s can enter, and, as a
result, Buf_B contains no message from a thread in group B. Hence, A and none of
the other threads can continue and the whole system locks up. Because of this
problem, we use two semaphores:

semaphore Amutex = 1, Bmutex = 1;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 Wait(Amutex); Wait(Bmutex);
 PUT(Var_A,Buf_A); PUT(Var_B,Buf_B);
 GET(Var_A,Buf_B); GET(Var_B,Buf_A);
 Signal(Amutex); Signal(Bmutex);
 ………. ……….
 } }
} }

This solution is an extension to the third attempt (Section 5). Does this

solution work? Yes, it works. To prove this, we need to address the following issues:
(1) the message exchange section is mutually exclusive within the thread group, (2)
once two threads enter their critical section, they exchange messages without the
interference from any other threads, and (3) after one thread exits its critical section,
no thread in the same group can rush in and ruin the existing message. Because of the
use of semaphores Amutex and Bmutex, (1) holds. Once A and B execute
Signal(Amutex) and Signal(Bmutex), their messages have been exchanged
successfully. This addresses point (2). As for (3), assume that A exits its critical
section while B is still in its critical section. Because A exits, A must have retrieved
B’s message, meaning B has completed its PUT() call. However, before B can
successfully complete its GET() call, buffer Buf_A is not empty, and, consequently,
any new A that passes through Wait(Amutex) is blocked by the PUT() call until B
completes its GET() call. Therefore, no other A’s can ruin the message before it is
retrieved by B. We shall call this the symmetric solution.

The following is a non-symmetric solution. It forces a sequential execution of

the following activities: (1) A deposits a message, (2) B receives A’s message, (3) B
deposits a message, and (4) A receives B’s message. Because A and B are in their
critical sections, this sequence is not interrupted by any other threads in A and in B.
Thus, before the completion of a message exchange, threads A and B that are
exchanging messages will not be interrupted, and message exchange is correctly
implemented.

semaphore Amutex = 1, Bmutex = 1;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B, Temp;

 while (1) { while (1) {
 ………. ……….
 Wait(Amutex); Wait(Bmutex);
 PUT(Var_A,Buf_A); GET(Temp,Buf_A);
 GET(Var_A,Buf_B); PUT(Var_B,Buf_B);
 Signal(Amutex); Signal(Bmutex);
 ………. ……….
 } }
} }

Lesson learned: Review the solutions to well-known problems, because a correct
solution to the problem in hand may be a variation of a well-known problem. Classic
problems are designed to illustrate frequently encountered problems and their
solutions.

8. A MINOR VARIATION BUT MORE EFFICIENT DESIGN

The solutions discussed in the previous section look simple; however, it is not
very efficient. We can count at least three semaphore waits for each message
exchange, one for waiting on semaphore Amutex, one for waiting on the first buffer
until it is not full, and one for waiting on the second buffer until it is not empty. Since
more semaphore wait means less program efficiency, we shall polish these solutions to
make them more efficient in the following two subsections.

8.1 Polishing the Symmetric Solution

For buffer Buf_A (resp., Buf_B), two semaphores NotFull_A and
NotEmpty_A (resp., NotFull_B and NotEmpty_B) are required. Semaphore
NotFull_A (resp., NotFull_B) blocks threads (i.e., producers) when buffer
Buf_A (resp., Buf_B) is full, and semaphore NotEmpty_A (resp., NotEmpty_B)
blocks threads (i.e., consumers) when buffer Buf_A (resp., Buf_B) is empty.
Replacing the PUT() and GET() calls yields the following solution:

semaphore Amutex = 1, Bmutex = 1;
semaphore NotFull_A = NotFull_B = 1;

semaphore NotEmpty_A = NotEmpty_B = 0;
int Buf_A, Buf_B;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B;

 while (1) { while (1) {
 ………. ……….
 Wait(Amutex); Wait(Bmutex);
 Wait(NotFull_A); Wait(NotFull_B);
 Buf_A = Var_A; Buf_B = Var_B;
 Signal(NotEmpty_A); Signal(NotEmpty_B);
 Wait(NotEmpty_B); Wait(NotEmpty_A);
 Var_A = Buf_B; Var_B = Buf_A;
 Signal(NotFull_B); Signal(NotFull_A);
 Signal(Amutex); Signal(Bmutex);
 ………. ……….
 } }
} }

8.2 Polishing the Non-Symmetric Solution

Since A deposits its message into a buffer for B to retrieve, once B takes this
message, B can deposit its message into the same buffer for A to retrieve. Thus, one
buffer is sufficient, and is denoted as Shared.

Let us first concentrate on the buffer operations. A thread in group A needs a
semaphore NotFull to control whether Shared is full or not. Because threads in
group A are allowed to deposit messages first, the initial value of NotFull is one.
After depositing a message, a thread in group A must notify a thread in group B to
proceed. We shall use a semaphore NotEmpty_A for this purpose. Because threads
in group B must wait until notified, the initial value of NotEmpty_A must be zero.
After this notification, this thread in group A must wait until B’s message becomes
available. Thus, a third semaphore NotEmpty_B, with initial value zero, is used for
this purpose. On the other hand, a thread in group B waits until A’s message arrives,
retrieves this message, deposits its own message, and notifies the waiting A to
continue. Thus, the message exchange sections look like the following:

Wait(NotFull);
 Shared = Var_A;
 Signal(NotEmpty_A); Wait(NotEmpty_A);
 Temp = Shared;
 Shared = Var_B;
 Wait(NotEmpty_B); Signal(NotEmpty_B);
 Var_A = Shared;
Signal(NotFull);

Are semaphores Amutex and Bmutex necessary? Because the initial value

of NotFull is one, only one thread in group A can pass through Wait(NotFull)
and hence mutual exclusion among threads in group A is guaranteed. Because the
initial value of NotEmpty_A is zero and NotEmpty_A is only signaled once by a
thread in group A in its critical section, the value of NotEmpty_A is either zero or
one. Hence, no more than one thread in group B can pass through

Wait(NotEmpty_A) and mutual exclusion among threads in group B is also
guaranteed. As a result, semaphore Amutex and Bmutex are redundant. The
following is a complete solution:

semaphore NotFull = 1, NotEmpty_A = NotEmpty_B = 0;
int Shared;

Thread_A(…) Thread_B(…)
{ {
 int Var_A; int Var_B, Temp;

 while (1) { while (1) {
 ………. ……….
 Wait(NotFull);
 Shared = Var_A;
 Signal(NotEmpty_A); Wait(NotEmpty_A);
 Temp = Shared;
 Shared = Var_B;
 Wait(NotEmpty_B); Signal(NotEmpty_B);
 Var_A = Shared;
 Signal(NotFull);
 ………. ……….
 } }
} }

8.3 A Simple Comparison

Both correct solutions, especially the non-symmetric one, are no more complex
than the incorrect ones. The symmetric version has six statements in each critical
section, and the non-symmetric one has four in Thread_A()’s critical section and
two in Thread_B()’s. However, because the statements in the non-symmetric
version are executed sequentially, there are actually six statements. Hence, in terms of
statements count, both versions are similar. Since the symmetric solution has three
waits and the non-symmetric one has only two, in terms of synchronization efficiency,
the non-symmetric version is better. On the other hand, since the message exchange
sections are identical in both thread groups, the symmetric version may be easier to
understand.

9. CONCLUSIONS

Although detecting race conditions is an important topic in operating systems
and concurrent programming courses, most textbooks only provide a definition and a
number of trivial examples without further elaboration. Moreover, since detecting
race conditions is an NP-hard problem, no software is able to pinpoint exactly those
race conditions in a program. Consequently, students frequently have difficulty in
finding potential, especially subtle, race conditions in their programs. To address this
problem, this paper presents a sequence of well-organized examples based on a simple
problem, each of these examples contains one or more race conditions.

These examples share a single design merit: how to set up mutual exclusion
among threads in different groups. The first example shows a naive idea that a simple

hand-shaking can solve the problem without noticing that the shared buffers are the
best places for race conditions to occur. The second example tries to protect each
individual buffer. This is a common beginner problem that only focuses on the shared
data rather than the combined effects of the program execution and the shared data
items. After two attempts, students might realize that the protection should be
extended to cover the whole message exchange section. However, reaching a correct
solution is still not easy as shown by the third and fourth attempts. So, what is the
major problem? Students learn the solutions to classic problems such as the bounded-
buffer problem, the smoker problem, the philosophers problem, the readers-writers
problem and so on without recognizing the merit of each solution. As a result, each of
these solutions remains the solution of that particular problem instead of using it as a
vehicle for solving other problems (i.e., seeing the trees without seeing the forest).
Once we point out that this message exchange problem has a very simple solution that
they have already learned in class, many students can immediately solve this problem
without any difficulty. This is exactly the lesson we want to tell our students:
understand the solutions to the classic problems and extract the idea and merit so that
these solutions can be used in other applications. Finally, we analyze a simple idea
(Section 7) and polish its solutions to use semaphores only. Then, students realize that
they reinvented the wheel and that some of their incorrect solutions are very close to
the correct ones except for the presence of race conditions. Through the use of these
materials, our students have become more confident and more capable in dealing with
race conditions in their programs. We hope this set of materials will help other
educators who are teaching similar courses and are looking for more examples.

This paper is part of our on-going NSF concurrent computing project. The
interested readers can find more information and software tools for teaching
multithreaded programming at http://www.cs.mtu.edu/~shene/NSF-
3/index.html.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation under
grant numbers DUE-9752244 and DUE-9952509. The second author is also partially
supported by an NSF CAREER grant CCR-9984682.

REFERENCES

1. Gregory R. Andrews, Foundations of Multithreaded, Parallel, and Distributed
Programming, Addison-Wesley, 2000.

2. Alan Burns and Geoff Davies, Concurrent Programming, Addison-Wesley,
1993.

3. Jong-Deok Choi and Sang Lyul Min, RACE FRONTIER: Reproducing Data
Races in Parallel-Program Debugging, Third ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming (PPOPP), April 1991, pp.
145-154.

4. Anne Dinning and Edith Schonberg, Detecting Access Anomalies in Programs
with Critical Sections, Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, May 1991, pp. 85-96.

5. Stephen J. Hartley, Concurrent Programming: The Java Programming
Language, Oxford University Press, 1998.

6. Robert H. B. Netzer and S. Ghosh, Efficient Race Condition Detection for
Shared-Memory Programs with Post/Wait Synchronization, International
Conference on Parallel Processing, August 1992, pp. II242-II246.

7. Robert H. B. Netzer and Barton P. Miller, On the Complexity of Event
Ordering for Shared-Memory Parallel Program Executions, International
Conference on Parallel Processing, August 1990, pp. II93-II97.

8. Robert H. B. Netzer and Barton P. Miller, Improving the Accuracy of Data
Race Detection, Third ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming (PPOPP), April 1991, pp. 133-144.

9. Ching-Kuang Shene, Multithreaded Programming in an Introduction to
Operating Systems Course, ACM Twenty-Ninth SIGCSE Technical Symposium
on Computer Science Education, February 1998, pp. 242-246.

10. Ching-Kuang Shene and Steve Carr, The Design of a Multithreaded
Programming Course and Its Accompanying Software Tools, The Journal of
Computing in Small College, Vol. 14 (1998), No. 1, pp. 12-24.

11. Abraham Silberschatz and Peter B. Galvin, Operating System Concepts, 5th
edition, Addison-Wesley, 1998.

12. William Stallings, Operating Systems, 4th edition, Prentice Hall, 2001.
13. Andrew S. Tanenbaum, Modern Operating Systems, 2nd edition, Prentice Hall,

2001.

