
ConcurrentMentor: A Visualization System for Distributed

Programming Education ∗

Steve Carr, Changpeng Fang, Tim Jozwowski, Jean Mayo and Ching-Kuang Shene
Department of Computer Science
Michigan Technological University

Houghton, MI 49931
Email: {carr, cfang, trjozwow, jmayo, shene}@mtu.edu

Abstract The study of distributed systems

is increasingly fundamental to a Computer

Science curriculum. Yet, the design of ap-

plications to run over distributed systems is

complex and mastery of fundamental con-

cepts is challenging for students. In order

to assist in distributed systems instruction,

we have developed ConcurrentMentor, a vi-

sualization system for distributed program-

ming. This system reveals the behavior of a

distributed program and its underlying com-

munication protocols while the program ex-

ecutes. Input to the visualization system is

generated by an accompanying communica-

tion library that closely follows abstractions

of communication found in distributed sys-

tems literature. No program instrumenta-

tion is required.

Keywords: Concurrent programming, visualiza-
tion, education

1 Motivation

Distributed programming is increasingly fun-
damental to undergraduate Computer Science
education [1]. Instruction in this area is corre-
spondingly moving ever earlier into the under-
graduate curriculum. Yet, the design of ap-

∗This work supported in part by the National Sci-
ence Foundation under grants DUE-9752244 and DUE-
9952509. The fourth author was also supported by
National Science Foundation CAREER award CCR-
9984862.

plications to run over distributed systems is
significantly more complex than the design of
applications that run on a single system. Mas-
tery of fundamental concepts is challenging to
students.

We have developed a visualization system,
ConcurrentMentor, that helps students under-
stand fundamental concepts of distributed sys-
tems by illustrating characteristics of an exe-
cuting program. The visualization system gets
input from a communication library. The li-
brary supports interprocess communication us-
ing the abstraction of synchronous and asyn-
chronous channels between processes, an ab-
straction that closely follows that found in the
distributed systems literature [2]. Program in-
strumentation is not required.

The visualization system provides several
views of an execution. The Space-time Di-
agram view depicts the causal relationships
among events of interest. The History Graph
view depicts the states through which a process
passes, e.g., “blocked on synchronous message
send”, “running”, etc. The Process Topol-
ogy view depicts the channels that exist among
system processes, and the Statistics view dis-
plays characteristics of the message traffic that
flows along these channels.

The message passing library and distributed
program visualization are part of a larger sys-
tem designed to present concepts of concurrent
programming using a unified approach. The
communication classes and accompanying vi-
sualization are available to threaded applica-



tions as well. Further, additional library func-
tions, and accompanying visualizations, spe-
cific to threads, e.g., monitors and semaphores,
are available [3, 4]. Support for data-parallel
programming is under development.

2 Related Work

Visualization systems generally either perform
algorithm animation or program behavior visu-
alization. The former animates the execution
of an algorithm, while the latter displays the
execution behavior of a program. The visual-
ization can be either real-time or post-mortem.
A post-mortem system saves events that occur
during an execution and plays them back with
another program. A real-time system gener-
ates the displays while the program executes.

Hartley presented an approach for visualiza-
tion in which a user program saves data about
an execution to a file. XTANGO [5] is used
to play back an execution when the program
completes. Naps and Chan incorporate par-
allel program animation into Multi-Pascal [6].
One of the most well-known systems for par-
allel program animation is Stasko’s PARADE,
which is based on POLKA [7]. Cai presents a
system for OCCAM programs [8].

Most freely available and well-known sys-
tems are post-mortem, including XTANGO,
POLKA, and PARADE. These systems have
the advantage that all data relevant to the ex-
ecution has been saved and can be replayed
and analyzed at any time. They have the dis-
advantage that a large volume of data must be
saved to support the replay, the program must
be explicitly instrumented, and the execution
runs to completion before the replay begins.

The system presented in this paper allows
visualization of a program during execution.
This is a natural and gratifying approach for
students, whose program analysis experience is
based upon program debugging systems that
operate on an executing program. Students
are also pleased by an expeditious response
from the software they run. Use of the sys-
tem does not require explicit instrumentation

of user programs. Support is also provided for
recording visualization data, at the same time
it is displayed, for playback at a later time.
User programs are written in C++.

3 Communication Library

The communication library abstracts commu-
nication at two levels: channel and topology
[2]. Channels or topologies are objects within
the user program. The implementation of each
object provides input to the visualization sys-
tem invisibly to the user. The channel and
topology classes are described in turn below.

Channels The goal of the channel classes is
to provide an abstraction of communication
that ties closely to that encountered in the
literature. Two channel types have been im-
plemented; both types are bidirectional. The
first class is a synchronous one-to-one channel.
Along this channel, both send and receive are
blocking [9].

The second class implements an asyn-
chronous one-to-one channel. Along these
channels, sends are non-blocking; receives can
be blocking or non-blocking [9]. The asyn-
chronous channel class supports optional mes-
sage loss. Loss is specified, when the channel
is created, as either a value between zero and
one, or via an integer function with a single
integer input. Messages are dropped immedi-
ately prior to the point at which they would be
sent along a totally reliable channel.

Vector time is maintained on behalf of user
applications. Vector time is used to determine
the happened-before relation [10] among events
that occur within a distributed computation
[11]. Users can query, and increment the lo-
cal component of, the current local vector time
within an application.

Figure 1 depicts code that creates an asyn-
chronous channel between processes numbered
zero and one.1 Each process sends and then
receives a message on the channel. Messages

1Identifiers are assigned by a control process when
the processes comprising an application are spawned.



char msg[]="False pearls before real swine";

VectorClock VectorTime;

channel1 = new AsynOnetoOneChannel(1,

myID,dropSome(myID));

channel1.Send((void *)msg,sizeof(msg));

channel1.Receive((void *)msg,sizeof(msg));

VectorTime[myID]=VectorTime[myID]+1;

VectorTime.Print();

(a) Process Zero

char msg[]="1,1,2,3,5,8,13,21,34";

VectorClock VectorTime;

channel0 = new AsynOnetoOneChannel(0,

myID,0.5);

channel0.Send((void *)msg,sizeof(msg));

channel0.Receive((void *)msg,sizeof(msg));

VectorTime.Print();

(b) Process One

Figure 1: Message Exchange along Asyn-
chronous Channel

along the channel from process zero to pro-
cess one will be dropped whenever the func-
tion dropSome() (defined elsewhere) evaluates
to a value less than one. Fifty percent of the
messages from process one to process zero will
be dropped. Process zero explicitly increments
the local component of its clock. (This will
advance the local component beyond the value
that results from the previous message receive
event.) Both processes print the current value
of the vector clock.

Topology Topologies facilitate creation of
multiple channels via instantiation of a sin-
gle class. Standard topologies, derived from
the topology class, are also provided includ-
ing: fully-connected, star, linear array, ring,
grid, and torus. The recipient of a message
within a topology must be directly connected
to the message sender. Topologies are con-
structed with reliable asynchronous channels.

theGrid = new Grid(ROWS,COLS,myID);

if ((myID % COLS) != 3)

theGrid.send(RIGHT,(void *)&myID,

sizeof(myID));

if ((myID % COLS) != 0)

theGrid.send(LEFT,(void *)&myID,

sizeof(myID));

if (myID >= COLS)

theGrid.send(UP,(void *)&myID,

sizeof(myID));

if (myID < (ROWS-1)*COLS)

theGrid.send(DOWN,(void *)&myID,

sizeof(myID));

Figure 2: Exchange of ID Among Grid Neigh-
bors

Figure 2 depicts code for exchange of identi-
fiers among all neighbors in a grid topology.
The macros RIGHT,LEFT,UP,DOWN are defined
within the system. Similar macros are defined
as appropriate to a given topology.

Within the topology class, and each
standard topology, the methods Send(),
Receive(), Broadcast(), Scatter(),
Gather(), and Reduce() are provided.
Scatter, Gather, and Reduce currently op-
erate on one-dimensional arrays (consecutive
storage). Support for operations on some
non-consecutive storage in two-dimensional
arrays (e.g., sub-matrix) is under development.

A topology editor allows rapid creation of
complex topologies via a graphical interface
[12]. The editor outputs a file containing spec-
ification of a class derived from the topology
class. This file can be included by the user
in her code to easily create the constructed
topology. The derived class supports broad-
cast, scatter, gather, and reduce functions for
each custom topology.

4 Visualization

The visualization system intends to help stu-
dent visualize the execution of distributed pro-
grams. To enhance its utility, the software runs



Figure 3: Main Window

over Linux and Solaris. Use of the visualization
system, when using the communication library,
is optional. Each of the main visualization sys-
tem windows is described in turn below.

Main Window The main window, depicted
in Figure 3, functions in three ways. First it
provides a way to navigate through the dif-
ferent windows of ConcurrentMentor. Win-
dows that can be reached through the main
window include: Space-time Diagram, His-
tory Graph, Process Topology, Statistics,
Process, and Channel. The first four may
be reached by their corresponding buttons in
the lower left portion of the window. These
views are described in more detail below. The
remaining buttons, in the upper right portion
of the window, lead to display of a text list
of the currently created elements within the
main window.2 Figure 3 contains a list of cre-
ated processes, from activation of the Process
button. Selection of a list item causes a corre-

2The Displays, Dist Array, Mutex, and Barrier
buttons invoke functionality that is currently under de-
velopment.

Figure 4: History Graph View

sponding window to open displaying more de-
tailed information about the chosen element.
For example, selecting the text list item asso-
ciated with a particular channel will open a
window that displays messages that have been
sent along, or that are currently on, the se-
lected channel.

The main window is also used to control the
display of events throughout the system. The
Communications panel, in the lower right
corner of the main window (Figure 3), allows
one to step through the events of the program,
playing the incoming events at different speeds,
or to pause the execution.

Finally, the main window can be used to
save and play back a particular execution of
the program. If, for example, a student finds a
deadlock within an execution, the visualization
data may be saved and then re-played.

History Graph View The History
Graph view depicts states and events of
interest through which a process passes during
its lifetime. A history graph view for a four
process execution, using synchronous message
passing, is depicted in Figure 4. Each process
has a corresponding event line with events



Figure 5: Space-time Diagram View

of interest noted by tags. The color of the
event line for a process reflects the process’
state. Events are depicted, one per horizontal
line, as they are received by the visualization
system. Selection of an event brings up a
window with the code line that generated the
event highlighted.

Events that currently appear on the history
graph include initiation of a message send and
completion of a message receive. When a pro-
cess blocks on a synchronous send, the event
line changes from green to red. The event
line changes from red to green when the send
is complete. The vector time associated with
events can optionally be displayed in the pro-
cess history view.

Messages are optionally depicted via a line
from the event that corresponds to initiation
of a send with the event that corresponds to
completion of a message receive. When mes-
sage passing is synchronous, an acknowledg-
ment message is depicted on the history graph,
in addition to the message that travels from
originator to recipient.3

3A receive is complete upon send of an acknowledg-
ment; a send is complete upon receipt of the acknowl-
edgment.

Figure 6: Process Topology View

We have found that the message passing pro-
grams of inexperienced students often contain
mismatched sends and receives. The history
graph helps a student to detect resulting dead-
locks, as well as the offending lines of code.

We are currently adding support for addi-
tional events including: request for a critical
section, acquisition of a critical section, release
of a critical section, entry into a barrier, exit
from a barrier, and entry into, and exit from,
broadcast, scatter, gather, and reduce.

Space-Time Diagram View The Space-
time Diagram depicts the causal relationship
among events in an execution. (See Figure 5.)
Event lines, similar to those for the process his-
tory view, depict the events that occur within
each process. Events in this view are limited
to message send and message receive. Vector
times may optionally be displayed within the
space time diagram. Message send and receive
events may also optionally be connected.

Students can explore the causal relationship
among events by sliding events up and down
the event lines. Event height is (only) re-
stricted so that the causal order is not violated.
(More precisely, if a → b, where ’→’ denotes
Lamport’s happened-before relation [10], then
the height of event b must be greater than the
height of event a.)



Figure 7: Statistics View

Process Topology View The Process
Topology view depicts the channels among
processes. Figure 6 depicts a topology window
for a torus containing nine nodes. An icon ap-
pears for each process in the system. An icon
reflects the current state of the corresponding
process: processing, sending message, receiv-
ing message, or terminated. A user may move
the icons to create the best possible depiction.

Statistics View The Statistics view dis-
plays characteristics of the message traffic that
has flowed across a particular channel (Figure
7). The top third of the window displays the
total number of messages sent along a chan-
nel, the middle third displays the total number
of bytes sent along the channel, and the lower
third displays average message size in bytes. A
statistic is displayed for the selected channel,
and a different channel may be selected for each
statistic.

5 Conclusions and Future
Work

We have developed a visualization system that
reveals the execution behavior of distributed
programs. The system takes input, invisibly
to the user, from an included communication

library. The library provides two levels of ab-
straction, channel and topology, for the com-
munication that occurs among processes and
threads. A topology editor allows development
of custom topologies via a graphical interface.

We are currently adding class libraries for
distributed arrays, as well as accompanying vi-
sualization. Comprehensive, detailed informa-
tion on our work is available at http://www.
cs.mtu.edu/~shene/NSF-3/index.html.

References

[1] ACM. Computing Curricula 2001
(Steelman Draft, August 1, 2001).
http://www.acm.org/sigs/sigcse/
cc2001/steelman/, 2001.

[2] Steve Carr, Changpeng Fang, Tim Joz-
wowski, Jean Mayo, and Ching-Kuang
Shene. A communication library to sup-
port concurrent programming courses. In
Proceedings of the 33rd SIGCSE techni-
cal symposium on Computer science edu-
cation, pages 360–364. ACM Press, 2002.

[3] Michael Bedy, Steve Carr, Xianglong
Huang, and Ching-Kuang Shene. A vi-
sualization system for multithreaded pro-
gramming. In Proceedings of the 31st
Annual SIGCSE Technical Symposium on
Computer Science Education, pages 1–5,
Austin, TX, March 2000.

[4] Steve Carr and Ching-Kuang Shene. A
portable class library for teaching multi-
threaded programming. In Proceedings of
the Fifth Annual Conference on Innova-
tion and Technology in Computer Science
Education, pages 124–127, Helsinki, Fin-
land, July 2000.

[5] Stephen J. Hartley. Animating operat-
ing systems algorithms with XTANGO.
In Daniel Joyce, editor, Proceedings of
the 25th Technical Symposium on Com-
puter Science Education, volume 26(1) of
SIGCSE Bulletin, pages 344–348, New
York, NY, USA, March 1994. ACM Press.



[6] Thomas L. Naps and Eric E. Chan. Using
visualization to teach parallel algorithms.
In Daniel Joyce, editor, Proceedings of the
Thirtieth SIGCSE Technical Symposium
on Computer Science Education, volume
31.1 of SIGCSE Bulletin, pages 232–236,
N. Y., March 24–28 1999. ACM Press.

[7] John T. Stasko. The PARADE environ-
ment for visualizing parallel program exe-
cutions: A progress report. Technical Re-
port GIT-GVU-95-03, Graphics, Visual-
ization, and Usability Center Georgia In-
stitute of Technology, Atlanta, GA, Jan-
uary 1995.

[8] Wentong T. Cai, Wendy J. Milne, and
Stephen J. Turner. Graphical views of
the behavior of parallel programs. Jour-
nal of Parallel and Distributed Comput-
ing, 18(2):223–230, June 1993.

[9] G. Coulouris, J. Dollimore, and T. Kind-
berg. Distributed Systems Concepts and
Design. Addison-Wesley, third edition,
2001.

[10] L. Lamport. Time, clocks, and the or-
dering of events in a distributed system.
Communications of the ACM, 21(7):558–
565, 1978.

[11] Friedemann Mattern. Virtual time and
global states of distributed systems. In
M. Cosnard et. al., editor, Parallel and
Distributed Algorithms: Proceedings of the
International Workshop on Parallel and
Distributed Algorithms, pages 215–226.
Elsevier Science Publishers B. V., 1989.

[12] Steve Carr, Ping Chen, Timothy R. Joz-
wowski, Jean Mayo, and Ching-Kuang
Shene. Channels, visualization, and topol-
ogy editor. In Proceedings of the 7th an-
nual conference on Innovation and tech-
nology in computer science education,
pages 106–110. ACM Press, 2002.


