Multithreaded Programming Can Strengthen an
Operating Systems Course

Ching-Kuang Shene
Department of Computer Science
Michigan Technological University
Houghton, MI 49931-1295, USA

E-mail: shene@mtu.edu

Abstract

Today, virtually all operating systems support multithreaded programming. In
fact, threads are easier to use and more efficient than processes. This paper presents
a possible way of using multithreaded programming to strengthen an operating sys-
tems course. More precisely, the lecture hours are divided into a theory track and a
programming track. The former concentrates on the traditional topics, while the lat-
ter consists of seven programming assignments and one mini-project that can provide
students with a comprehensive coverage of the use of multithreaded programming in
the design of various operating system components. These assignments also serve as
a vehicle for introducing interesting materials (e.g., PRAM models) that are normally
not available in a typical operating systems course.

1 Introduction

The concept of multithreaded programming first appeared in late 60’s when IBM added the
task feature and completion event variables into its PL/I F compiler and made the same
available in all IBM VS (i.e., virtual storage) operating systems as system calls. In early
80’s, threading became popular in the Unix community. A number of multithreaded libraries
for MS-DOS were published in trade magazines such as Dr. Dobb’s Journal and C' Users
Journal. Well-known ones include [19, 31], which were available around 1995. However,
multithreaded programming was not very popular in the PC community until Microsoft and
IBM released Windows 95 and OS/2, respectively. Today, virtually all operating systems
have multithreaded capability and the popular POSIX Pthreads standard is also available.
Many well-known operating systems textbooks added sections on threads in their newest
editions and numerous books about threads were published in recent years. Therefore, it is
the time to teach students this new technology.

The best place to introduce the concept of threads is naturally an operating systems
course for a number of reasons. First, the use of threads is much simpler than the use of
processes. Second, multithreaded libraries, even the most primitive ones, support more syn-
chronization primitives. Third, many implementations are at the user level, which means
that all threads of a program run in the same address space, and hence debugging is eas-
ier. However, learning multithreaded programming requires a paradigm shift, which is not
always easy for many students, and using synchronization primitives correctly without race
conditions and deadlocks is very challenging. To smooth the transition from sequential to
multithreaded and to make sure students will grasp the merit and skills of using synchro-
nization primitives, topics must be covered in a slower pace than usual, and programming
assignments must be chosen carefully so that students can practice and use multithreaded
programming to solve a number of operating system related problems.

This paper presents the author’s experience of teaching multithreaded programming in
an operating systems course, and demonstrates the way of strengthening this course with
this new technology. This course has been taught ten times in the past six years, and a
preliminary report was published in [37]. The author’s approach divides the lecture hours into
a theory track and a programming track. The former covers most materials that can be found
in a typical operating systems textbook. The latter, with the help of seven programming
assignments and one mini-project, covers the concept, merit, and skills of multithreaded
programming. In this way, students will not only learn multithreaded programming, but
also be familiarized in many topics that are not available in a typical operating systems
course.

In the following, Section 2 reviews some related work, Section 3 contains a course overview
which includes a discussion of the theory and programming tracks, Section 4 presents a de-
tailed discussion of programming assignments and the mini-project, Section 5 is an evaluation
of our approach over the past four years, and Section 6 has some concluding remarks.

2 Previous Work

There are many ways of teaching an operating systems course. A popular one is the use of a
pedagogical operating system (e.g., MINIX, Nachos and their variants) for students to add,
modify and/or extend some components [1, 25]. Some instructors believe that programming
with a particular architecture directly (e.g., the Intel platform) would benefit the students
the most, and, as a result, students are asked to implement an architecture-dependent sys-
tem [17, 28, 29]. Some others may use a hardware simulator, usually greatly simplified,
to achieve the same goal [16, 33]. Yet another approach prefers to use a simple operating
system, usually MS-DOS, to explore the system structure, system calls, and interrupt vec-
tors [27, 32, 42]. There also are simulators and visualization tools developed for teaching a
number of components of an operating systems such as CPU schedulers and page replace-
ment algorithms [30, 36]. These approaches permit students to implement some operating
system components. However, C. A. R. Hoare once pointed out that “you cannot teach
beginning programmers top-down design because they do not know which way is up.” It
would be difficult for students to design and implement a system component correctly, if

they do not know how to use that component correctly and efficiently. This is particularly
true for implementing synchronization primitives.

Ever since Brinch Hansen’s seminal work [7], concurrent programming and synchroniza-
tion have occupied a permanent place in an operating systems course. Along this line of
development, some instructors prefer to use a system interface directly and others choose
to use a high-level programming language. The most commonly seen approach of using a
system interface usually involves the fork() and exec() system calls and message queues
of Unix and/or Linux [18, 42, 44]. The shared memory and semaphores of Unix are rarely
touched upon, perhaps because the Unix semaphore feature is very difficult to comprehend
and be used properly. The language approach is also pioneered by Brinch Hansen with his
Concurrent Pascal [8]. In the CS education community, Ben-Ari’s interpreter [4] and its
variants [11, 12, 35] are very popular and widely used. Instructors taking this approach
emphasize concurrent execution and mutual exclusion built upon a number of popular syn-
chronization primitives (i.e., semaphores, monitors and CSP channels). The language SR was
also used [20]; however, Java has been gaining some momentum in recent years [21, 22, 23, 24]
although its parallelism mechanism is insecure [9]. Recently, instructors have started to use
thread programming interfaces. For example, Berk [5] uses SunOS’s light-weight process
library, Downey [18] uses Pthreads, and the author uses Solaris thread library [37, 38].

The language approach is more structured, robust and safer, because the compiler and
language syntax can prevent many unwanted programming errors and allow a user to concen-
trate on handling concurrency and synchronization. On the other hand, the thread program-
ming interface approach requires a user to call a number of functions to achieve a task that
can be done with one statement in a language that supports concurrency. We take the thread
programming interface approach. We believe that before a student can implement a system
component, s/he must have a reasonable understanding of the use and the meaning of that
component. Fortunately, this can usually be done at the user-level rather than digging into
the system itself. Thus, programming assignments are designed to fully explore a particular
thread programming interface (Sun Solaris threads) with challenging problems that cover
not only concurrency and synchronization but also multiprocess programming and signal
handling. After students are well-equipped with all fundamental programming skills and the
knowledge of these system components, they are provided with a small user-level kernel that
supports non-preemptive multithreaded programming for a two-week mini-project. With
this small kernel, students can implement thread creation, termination, joining, suspension
and resume, thread scheduling with and without priority, and various synchronization prim-
itives. We believe that in an introduction course, this approach has the unique advantage
that students not only learn operating systems from a user’s point of view but also have an
opportunity to implement a significant portion of a kernel. In this way, students will not
be limited to the theory nor overwhelmed by the implementation of a significantly larger
system (e.g., if they failed in an early stage, it would be difficult to recover and catch up in
later stages).

3 Course Overview

This course, Introduction to Operating Systems, is divided into two tracks: theory and pro-
gramming. The theory track, which consumes approximately two-third of the lecture hours,
covers most traditional topics (e.g., processes and threads, virtual memory, input/output,
device management and file systems) [39, 40, 41]. Parallel to the theory track, the program-
ming track focuses on programming skills that can reinforce the understanding of the theory
and offer a chance for introducing important topics in related areas (e.g., parallel program-
ming). Combining both tracks, students will learn much more than they can in a typical
operating systems course. Table 1 shows the relationship between these two tracks. In the
following, Section 3.1 provides some background information, and Section 3.2 and Section 3.3
discuss the theory and programming tracks, respectively. Note that we only concentrate on
the topics that are directly related to multiprocess and multithreaded programming.

Table 1: Relationship among programming and course topics

H Week ‘ Course Topics Programming ‘ Ezam H

1 Introduction

2 | Processes and Threads

3 Synchronization Primitives Warm-up

4

5

6 Semaphore Exam 1
7 | Process Scheduling

8 Process vs. Threads Monitor

9 Memory Management Message Passing
10 Shared Memory
11 Exam 2
12 Scheduler
13 | Input/Output and File System | Disk Scheduling
14
15 Mini-Project

3.1 Background Information

Introduction to Operating Systems is a 3-credit junior level course for juniors and seniors.
Course prerequisites include C/C++, data structures, and computer architectures. There is
a senior and graduate elective course Operating Systems for those who wish to learn more.
We also have a graduate level course Distributed Systems. Therefore, this course serves as the
entry point of all subsequent system related courses, including a Computer Network course.

The working environment includes Sun workstations running Solaris and Linux worksta-
tions. However, except for a few process related assignments, students’ programs are run
and graded on the Sun system because Solaris thread is a very robust system.

3.2 The Theory Track

As shown in Table 1, the theory track covers topics in a traditional operating systems
course. We emphasize threads instead of processes because the former is easier to use and
more efficient. Our experience shows that it is difficult and takes time for students to
change their mindset from sequential to multithreaded. Even more difficult is the correct
use of synchronization primitives. Hence, four weeks are allocated to a very detailed and
thorough discussion of synchronization primitives. Topics include critical sections, mutual
exclusion, busy waiting, simple hardware and software locks, semaphores, monitors, message
passing, and a number of classic problems. In the past six years of teaching this course
more than ten times, we found that the most commonly seen problem in student programs
is the presence of race conditions rather than deadlocks. Most textbooks only provide a
simple definition of race conditions with one or two trivial examples. Unfortunately, these
unrealistic examples do not provide sufficient help for students to pinpoint and eliminate
race conditions in their programs. Moreover, since general race condition detection is an
NP-complete problem [34], efficient algorithms for precisely locating race conditions do not
exist. To address this difficulty, we developed a set of materials [14] which are used along
with the discussion of semaphores because race conditions can easily occur when semaphores
are used.

Of the three popular synchronization primitives, the use of semaphores is the most dif-
ficult, because it is the first encountered synchronization primitive and because the use of
semaphores is not as well-structured as monitors. We summarize three commonly used pat-
terns: (1) locks, (2) counting-down counters, and (3) notification. Then, we identify these
patterns in every semaphore related program. This approach has been very effective because
the successful rate of solving semaphore related problems increases significantly.

Monitors are more structured, easier to use, and less prone to programming mistakes.
Two types of monitors are covered: the Hoare style and the Mesa style. In the Hoare style,
the signaler yields the monitor to the awoke thread, and, as a result, after the execution of
a signal on a condition variable, the signaler and the awoke threads become inactive and
active, respectively. On the other hand, in the Mesa style, the signaler continues to be
active and the awoke thread becomes inactive (from waiting). Since monitor is usually not
a programming interface feature, students must decompose a textbook structured example
program into unstructured calls to a number of functions. Moreover, textbooks normally
assume that monitors are of the Hoare style, and, to the best of the author’s knowledge,
most system level implementations of monitors use the Mesa style for efficiency. Therefore,
students may be confused by what they learn in class and what they use in programming
assignments. This is the main reason we discuss monitors of both types.

The next is the concept of synchronous and asynchronous channels. In addition to the
theory and semantics of channels, we also emphasize that in a threaded or non-network

environment, a many-to-many channel (i.e., multiple threads can send and receive messages
to and from the same channel) is simply an instance of the bounded-buffer problem. We also
point out that the message queue primitive available on Unix and its variants is a version of
many-to-many asynchronous channels.

Barriers and reader-writer locks in both reader-priority and writer-priority versions are
also mentioned. Some equivalence constructions among these primitives are established
either in the programming track or in exams. For example, we may ask students to implement
(1) semaphores using monitors or message queues, (2) FIFO semaphores using counting
semaphores, (3) Unix semaphores using locks and condition variables (i.e., monitors), (4)
condition variables using counting semaphores, and (5) barriers using semaphores. As a
result, students will know how to obtain a particular primitive when it is not available on a
system.

3.3 The Programming Track

The programming track is designed to provide students with an opportunity to practice
what they learn in the theory track, and to cover additional topics in system programming
and topics that are normally not available in a typical operating systems course. Because
the process dispatcher that supports multiprocess and multithreaded capability is part of
the lowest layer of an operating system, students must know the use of multiprocess and
multithreaded programming well before they can implement a threaded kernel correctly. As
a result, we do not choose a pedagogical operating system (e.g., MINIX and Nachos) for
programming projects. Instead, we start with user-level multithreaded programming for
students to familiarize the concept and various aspects of multithreaded programming.

To make sure that students will be equipped with sufficient knowledge and skills to
start their first significant assignment, we take a very slow pace in the beginning and cover
topics as detail as possible in the theory track. However, to stimulate students’ interests,
we give them early a simple warm-up assignment to gain some exposure in multithreaded
programming. This strategy has been very successful because students are excited about the
fact that a program can be split into multiple threads running concurrently.

Programming skills covered in this track include the use of Sun Solaris thread program-
ming interface, building monitors using mutex locks and condition variables, channels, Unix
processes and shared memory, signal handling, and non-local goto using ANSI C functions
setjmp() and longjmp() and coroutines. The use of coroutines is worth mentioning in
some details. With a function call, the control flow enters the callee from its very beginning
and goes back to the next instruction of the caller. When a coroutine is called initially, the
control flow enters the callee from the first instruction as usual. However, when the callee
is called again, the control flow starts from the next instruction below the previous return
point. Figure 1 shows three coroutines A, B and C. In the diagram, vertical arrows with
different patterns indicate the execution flow of different functions, arrows in lighter color
indicate control flow switches, and small circles are switching/returning points. Thus, this
diagram shows the following activities: A executes (1), A calls B and B executes (2), B calls
C' and C executes (3), C calls A and A executes (4), and so on. As a result, A, B and C

can be considered as three threads and are context switched at the points indicated by the
small circles. To implement a context switch at the user level, we need a jump buffer of type
jmp_buf which is defined in the ANSI C header file setjmp.h. Then, setjmp() is called
to save the execution environment before switching out and longjmp() is called to switch
to a place recorded in a particular jump buffer. With this technique, we can implement a
non-preemptive threaded system with minimal capability in about 100 lines! Note that a
separate stack is required for each executing function. This is the only machine-dependent
place in the implementation of coroutines; however, it is very easy to implement and only
requires a couple of lines.

v v

Figure 1: The concept of coroutines

All materials for the programming track are in electronic book form and available for
student access on the Internet.

4 Programming Assignments

This section provides a detailed discussion of the seven programming assignments and one
mini-project that form the core of the programming track. These programming assignments
must have a broader impact on student learning, must be able to reinforce and enhance the
theory track with an eye on system level programming practice, and must provide additional
topics that are normally not covered in a typical operating systems course. Students must
submit their programs and READVE files electronically. A README file must include the answers
to a number of critical questions such as a discussion to show that his/her implementation
does not have race conditions and deadlocks, an elaboration of the program logic, and a
convincing argument to show the correctness of an implementation. For the mini-project,
a JOURNAL file is also required to record a student’s software design and implementation
process. The journal events may include, but are not limited to, new design ideas, policy
changes, mechanism modifications, bugs, bug reports and fixes. Students can organize these
events in chronicle or problem-oriented order and include date, problem, impact on the
project, solution, and other important information. We found out that most students kept
very detailed and honest journals.

Because of the dynamic behavior of threads, grading student programs has always been
a very challenging and difficult task. This means that we may encounter or discover a race

condition or deadlock that has never occurred in students’ tests. It is also possible that we
may not be able to duplicate race conditions or deadlocks reported by students. As a result,
reading students’ programs become necessary. Fortunately, many highly qualified under-
graduate students who have had this course can be used as graders. Over the years, most
graders expressed that they learned more in reading student programs because throughout
the grading process they “know more variations in solving the same or a similar problem,
and can sharpen their multithreaded programming skills.”

The assignments are in three categories. Category 1, which includes assignments 1 to 4
(Section 4.1 to Section 4.4), is about the foundation of multithreaded programming. The
design merit of these assignments is to provide a number of non-trivial exercises for students
to familiarize and practice the use of threads and synchronization primitives. Category
2, which includes assignments 5 to 7 (Section 4.5 to Section 4.7), involves multiprocess
programming, handling signals in a process-based environment, and applications of threads
in operating systems design. Finally, Category 3 contains only one assignment, the mini-
project (Section 4.8), and requires almost all knowledge covered in this course.

4.1 The Warm-Up Assignment

This assignment provides students with a chance to practice the most fundamental skills in
multithreaded programming (e.g., thread creation, exit and join). This assignment’s problem
has to be very simple and interesting, and yet can illustrate some important points (e.g., race
conditions). No mutual exclusion is required; but, we ask students to explain why mutual
exclusion is not needed and why race conditions do not occur. There are many interesting
PRAM (parallel random access machine) algorithms, especially those CRCW (concurrent
read concurrent write) ones, that can be readily used for this assignment. The most recent
assignment uses n(n — 1)/2 threads to find the maximum of n distinct integers. Other good
candidates for this assignment include matrix multiplication, quicksort, merging two sorted
arrays, and parallel merge sort.

The CRCW maximum-finding algorithm is very simple. Let A and V' be two global
arrays. Array A contains the input and V' is a working array. First, set every entry of V' to
1 using n threads, one for each entry. Second, for 1 <17 < j < n, create a thread to compare
A; and A;. It writes a 0 into V; (resp., V;) if A; < A; (resp., A; < A;). Third, use n threads
to check the values of V', one for each element, and output the value A if V}, is non-zero.

The maximum-finding problem, which uses n — 1 comparisons in a sequential program,
can be solved with n(n—1)/2 threads in three steps and each thread uses one comparison. In
this way, we introduce our students to the PRAM model which is usually covered in a theory
or algorithm course without a programming context. Moreover, we can revisit and contrast
the complexity issues of the sequential and multithreaded versions. Most importantly, we
ask students to analyze why this solution does not have race conditions even though many
threads may write simultaneously into the same location of array V. When threads are
created, they must receive array indices as parameters (e.g., i and j for the thread that
compares A; and A;). If a student simply passes the loop indices i and j, it is possible that,
before the created thread runs, the indices may have already been advanced to the next

values. Consequently, race conditions occur, and he/she will learn the first lesson of subtle
race conditions.

4.2 The Semaphore Assignment

Since semaphores are difficult to be used properly, we normally give students two to three
weeks for this assignment. A modified version of the hungry eagles problem was used recently.

A family of eagles has one mother eagle, n baby eagles, and m feeding pots,
where 0 < m < n. Each baby eagle must eat with a feeding pot and each
feeding pot can only serve one baby eagle at any time. The mother eagle eats
elsewhere. Each baby eagle repeats the cycle of playing and eating. Before a
baby eagle can eat, he must find a feeding pot with food; otherwise, this baby
eagle waits. After eating, the feeding pot becomes empty and has to be refilled
by the mother eagle. The mother sleeps until a baby eagle wakes her up. Then,
she hunts for food, fills all feeding pots, and goes back to sleep. The baby eagle
who wants to eat and finds out that all feeding pots are empty wakes up the
mother. Only one baby eagle is allowed to do so. More precisely, even though
two or more baby eagles may discover all feeding pots being empty, only one
of them is allowed to wake up the mother, and all others wait for food.

This problem is very pedagogical for a couple of reasons: (1) it involves all commonly
seen patterns of using semaphores, (2) it can easily cause race conditions, (3) it is similar
to the reader-priority version of the reader-writer problem but has sufficient differences, and
(4) it is simple enough if it is approached correctly. Item (3) requires an elaboration. In
the solution of the reader-priority reader-writer problem, students learn the way to control
who is the first reader in a sequence of reader requests and who is the last reader finishing
the access to a shared data. In the hungry eagles problem, students must handle a similar
situation in which a baby eagle must know if s/he is the first to discover all the feeding pots
being empty. Because only m eagles can eat at the same time, this problem is also similar
to the bounded-buffer problem which allows a certain number of threads to access the buffer
simultaneously. We always advise our students to study the solutions to classic problems
carefully and not to reinvent the wheels, because classic problems are designed to illustrate
commonly seen situations in an operating system.

Figure 2 is a possible straightforward solution. Semaphore Available, initialized to m,
controls the number of baby eagles that can eat at the same time. Semaphores Mom and Food
block the mother eagle and the baby eagle who waked up the mother. The lock Mutex is
used to protect the shared variable Emptied that counts the number of empty feeding pots.
The last baby eagle who finishes eating signals semaphore Available to permit one more
baby eagle to enter. This newcomer will discover all feeding pots being empty, signal Mom,
and wait for Food. The mother eagle waits until it is signaled by a baby eagle. Then, she
resets Emptied to indicate that all feeding pots are full, releases the baby eagle who sent the
signal, and signals the semaphore Available m — 1 times to allow m — 1 baby eagles to eat.
Therefore, semaphores Mom and Food are used for notifying a thread that some events have
occurred, and semaphore Available serves as a counting-down counter. Finally, the tests

of Emptied being equal to m mimic the entering and exiting protocol in the reader-priority
version of the reader-writer problem.

Semaphore Available = m, Mom =0, Food = 0;

Lock Mutex;
int Emptied = 0;
Baby Eagle Mother Eagle
wai i ’Wait(Mom);
if { -+ _ll preparefood
gnal(Mom):~
Wait(Food); Signal(Food);
} for (i=1; i<m; i++)
/l eat Signal(Available);
Lock(Mutex);
Emptied++;
if (Emptied =m

Signal(Available);
Unlock(Mutex);

Figure 2: A possible solution to the hungry eagles problem

The solution in Figure 2 is discussed in class. Students are asked to analyze if the three
accesses to global variable Emptied may cause race conditions. Note that the solution would
be easier if we allow the baby eagle who finishes eating the last feeding pot to signal the
mother. The current version is designed to make sure that the problem is complex enough
for a two-week assignment.

4.3 The Monitor Assignment

Compared with semaphores, the use of monitors is easier. In the discussion of monitors, we
remind students that a monitor is simply a mini-OS with the monitor procedures as system
calls. We normally ask students to simulate a simple operating system feature with a single
monitor (e.g., page replacement and disk head management algorithms). We may also ask
students to redo the semaphore assignment. Recently, we gave students a problem that
allows them to choose a policy, implement it, and discuss how the policy and mechanism can
be separated properly and how they can change policy and/or mechanism without affecting
their monitors significantly. This concept is, again, pioneered by Brinch Hansen [10] and is
commonly referred to as the principle of separation of mechanism and policy [43]. The most
recent one is the following river crossing problem:

A particular river crossing is shared by both cannibals and missionaries. A

single boat is used to cross the river; but, it only seats three people and must

always carry a full load. In order to guarantee the safety of the missionaries,

one missionary and two cannibals are not allowed to be on the same boat;

otherwise, the latter will gang up and eat the missionary. However, all other

combinations are acceptable. Each missionary and cannibal is represented by

a thread. When a cannibal (resp., missionary) arrives the river bank, he must

register to the monitor with a call to the monitor procedure CannibalArrive ()

(resp., MissionaryArrive()). Once a safe boat-load is possible, the involved

cannibals and missionaries are released and shipped to the other side. Then,

the boat, cannibals and missionaries magically come back for another crossing.

10

Because there are a number of choices to compose a safe boat-load, we ask students to
design their policy (e.g., load as many cannibals as possible so that they will not gang up
at the river bank and eat the waiting missionaries), justify the fairness of the chosen policy,
and show that their implementation (i.e., the use of condition variables and signal and wait
calls) will not change significantly if the chosen policy is altered.

4.4 'The Message Passing Assignment

The fourth programming assignment is about message passing. In this assignment, students
learn two important topics: asynchronous message passing and the workcrew concept of
organizing threads. The following is a general description of the workcrew model.

Suppose we have one Administrator thread and some WorkCrew threads.
The Administrator thread assigns work to WorkCrew threads through chan-
nel Assignment and collects results from WorkCrew threads through channel
Report. Each WorkCrew thread retrieves a message from channel Assignment,
does the required work, and either sends the unfinished work back to channel
Assignment or sends the result to Administrator through channel Report. The
system stops when the Administrator thread receives a complete solution to the
problem.

The problem for students to solve is to do quicksort using the workcrew model. To
this end, each message has a form of [L, R], where L and R (L < R) give the unsorted
segment of a global array. Initially, the Administrator thread sends message [1,n] to channel
Assignment, meaning that the global array of n elements is to be sorted.! Each WorkCrew
thread retrieves a message [L, R] from channel Assignment, partitions this segment into two
[L, M] and [M, R], sends them back to channel Assignment, and retrieves the next message.
If the retrieved L and R are very close to each other (e.g., R— L < 2), this WorkCrew thread
sorts the array segment and sends message [L, R| to channel Report to indicate that the
array segment L, R| is sorted. The Administrator thread simply collects results from channel
Report until the whole array is sorted. Figure 3 illustrates this relationship.

—— work to do Administrator

-===p result

-
-
-
-
-
-

| WorkCrew | | WorkCrew | | WorkC‘rew | | WorkCrew |

Figure 3: Quicksort based on message passing

!Note that in a parallel/distributed environment, this array can be distributed to a number of processors
or managed by a central processor.

11

The easiest way of implementing an asynchronous channel is to use a bounded-buffer.
This assignment can also use the message queue feature of Unix/Linux, or sockets if an
instructor prefers to do it on a network. A very subtle point should be made clear. The
relationship among the number of WorkCrew threads, the number of array elements, and the
capacity of channel Assignment is important because deadlock may occur. For example,
suppose channel Assignment is implemented using a bounded-buffer of capacity k£ and there
are more than k& WorkCrew threads. It is possible that all WorkCrew threads send their first
message (i.e., [L, M]) to channel Assignment about the same time. Thus, the buffer is full,
and none of the threads can send their second messages. As a result, we have a deadlock.
We did not mention this problem and wanted to see how many students can discover it.
Interesting enough, more than one-third of the students raised their doubt and some of them
even provided a complete explanation of why deadlock may occur. Then, we discussed some
remedies of this problem.

4.5 The Shared Memory Programming Assignment

By the time we reach this assignment, students have learned about processes and the dif-
ferences between threads and processes. The assignment requires the use of a number of
Unix system calls: fork() for creating a child process, exit () for terminating a process,
wait () for process join, and shmget (), shmat (), shmdt () and shmctl() for shared memory
control. In addition, we also cover the concept of foreground and background processes and
commands for managing processes and shared memory.

This assignment uses the matrix multiplication problem. Suppose we have two matrices
A = [aijlixm and B = [bij];mxn and want to compute their product C' = [¢;j]ixn, Where
Cij = Ypeq Gigby;. To this end, we can create [- n processes of which the (4, j)-th computes
c;j. Therefore, a student program simply reads in the input matrices into one or more shared
memory segments, creates the necessary processes to compute the entries of matrix C', and
prints out the answer when all child processes complete. Note that, similar to the Warm-Up
Assignment (Section 4.1), a number of CRCW PRAM algorithms can also be used.

4.6 The Signal Handling Assignment

This assignment provides students with a chance to handle signals. It is a simple one and
involves only two signals, SIGINT and SIGALRM. In fact, we use the Unix real-time alarm
clock to simulate timer interrupts, and key press Ctrl-C to generate the SIGINT signal for
activating a mini-shell serving as a console program.

Students receive a file that contains a number of functions to be run as processes. They
are asked to design a program that includes a process scheduler and a mini-shell console.
When a SIGINT signal occurs, its handler must activate the mini-shell that accepts a number
of commands such as killing a process, changing the order of execution, suspending and
resuming a process, resetting the clock using Unix system call alarm(), and other house-
keeping type operations. When a SIGALRM signal occurs, which means the real-time alarm
clock goes off, the alarm clock signal handler activates the scheduler so that the next process
can run. However, the given functions are not run but called when it is scheduled to run.

12

While this is a very interesting problem, many students felt that it is not “realistic”
enough because it lacks a touch of actually switching processes. Therefore, we are considering
to use the more reliable POSIX type signals to test the following scheme. Each “user process”
contains a handler for signal SIGUSR1 (resp., SIGUSR2) interpreted as a suspend (resp.,
resume) signal. The SIGUSR1 handler uses sigsuspend() to suspend the running process
until a SIGUSR2 comes. Thus, a SIGUSR2 signal resumes the execution of the suspended
process. Note that both handlers are invisible to user programs. A user process must link
to a user function to be run as a process. The scheduler can create a “user process” with
vfork(), and signal SIGUSR1 to suspend or SIGUSR2 to resume a user process. Therefore,
students can use this mechanism to design a process scheduler with different scheduling
polices.

4.7 The Disk Head Scheduling Assignment

This assignment is about the use of synchronous channels. We can implement various compo-
nents of an operating system simply by treating system calls as message passing activities as
shown in Brinch Hansen’s RC 4000 system kernel [6, 10]. We choose the elevator algorithm
for disk head scheduling; however, virtually all system components (e.g., virtual memory
management) can be implemented in this way.

A system has of a disk, a disk head scheduler, and a synchronous channel
(Figure 4). An I/O request is a pair (ID,track), where ID is the identifier
of a process that makes an 1/O request, and track is the track number on
which the I/O operation will be performed. A process sends an [/O request
to the synchronous channel, and waits until the I/O request is served. The
scheduler repeatedly scans the channel (i.e., polling), and receives and saves
the messages until the channel has no message. Then, the scheduler starts the
disk operation, waits for a while, sends a reply to the corresponding process to
indicate the completion of the I/O request, and goes back to check the channel.

1/0 message

process
roce) 7

1/0 message

[eramer+—reneave]-—{G)

Figure 4: Message passing based disk head scheduling

There are numerous choices for this assignment. The following are some interesting ones:

1. The scheduler may be a page replacement algorithm (e.g., FIFO, LRU and CLOCK).
Processes randomly or based on some statistical distribution set the referenced and

13

changed bits, and generate and send page requests to the channel. The page replace-
ment algorithm selects a victim, modifies the page tables, and sends a message back
to the process, indicating the completion of handling a page fault. It may also collect
statistics of a particular replacement algorithm. Moreover, the page reference string of
each process may also be a fixed one generated before the system is run.

2. In the past years, we also used linear array of threads for this assignment. Good
examples include sieve, exchange sort, and prefix computation.

3. We also used more complex schemes such as systolic matrix multiplication, Gaussian
elimination, and sorting network.

4.8 The Mini-Project

The mini-project takes the last two weeks. Students are provided with a scaled down ver-
sion of mtuThread, a user-level kernel that supports non-preemptive multithreaded program-
ming [3]. It uses coroutines implemented with ANSI C functions setjmp () and longjmp() for
thread context switching (Section 3.3). mtuThread supports the following functionality: (1)
creating, terminating, joining, suspending and resuming a thread with THREAD_CREATE(),
THREAD_EXIT (), THREAD_JOIN(), THREAD_SUSPEND() and THREAD_RESUME(); (2) yielding
the control to other threads with THREAD_YIELD(); (3) creating, destroying, locking and un-
locking a mutex lock with MUTEX_INIT (), MUTEX_DESTROY (), MUTEX_LOCK() and MUTEX_UNLOCK();
(4) creating, destroying, signaling and waiting on a semaphore with SEMAPHORE_INIT(),
SEMAPHORE_DESTROY (), SEMAPHORE_SIGNAL () and SEMAPHORE_WAIT(); and (5) creating, de-
stroying, sending a message to and receiving a message from an asynchronous channel of ca-
pacity one with MSG_INIT(), MSG_DESTROY (), MSG_SEND() and MSG_RECEIVE(). Therefore,
mtuThread is a miniature of a typical multithreaded system.

Students receive a working version of mtuThread in object format, and a part of the work-
ing version in source format with some components replaced with empty templates. This
project asks students to set their policy for each of these missing components and implement
them accordingly. Possible components for students to modify and extend include (1) adding
priority and using a priority type scheduler, (2) implementing semaphores, (3) implement-
ing condition variables, (4) implementing Hoare or Mesa style monitors with semaphores
and condition variables, (5) implementing synchronous channels and broadcasting, and (6)
implementing thread suspension and resume. We provide a number of example programs
for students to test their implementations. Moreover, we also ask students to solve some
problems using their systems. These problems usually include various versions of the dining-
philosophers problem, the smoker problem, the sleeping barber problem, exchange sort, a
user-level mini-scheduler using thread suspend and resume, and some others. We make it
very specific that a problem can only use a particular type of synchronization primitive. In
this way, students will be able to understand the inner working of a kernel that supports
threads and the implementation of synchronization primitives.

14

5 Evaluation

Materials presented in this paper have been used since the 1998 academic year. However,
since we were on a quarter system until 2000, not all seven programming assignments were
used. In general, we either used an asynchronous (Section 4.4) or a synchronous (Section 4.7)
communication problem, and the Unix process and shared memory component were not used.
Consequently, five programming assignments and one mini-project were used. Only during
the 2000 academic year everything discussed in this paper was implemented. We tried our
best to maintain the same level of difficulty for exam and programming problems so that
comparisons would become possible. Unfortunately, many factors may inject unexpected bias
into the grading process. For example, the quality of the student body may not be uniform,
and graders of programming assignments may use different grading standards, especially in
dealing with the issue of leniency. Furthermore, year 2000 is the first year that the semester
system was in place and students and faculty were both struggling to make adjustments.
Therefore, the data and analysis presented below should be considered as the results of
analyzing a dynamic environment rather than a stable one.

The data to be used for this evaluation analysis consist of student scores collected in the
above mentioned years (i.e., 1997 to 2000). We choose to use non-parametric methods [26]
rather than the popular parametric approach even though the former are less powerful,
because score distributions are unlikely to be normally distributed. Table 2 shows all the
basic statistics. The averages of the last three years are larger than that of 1997, which means
our approach may have a positive effect on student learning. The skew statistics indicate
that the score distributions all have its peak (i.e., mode) toward the higher end (i.e., better
performance). However, the 1997 data is not as skewed (-0.09) toward the higher end as
the last three years are. The positive kurtosis statistics of 1998 and 1999 indicate that the
scores are concentrated, while the negative statistics of 1997 and 2000, especially that of
1997, show the scores are flatter. The low variance of 1998 is a surprise, which may indicate
that the quality of students are very uniform.

Table 2: Basic Statistics

| Statistics | 1997 | 1998 | 1999 | 2000 |
Size 14 | 31 37 17
Mean 75.64 | 81.84 | 79.68 | 78.47
Median | 75.50 | 84.00 | 82.00 | 79.00
Variance | 97.79 | 67.61 | 118.67 | 108.89
Skew -0.09 | -0.89 | -1.03 [-0.26
Kurtosis | -1.08 | 0.28 0.58 | -0.96

Table 3 shows the statistics for testing if the score distribution of each year is normally
distributed [15]. From the table, the score distribution of 1997 is highly likely to be nor-
mal with a probability of 0.99; the score distribution of 2000 is likely to be normal with

15

a probability of 0.97; and the score distributions of 1998 and 1999 are unlikely to be nor-
mal. Therefore, we cannot rely on the conventional t- and F- statistics and ANOVA type
techniques to compare student performance among these four years.

Table 3: Lillifor Test

| Year 1997] 1998 | 1999 | 2000 |

Statistics | 0.07 | 0.20 | 0.16 | 0.12
Probability | 0.99 | 0.16 | 0.33 | 0.97

The next step is to decide if the score distributions are all the same. If it is the case, there
is no statistically significant improvement in student performance. To this end, we use the
Kolmogorov-Smirnov test as shown in Table 4. Each entry of this table has two numbers.
The first number gives the Kolmogorov-Smirnov statistic for testing if two distributions are
equal, and the second is the corresponding probability. It is clear that the distributions of
1997 and 2000 are quite similar with a probability of 0.887. Since other probability values
are very low, we conclude that these four score distributions are statistically different.

Table 4: Kolmogorov-Smirnov Test

1998 | 0.399
0.093

1999 | 0.266 | 0.201
0.467 | 0.501

2000 | 0.210 | 0.298 | 0.234
0.887 | 0.284 | 0.548
1997 1998 1999

Next we investigate if the variances are the same even though they look quite different
in Table 2. Since we know that these score distributions are not normally distributed, we
cannot use the ANOVA type F-tests. Instead, we choose to use the Jackknife test as shown
in Table 5. With this test, the null hypothesis Hy is v2 = 1 and H; is v? # 1, where 42 is the
quotient of dividing the unknown variance of the first population by the unknown variance
of the second. The test statistics in Table 5 are asymptotically normal. Surprisingly enough,
all test statistics suggest that the null hypothesis should not be rejected (i.e., the variances
of the unknown score distributions are statistically equal), although there is mild evidence
showing that the variance of 1998 is smaller than those of 2000 and 2001. This is what we
learned from Table 2

To the author’s best knowledge, there is no more powerful non-parametric method for
comparing two means without extra assumptions about the distribution or location param-
eter (i.e., median). Thus, in order to compare the means we assume the unknown score

16

Table 5: Jackknife Dispersion Test

1998 | 0.787
1999 | -0.376 | -1.240
2000 | -0.199 | -1.045 0.185‘

1997 1998 1999

distribution is symmetric about the unknown median. In this way, we can use Fligner-
Policello test. The statistics are computed in Table 6 and are asymptotically normal. Since
2.027 is greater than zg 05 = 1.64, we conclude that the average score of 1998 is greater than
that of 1997. Similarly, a mild evidence shows that the average of 1999 may also be greater
than that of 1997.

Table 6: Fligner-Policello Test

1998 | 2.027

1999 | 1.448 | -0.343

2000 | 0.783 | -1.097 | -0.599 ‘
1997 1998 1999

Given the above evidence, we have the following conclusions. First, after the imple-
mentation of our approach, the mode shifts from a symmetric normal distribution of 1997
to the right in all subsequent years. This suggests to us that the majority of the students
have an improved learning process. The shift of score averages is also supported by the
Fligner-Policello test under a mild assumption. Second, the variance values are statistically
equal. This means that the diversity of student learning capability does not change over
years. However, the shift of average and median scores suggests that student performed bet-
ter under the new approach. However, year 2001 is definitely a special case due to a change
to the learning and teaching environment. Numerically, the performance in year 2000 is still
better than that of 1997. More evidence is needed to justify this claim statistically. More-
over, we read student submissions and solutions to exam problems, and found out that their
improvement is significant. This qualitative finding is not what a statistical analysis can
answer. In summary, we believe our approach does improve student learning in a significant
way and has helped students write better mutlithreaded programs.

6 Concluding Remarks

The operating systems course presented in this paper has been taught ten times in the past
six years by the author. The following is a list of important findings:

17

1. The fundamental of threads is easy; however, the correct use of semaphores is the most
challenging task for many students. This is not because students do not understand the
concept of semaphores. Instead, it is because the unstructured nature of semaphores
frequently causes unexpected race conditions and deadlocks. See [14] for a detailed
account, of this difficulty along with a set of examples that demonstrates subtle race
conditions. To help students overcome this problem, we take a slow pace and discuss
semaphore and its use in detail.

2. The dynamic behavior of threads makes debugging very difficult, because a bug that
appears in one run may not occur in the next. Worse, a bug may never occur. To
address this problem, under the support of NSF, we are developing and testing a sys-
tem ThreadMentor. This system consists of a set of class libraries [13] that supports
all commonly used thread related features and synchronization primitives, and a visu-
alization subsystem [2] that can display the execution behavior of all involved threads
and synchronization primitives. The visualization system can help students pinpoint
potential problems visually.

3. Although we did not use a pedagogical operating system such as MINIX or Nachos
for programming assignments, our user-level kernel mtuThread that supports non-
preemptive multithreaded programming [3] does provide students with a realistic en-
vironment for practicing the implementation of various type of thread schedulers, syn-
chronization primitives and other low level components. Other components such as
disk head scheduling and demand paging can be done in higher level layers once the
dispatcher layer becomes available.

4. This course offers a number of benefits to students. First, it gives them a comprehensive
introduction to a new technology that is now very popular in high-end applications.
Second, they learn a lot of other interesting material that is normally not available
in a typical operating systems course. In particular, students are most interested in
channels and its applications in parallel and distributed programming and in system
implementation. They also like the assignments that involves the PRAM models.
Third, this course prepares the students for subsequent courses such as networking,
advanced operating systems, parallel programming, and distributed systems.

The most recent course syllabus, programming assignments, exams and solutions, and
web-based course notes are available from

http://www.csl.mtu.edu/cs4411.ck/www/Home.html
ThreadMentor and its web-based tutorial are available from

http://www.cs.mtu.edu/ shene/NSF-3

18

Acknowledgments

The author’s work was partially supported by the National Science Foundation under grants
DUE-9653244, DUE-9752244, DUE-9952509, DUE-9952621 and DUE-0127401, and by a
Michigan Research Excellence Fund 1998-1999.

References

1]

Atkin, B. and Sirer, E. G., PortOS: An Educational Operating System for the Post-
PC Environment, ACM Thirty-third Annual SIGCSE Technical Symposium, Northern
Kentucky, February 27 - March 3, 2002, pp. 116-120.

Bedy, M., Carr, S., and Shene, C.-K., A Visualization System for Multithreaded Pro-
gramming, ACM Thirty-first Annual SIGCSE Technical Symposium, Austin, Texas,
March 8 — 12, 2000, pp. 1-5.

Bedy, M., Carr, S., Huang, X., and Shene, C.-K., The Design and Construction of a User-
Level Kernel for Teaching Multithreaded Programming, 29th ASEE/IEEE Frontiers in
Education, November 10-13, San Juan, Puerto Rico, Vol. II (1999), pp. (12b3-1)—(12b3-
6).

Ben-Ari, M., Principles of Concurrent Programming, Prentice Hall, 1982.

Berk, T. S., A Simple Student Environment for Lightweight Process Concurrent Pro-
gramming Using SunOS, ACM Twenty-seven Annual SIGCSE Technical Symposium,
Philadelphia, Pennsylvania, February 15 - 18, 1996, pp. 165-169.

Brinch Hansen, P., The Nucleus of a Multiprogramming System, Communications of

the ACM, Vol. 13 (1970), No. 4 (April), pp. 238-241, 250.
Brinch Hansen, P., Operating System Principles, Prentice Hall, 1973.

Brinch Hansen, P., The Programming Language Concurrent Pascal, IEEFE Transactions
on Software Engineering, Vol. 1 (1975), No. 2 (June), pp. 199-207.

Brinch Hansen, P., Java’s Insecure Parallelism, SIGPLAN Notices, Vol. 34 (1999), No.
4 (April), pp. 38-45.

Brinch Hansen, P., RC 4000 Software: Multiprogramming System, in Classic Operating
Systems, edited by Per Brinch Hansen, Springer-Verlag, 2001.

Burns, A. and Davies, G., Concurrent Programming, Addison-Wesley, 1993.

Bynum, B. and Camp, T., After You, Alfonse: A Mutual Exclusion Toolkit, ACM
Twenty-seven Annual SIGCSE Technical Symposium, Philadelphia, Pennsylvania,
February 15 - 18, 1996, pp. 170-174.

19

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Carr, S. and Shene, C.-K., A Portable Class Library for Teaching Multithreaded Pro-
gramming, ACM 5th ITiCSE 2000 Conference, University of Helsinki, Helsinki, Finland,
July 11-13, 2000, pp. 124-127.

Carr, S., Mayo, J. and Shene, C.-K., Race Conditions: A Case Study, The Journal of
Computing in Small Colleges, Vol. 17 (2001), No. 1 (October), pp. 88-102.

Conover, W. J., Practical Nonparametric Statistics, Third Edition, John Wiley & Sons,
1999..

Dickinson, J., Operating Systems Projects Built on a Simple Hardware Simulator, ACM
Thirty-first Annual SIGCSE Technical Symposium, Austin, Texas, March 8 — 12, 2000,
pp- 320-324.

Donaldson, J. L., An Architecture-Dependent Operating System Project, ACM Thirty-
second Annual SIGCSE Technical Symposium, Charlotte, North Carolina, February 21
- 25, 2001, pp. 322-326.

Downey, A. B., Teaching Experimental Design in an Operating Systems Course, ACM
Thirtieth Annual SIGCSE Technical Symposium, New Orleans, Louisiana, March 1 -
28, 1999, pp. 316-320.

English, J., Multithreading in C++, ACM SIGPLAN Notices, Vol. 30 (1995), No. 4,
pp- 21-26.

Hartley, S. J., Experience with the Language SR in an Undergraduate Operating Sys-
tems Course, ACM Twenty-third Annual SIGCSE Technical Symposium, Kansas City,
Missouri, March 5 - 6, 1992, pp. 176-180.

Hartley, S. J., “Alfonse, Your Java Is Ready!” ACM Twenty-ninth Annual SIGCSE
Technical Symposium, Atlanta, Georgia, February 26 - March 1, 1998, pp. 247-251.

Hartley, S. J., “Alfonse, Wait Here for My Signal!” ACM Thirtieth Annual SIGCSE
Technical Symposium, New Orleans, Louisiana, March 1 - 28, 1999, pp. 58-62.

Hartley, S. J., “Alfonse, You Have a Message!” ACM Thirty-first Annual SIGCSE
Technical Symposium, Austin, Texas, March 8 — 12, 2000, pp. 60—64.

Hartley, S. J., “Alfonse, Give Me a Calll” ACM Thirty-second Annual SIGCSE Tech-
nical Symposium, Charlotte, North Carolina, February 21 - 25, 2001, pp. 229-232.

Holland, D. A., Lim, A. T. and Seltzer, M. 1., A New Instructional Operating System,
ACM Thirty-third Annual SIGCSE Technical Symposium, Northern Kentucky, February
27 - March 3, 2002, pp. 111-115.

Hollander, M. and Wolfe, D. A., Nonparametric Statistical Methods, Second Edition,
Wiley, 1999.

20

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

Holliday, M. A., System Calls and Interrupt Vectors in an Operating Systems Course,
ACM Twenty-eight Annual SIGCSE Technical Symposium, San Jose, California, Febru-
ary 27 - March 1, 1997, pp. 53-57.

Hughes, L., Teaching Operating Systems Using Turbo C, ACM Twenty-third Annual
SIGCSE Technical Symposium, Kansas City, Missouri, March 5 - 6, 1992, pp. 181-186.

Hughes, L., An Applied Approach to Teaching the Fundamentals of Operating Systems,
Computer Science Education, Vol. 10 (2000), No. 1 (April), pp. 1-23.

Khuri, S. and Hsu, H.-C., Visualizing the CPU Scheduler and Page Replacement Algo-
rithms, ACM Thirtieth Annual SIGCSE Technical Symposium, New Orleans, Louisiana,
March 1 - 28, 1999, pp. 227-231.

MIX Software, Using Multi-C: A Portable Multithreaded C' Programming Library, Pren-
tice Hall, 1994.

Moen, S., A Low-Tech Introduction to Operating Systems, ACM Twenty-sixth Annual
SIGCSE Technical Symposium, Nashville, Tennessee, March 2 - 4, 1995, pp. 149-153.

Morsiani, M. and Davoli, R., Learning Operating Systems Structure and Implementa-
tion through the MPS Computer System Simulator, ACM Thirtieth Annual SIGCSE
Technical Symposium, New Orleans, Louisiana, March 1 - 28, 1999, pp. 63—67.

Netzer, R. H. B. and Miller, B. P., On the Complexity of Event Ordering for Shared-
Memory Parallel Program Executions, International Conference on Parallel Processing,
August 1990, pp. 1193-1197.

Null, L., Integrating Concurrent Programming into an Introductory Operating Systems
Class Using BACI, The Journal of Computing in Small Colleges, Vol. 14 (1999), No. 3
(March), pp. 288-298.

Robbins, S. and Robbins, K. A., Empirical Exploration in Undergraduate Operat-
ing Systems, ACM Thirtieth Annual SIGCSE Technical Symposium, New Orleans,
Louisiana, March 1 - 28, 1999, pp. 311-315.

Shene, C.-K., Multithreaded Programming in an Introduction to Operating Systems
Course, ACM Twenty-ninth Annual SIGCSE Technical Symposium, Atlanta, Georgia,
February 26 - March 1, 1998, pp. 242-246.

Shene, C.-K. and Carr, S., The Design of a Multithreaded Programming Course and
Its Accompanying Software Tools, The Journal of Computing in Small Colleges, Vol.
14 (1998), No. 1 (November), pp. 12-24.

Silberschatz, A. and Galvin, P. B., Operating System Concepts, 5th edition, 1997.

Stallings, W., Operating Systems, 4th edition, Prentice Hall, 2001.

21

[41] Tanenbaum, A. S., Modern Operating Systems, 2nd edition, Prentice Hall, 2001.

[42] Wagner, T. D. and Ressler, E. K., A Practical Approach to Reinforcing Concepts in
Introductory Operating Systems, ACM Twenty-eight Annual SIGCSE Technical Sym-
posium, San Jose, California, February 27 - March 1, 1997, pp. 44-47.

[43] Wulf, W. A., Cohen, E. S., Corwin, W. M., Jones, A. K., Levin, R., Pierson, C. and
Pollack, J., Hydra: The Kernel of a Multiprocessor Operating System, Communications
of the ACM, Vol. 17 (1974), No. 6 (June), pp. 337-345.

[44] Ziegler, U., Discovery Learning in Introductory Operating System Courses, ACM Thir-
tieth Annual SIGCSE Technical Symposium, New Orleans, Louisiana, March 1 - 28,
1999, pp. 321-325.

22

