TOWARD AN INTUITIVE AND INTERESTING THEORY
COURSE: THE FIRST STEP OF A ROAD MAP

John L. Lowther and Ching-Kuang Shene
Department of Computer Science
Michigan Technological University
Houghton, M1 49931-1295
E-mail: {john,shene} @mtu.edu

Abstract

This paper presents the first step of an attempt in designing intuitive and
interesting materialsfor atheory course. The materials developed cover the AL5 Basic
Computability unit of the ACM/IEEE Computing Curricula 2001, and can beusedin a
stand-alone theory course. This paper describes a “programming approach” to basic
computability. Topics include a proof of the Halting Problem and the use of a simple
reduction technique to prove other interesting problems. Details of the chosen
computation model, the construction of a universal program, and the Isomorphism
Theorem are also discussed. Future topics for this course include advanced
computability, computability with real numbers, and the connection between theory and
programming languages.

1. INTRODUCTION

In the mind of many students, atheory course is boring, dry, useless, and lacks
interesting topics except for, possibly, the Halting Problem. Computation theory was
developed at the turn of the 20th century as a direct response to David Hilbert's
Entschei dungsproblem: find amechanical procedureto proveal | mathematical theorems.
In today's language, this mechanical procedure is an algorithm. Eventually, three
equivalent approaches, A-definability of Church-Kleene(1932-34), general recursiveness
of Gddel-Herbrand (1934) and Turing machines (1936), were developed. In the 50's,
A-cal culusbecamethefoundation of typetheory and programming language devel opment
(eg., LISP, ISWIM and ML); general recursiveness was developed into the now
well-known recursive function theory; and Turing machines becameastandard computer
science topic. Thus, it is hard to believe a 70-year old well-developed field has no
interesting and contemporary topicsto teach. To address this problem, we surveyed the
literature in classical and modern computation theory to find interesting ways of
re-interpreting the materia sthat are currently coveredin atypical courseand as specified
inunit AL5 Basic computability of CC2001 [1].

Since students are used to writing and reasoning about their programs and since
programming and reasoning in a high-level language is easier than doing the same with
Turing machines, we chose a programming approach. Note that the programming
approach isnot new [6,8]; however, oursis more approachable and easier to understand.
Wedividethe course materialsintofour categories. foundations, advanced computability,
computability with real numbers, and the connection between theory and programming
languages (e.g., design, semanticsand typetheory). This paper reportsour effort to make
the foundations of computability moreintuitive and interesting, and pavesthe way to the
remaining three categories.

In this paper, Section 2 reviews the proof that the Halting Problem is not
computable, Section 3 explores related results and shows that there is no universa
anti-virus program, and Section 4 discusses asimple reduction technigque that can help
prove more non-computability problems. To establish arigorous foundation, Section 5
presents a simple assembly language-like language and discusses a standard method for
encoding a program asanatural number. With this encoding method, Section 6 presents
Turing'smost important contribution to modern computer design, the concept of universal
program. Section 7 discusses the Isomorphism Theorem that shows the computability
results obtained in this paper are universal and can be applied to any programming system
and programs written in any language as long as the systems satisfy a minor constraint.
Finally, Section 8 has our conclusions.

2. THEHALTING PROBLEM

Without loss of generdlity, all functionsarefromN toN, whereN ={ 0,1, 2,}
is the set of natural numbers. A function is total if its domain is N. Otherwise, it is
partial. A functionispartially computableif itiscomputed by some program. Notethat
this program may not halt on someinput becauseitispartial. A function iscomputable
if it is computed by some program that halts on every possible input (i.e., total). The
Halting Problem asks if there is a program that can determine if a given function is
computable. Turing showed in his seminal paper that the Halting Problem is not
computable [13].

If the Halting Problem is computable, a program Halt(p,x) exists that computes
the Halting Problem, where p is an arbitrary program to be tested for halting and x its
input, such that Halt(p,x) returns TRUE if program p running on input x halts. With
Halt(), we can write anew program H() asfollows:

function H(X)

begin

while Halt(x,x) do;

end H

Thus, H(x) haltsif and only if Halt(x,x) returns FALSE, and we have
H(x) halts = -Halt(x,x)

On the other hand, “H(x) halts’ means program H running on input x halts, which is
equivalent to “Halt(H,x) returns TRUE”' Combined with the previous result, we have

Halt(H,x) <= -Halt(x,x)
Since xisan arbitrary input, it can be replaced by H:
Halt(H,H) < -Halt(H,H)
Thisisacontradiction and Halt(p,x) is not computable.

Students in general do not have much difficulty in understanding this line of
reasoning; however, they ask alot of questions. Hereisalist of some important ones.

First, can we use aprogram as an argument, especially replacing x by H in the last step,
because the “type’ of the arguments are different? Second, is this line of reasoning,
language and system dependent? In other words, does this argument hold if the
“program” iswritten in a different language and runs on a different operating system or
machine? Third, Hilbert expected a“mechanical procedure” and we use &' "program.”
Are mechanical procedures, algorithms, and programs the same?

Thefirst question is difficult to answer completely because we need to convince
students that first-order programming languages (e.g., LI1SP) treat programs and data
indifferently and aprogram can be modified and then executed. However, thereisan easy
and initially acceptable explanation. We encourage students to think each byte of the
executablefile of aprogram asabase 256 digit. Thus, aprogramin itsbinary executable
formissimply aninteger, and can be handled and processed in the usual way. A rigorous
answer to this question will be discussed |ater (Section 5). The second question relates
to the 1somorphism Theorem which states, intuitively, that a result derived from one
programming system also holds in other programming systems as long as some
fundamental assumptions are fulfilled (Section 7). Therefore, we can use any
programming system for our reasoning. The answer to the third question is the
Church-Turing Thesis.

3. EXPLORING FURTHER

Next, we explore possible applications of the proof technique described in the
previoussection. Therearetwo key concepts. Thefirstisthewhile statement that negates
what weexpect. Moreprecisely, H() haltsonly if Hal} (x,X) returnsFALSE. The second
is self-reference: running x asa program on x asan input. Infact, self-referenceiseven
more important than negation, because it is used in the foundation of mathematics, set
theory, and type theory in programming languages.

A universal anti-virus program determinesif a program running on aninputisa
virus. We shall show that no such program exists [5]. Assume Anti-Virus(p,x) isan
anti-virus program that returns TRUE if program p running oninput xisavirus. Consider
program V() below:

function V(X)
begin
if sAnti-Virus(x,x) then
inject avirus and destroy the OS
end V

Program V(x) doesthe opposite of what Anti-Virus() says. IsV() isavirus? SinceV(x)
isavirusonly if Anti-Virus(x,x) returns FALSE, we have

V(X) isavirus < -Anti-Virus(x,x)

Since“V(X) isavirus’ meansthat V running on input X isavirus, Anti-Virus(V,x)
should return TRUE. Hence, we have

V(x)isavirus = -Anti-Virus(V,x)

Combining these two results we have
Anti-Virus(V,X) = —Anti-Virus(x,x)
Finally, replacing x with V for self-reference, we have
Anti-Virus(V,V) < -Anti-Virus(V,V)

Thisisacontradiction and Anti-Virus() is not computable. Hence, thereisno
universal anti-virus program!

This proof and that of the Halting Problem follow exactly the same line of
reasoning: (1) assume the problem is computable so that a program is available to solve
the problem, (2) use this program to write a related program that negates its original
purpose, (3) ask the question if the new program sati sfies the assumption of the problem,
and (4) use self-reference to derive a contradiction that the given problem is not
computable. While the Halting Problem may appear too theoretical, the non-existence
of universal anti-virus program easily inspires students' curiosity. With some effort,
students can create many interesting problems that can be proved to be non-computable.
For example, there is no universal debugger that can scan agiven program and its input
to determine if it is bug-free. We believe this approach can significantly increase the
understanding of the basic proving technique for similar problems.

4. SIMPLE REDUCTIONS

This section describes a simple reduction technique. Intuitively, problem A
“reduces’ to problem B if with the help of aprogram P we can show that A holdsif and
only if B holds. Normally, program P is an instance of A and contains an instance of B.
In other words, aninstance of B isembedded in aninstance of A. Thus, the computability
of B dictates the computability of A. Or, the computability of A depends on the
computability of B. We choose to use an intuitive approach without aformal definition
because the many-one reduction concept requires more preparation. Since the Halting
Problem is not computable, it is usually problem B.

A constant program aways returns the same value for every input. Is checking
whether or not a program is constant, computable? We shall reduce this problem to the
Halting Problem. Let p bean arbitrary program and c aconstant. Consider program C():

function C(x) //instance A

begin
run program p using p asitsinput; // instance B
return c;

end C

Thus, C() is a constant program iff program p running on itself as input halts. Since
“program p running on itself asinput halts’ is Halt(p,p), we have

C() isaconstant function < Halt(p,p)

Hence, testing to seeif C() isaconstant function reducesto the Halting Problem
viathe above program. Sincep isan arbitrary program and Halt(p,p) is not computable,
checking if C() isaconstant function is not computable! The non-existence of universal
anti-virus program can aso be proved similarly.

Thisreductionisastarting point for showing the non-computability of many other
problems. For example, the Equality problem is not computable. Given two programs
f(x) and g(x), the Equality problem asks if f(x)=g(x) for all x € N. This is not
computable, sinceit is equivalent to checking if program (f -g)(X) is a zero (constant)
program. It happens very frequently in real world that an old system written in an old
language (e.g., Fortran 66) must be reengineered or cloned usingamodern language (e.g.,
C++). The question is. Do both systems perform exactly the same way? Thisis the
Equality problem, which is not computable. Therefore, making sure the old and the new
systems perform the same way is an art rather than a science!

The same reduction technique can also help prove other interesting results.
Consider the following program I(x):

function I(x) // instance A

begin
run program p using p asitsinput; // instance B
return X;

end |

It reduces identity checking to the Halting Problem since
[(X) isan identity program < Halt(p,p)

Therefore, checkingif aprogramisanidentity programisnot computable. Infact,
this program provides more than we expect. Program I(X) is aso increasing, one-to-one
and onto. Thus, checking if aprogram satisfiesone of these propertiesisnot computable.
Once we reach this point, our experience showsthat some students ask asimpleand very
important question: Why can this simple scheme be used to prove the non-computability
of so many problems? Isthereageneral way to dothis? Evenif studentsdo not raisethis
guestion, we should point out that Rice's Theorem isthe answer. Rice's Theorem states
that virtually all interesting propertiesthat involve checking the input-output behavior of
aprogram are not computable.

5. BUILDING A SOLID FOUNDATION
Inthissection, weshall make our computation model rigorousand answer thefirst

guestion posted at the end of Section 2. There are many such computation models in
existence, some of which use assembly instructions, while some others use very ssmple

high-level instruction-like statements. In general, these computation models are similar
to each other with minor variations. The computation model we use can be found in
many well-known computation theory textbooks [2,3].

5.1 Computation Model

Our computation model consists of memory and instructions. The memory has
three sections, input, working and output. Each of the input and working memory has
afinite but unbounded number of variables. Input variablesare named as X1, X2, ..., and
working variables are W1, W2, The output has only one variable Y. Each of these
variablescan hold an arbitrary precision natural number. Theinput andworking variables
are used for passing arguments to a program and for saving intermediate results,
respectively. The output variable is used for returning asingle value. With a standard
encoding technigue (e.g., Godel numbering), one can encode multiple output valuesinto
asingle natural number. All variables are initialized to zero before a program runs, and
can be used in a program for computation.

We only need the following three instructions:

L: X-X+1 Add 1 to variable X
L: X-X-1 Subtract 1 from variable X
L: ITFX=#0GOTOL Gotolabel Lif X # 0

Each instruction hasan optional label L chosenfromL1, L2, If thetarget label L inthe
| F- GOTO instruction does not exist, the program halts. Otherwise, the execution
transfers to the first occurrence of L from the beginning of the program. If the value of
avariableis zero, the subtraction instruction has no effect (i.e., cut-off subtraction).

Other instructions can be implemented using macros. Let A, B and C be three
variables. Macro B - A can be implemented by subtracting 1 from A and adding 1 to B
until Aiszero; C - A+B can be done by copying Ato C and adding 1 to C B times; C -
A*B can be done by adding A to C B times; integer division | A/B | and remainder can be
done with subtraction; and unconditional goto can be implemented with a non-zero
variable. Note that the value of one of the involved variables may be destroyed in a
computation. However, one can aways restore its original value with an extra copy.
Thus, all commonly used instructions can be implemented with macros, and a program
can always be “compiled” to this simple language.

5.2 Encoding a Program

Weshall encode eachinstructioninto anatural number. Thevariablesareordered
into a linear sequence: Y, X1, W1, X2, W2, X3, W3, The number (or address) of
variable V, #(V), isits position in the sequence: #(Y)=0, #(Xi)=2i-1 and #(W)=2i. Each
label is aso numbered with itsindex (i.e., #(Li)=I).

The Godel pairing function maps an order pair (x,y) to a natural number (x,y) =
2(2y+1) -1. Thisis aone-to-one and onto function from NxN to N. For example,
(2,4)=2%(2x4+1) -1=35. Conversely, given anatural number w, we can compute w+1,
extract the power of 2 (i.e., 2¥), and compute y from the remaining odd number. For
example, given w=103, we have w+1=104=2°x13=2%(2x6+1) and 103=(3,6). In the
following, if w=2%(2y+1) -1, we shall write x=m,(w) and y=m,(w). Thus, we have
7,(103)=3 and Tt,(103)=6.

Each of thethreeinstructions hasthreefields: alabel, avariable, and an operation
codefor the addition and subtraction and atarget label for thel F- GOTQ. Therefore, they
can beencoded inthefollowingway. If aninstruction hasno label, thelabel field iszero.
Sincethere are only threeinstructions, we can assign operation codes 0 and 1 to addition
and subtraction instructions, respectively. Sincethel F- GOTOhas atarget label whose
number starts with 1, it can have an operation code of #(L)+1 >2.

L: V-V+1 (#(L),(0,#(V)))
L: V-V-1 #(L),(1,#(V)))
L: IFV=0GOTOL (#L),#L)+1#V)))

For example, “L1: X1 - X1 - 1" is encoded as (1,{(1,1))= (1,5)=21, and “Y « Y+1" is
encoded as (0, (0,0))=0. On the other hand, since 22=(0,11) and 11=(2,1), we have
22=(0,(2,1)), and the correspondinginstructionis“l F X1 = 0GOTOLL.” Inthisway, any
instruction can be encoded into anatural number and any natural number can be decoded
back to avalid instruction.

After encoding each instruction into a natural number, encoding the whole
programiseasy. Lettheinstructionsof aprogram of kinstructions be encoded in natural
numbersnl, n2, ..., nk. The program is encoded as

plnlpznz'”pknk -1

where p,=2, p,=3, p;=5, ... (1.e., p; isthei-th prime number). Hence, aprogram can be
“assembled” into a natural number and a natural number can be * disassembled” back to
a program. Consequently, programs and natural numbers have a one-to-one and onto
correspondence, and we can assign each program with a nickname, its corresponding
number. The following program copies the non-zero input X1 to the output Y:

L1: X1-X1-1
Y-Y+1
| FX1#0GOTOL1

Since the three instructions are encoded as 21, 0 and 22, the program has its number
2%3%5%-1. On the other hand, since 2799=23°5?7'- 1, the program has four encoded

instructions: 4=(0,(0,1)), 0(0,(0, 0)), 2=(0,(1,0)) and 1=(1,{0,0)), and the program is

X1-X1+1

Y-Y+1

Y-Y-1
L1 Y-<Y+1

5.3 Discussion

While we can “disassemble” a natural number back to a set of encoded
instructions, there is no guarantee that the rel ation between higher-level source programs
and assembly instruction programs is also one-to-one. For example, we are not sure if
two consecutive X1 « X1+1 instructionsis the result of compiling X1 := X1 + 2, two X1
= X1+1, or apart of X1 := X1+ 3. Hence, we will only use programs written in these
simple statements in our reasoning. The maor advantage of using these primitive
statementsis that the “ disassembly” processis unique.

This“compile” and “assemble’ process convertsall possible programsto natural
numbers, including those may not halt (i.e., partially computable), and establishes a
one-to-one and onto relation. Hence, we shall name the programs as ¢,(X1,X2,..),
@,(X1,X2,...), 9,(X1,X2,...), ..., wheretheindex i of ¢, isthe number of the corresponding
program. When the arguments of aprogram isunimportant, wewill only write ¢, @,, @,,

6. A UNIVERSAL PROGRAM

We shall write a program ®"(X1,X2,...,Xn,K) that takes a program k and its input
(i.e., X1, X2, ..., Xn), executes k, and delivers the result. Hence, ®@" can be considered as
an interpreter that executes the instructions of program k. Because it can execute every
program that has n input arguments, @" is called a universal program of order n.

Program for @" is easy to write. The values of all variables can be encoded into
anatural number

M = 2"3¥5WI7X21 W21 331 7V8...

whereY, Xi and W represent the values of the variables. Thus, Y isthe power of thefirst
prime number p,=2, Xi and W arethe powersof prime numbersp,; and p,;.,,, respectively.
Since only the first n input arguments contain values and all other variables are zero
initidly, theinitial valueof MisM = p,*'p,%-- p,,". With the encoded program ink, the
encoded input in M, and a program counter ¢, ®" simply emulates what a CPU does:

function ®@"(X1, X2, -, Xn, k)
begin

M := p,p, %
L := program length (i.e., no. of instructions);
c.=1,
while 1< c<Ldo
fetch the c-th instruction;
decode the instruction;
execute the instruction and update c;
end while
end @"

Because k is the encoded program, p, is larger than the prime number used for
encoding k'slast instruction. Therefore, thelength of k can be determined asfollows: (1)
start with p, and go downward; (2) for each p; find its power n; in k; and (3) if n, is
non-zero, j is the length of k. Note that computing the power of p, can be done by
counting the number of times that p, can evenly divide k.

In the above, “fetch the c-th instruction” is actually computing the power of p,in
k. If the power isn,, the label, operation code, and involved variable are |1 = rt,(n.), 0 =
m,(m,(n)) and v = m,(m,(ny)). Since the value of a variable is the power of a prime
number p, in M, adding and subtracting 1 to and from a variable are equivalent to
multiplying and dividing M by p,, respectively. With this information, the following
executes the instruction:

c:=c+ 1; // advance program counter
e := the power of p,in M;
if o=0then // addition
M:=M*p,
elseif o=1and e # 0 then // subtraction
M :=[M/p,]
elseif o> 2and e= Othen// | F- GOTO
c:=0;
for i:-=1toL do
if m,(the power of p,ink) =0-1then
c :=1; // next instruction
break;
end if
end for
end if

We have shown that the programming system based on our computation model
has a universal program that can execute any program of n arguments. Moreover, if nis
also an input argument, ®" can be modified easily to execute every program. Note that if
the input program is partialy computable, ®" may not halt and is aso partialy
computable. Why isthe universal program concept important? In Turing's words, “we

only need one machine” rather than building one machine for each program. Thisis
exactly the principle of building modern computers. we need general purpose computers
(i.e., universal programs) that can execute other programs. Therefore, Turing'suniversal
program concept i s perhaps the most significant contribution to modern computer design
[4]! Some students may ask a simple question: would different CPUs yield different
computability conclusions? Thisis answered in the next section.

7. THEISOMORPHISM THEOREM

A programming systemissimply alist of all partially computableand computable
programs written in a particular language. A programming system isuniversal if it has
auniversal program. A universal programming system isacceptable if the composition
construction operator of programsis computable. Note that non-universal programming
systemsare not very interesting because each program requiresaspecial computer. Non-
acceptable programming systems are not interesting either because there is no
“computable” way to join two programstogether to become asingle program. Given two
programs ¢; and @; in the list of programs, the composition @, = ¢, ° ¢, is also aprogram
and should be amember of the programslist. In an acceptabl e programming system, the
construction of ¢, from ¢; and ¢, is computable. This means we can write a program,
which always halts, that takes i and | and outputs k. In our simple system, the
construction of k fromi and j can easily be donein thefollowingway: (1) preservei; (2)
add copying macrosto move the output of i from variables Xi's, Wi'sand Y to X1, X2, ...
with variable renaming if necessary; (3) append j to the copy macros with variable
renaming if necessary; and (4) encode the resulting program. It is obvious that the
program that performs these four step always halts for any two input programs i and j.
Therefore, our simple system is an acceptable programming system.

SinceaTuring machineisequivaenttoaRAM model which, inturn, isobviously
equivalent to the ssmple language in this paper, Turing machine programs also form an
acceptable programming system. Under the Unix system, the Bourne shell language is
powerful enough to writean interpreter for smulatingitself (i.e., universal program) and
the pipe command provides the needed composition operator. Hence, conceptually Unix
can be considered as an acceptabl e programming system. With the concept of acceptable
programming systems, we have the following:

Thel somor phism Theorem Givenany two acceptable programming systems@,, @,, ¢,
~.and Y, Y, Y, ..., thereisacomputable, one-to-one and onto function o such that ¢,
=Y, for every x.

Therefore, the computability of one programming system can be mapped by an
isomorphism o, which actsvery similar to across-compiler/translator, to another system
aslong as both are acceptable. Consequently, the computability results discussed earlier
are not specific to our simplelanguage system, and are general resultsthat can be applied
to all modern computer systems and languages. Hence, our approach that employs an

intuitive and easy to understand way of re-interpreting the computability theory is
equivalent and as powerful asother approaches. Thelsomorphism Theorem signifiesthe
end of this paper's basic computability module. Since its proof requires other
sophisticated results, we do not present aproof in class. Instead, we discussits meaning
and the impact on computability. We will offer a proof in the advanced computability
module.

8. CONCLUSIONS

For anumber of years, wetaught abeginning graduate level computability course
based on recursivefunction theory [3, 9, 11, 12]. We faced amajor challenge because of
the huge differences in the theoretical background of our students. In fact, some were
only about the level of beginning undergraduate studentsin terms of theoretical training.
As aresult, the rigorous devel opment of the course topics was frequently interrupted by
simple but important questions. This inspired us to create intuitive explanations to be
used in classroom or office-hour discussions. This paper reportsthe result of this effort.

Since the complete set of knowledge unitsis still under development, thereisno
rigorousclassroom eval uation. Based onour experiencein many years, thisprogramming
approach, interesting examples, and di scussi ons connecting programming, assembling and
disassembling, and cross compiling have helped students who had little theoretical
background understand the merit and appreciate the beauty of computability.
Additionally, the same set of material was also used in aCS orientation course. A brief
outline was published asaposter [10]. Reactions from students and poster visitors were
very positive and encouraging. Some instructorsindicated that they will use some of our
examples and way of reasoning. The extended abstract of our poster was used in severa
universities as a reading material [7]. This suggests that our approach is sound,
interesting and teachable.

In the near future, we will finalize the development of additional categories:
advanced computability, computability with real numbers, and the connection between
theory and programming languages. The Advanced Computability modulewill include
some of the most important theorems, their meaning, and their importance to
programming systems. Possible topicswill include, but are not limited to, the s-m-n (or
parameter) theorem, recursion and fixed-point theorems, and Rice's Theorem and its
variations. The Computability with Real Number module will discuss the meaning of
“computablereal numbers’ based onfiniteprecision arithmetic, anumber of different and
equivalent computation models, the meaning of computable real functions and real
operators, and some well-known problems with real numbers. For example, there exists
apolynomial-time computablefunction f on [0,1] such that itsderivative exists but is not
computable. Moreover, if the second derivative of f exists and is continuous on [0,1],
then the first derivative of f is polynomial-time computable. This module will also
include some interesting modern results (e.g., the Julia set and Mandelbrot set are not
computable). The Connection Between Theory and Programming L anguage module

will present the equivalence among Turing machines, recursive function theory and
A-calculus, and the impact of the latter two, especially the A-calculus, on functional
programming and programming language development. We shall introduce the basic
conceptsof A-calculusandtieit to our programming approach. Then, we shall show that
the self-reference concept is actually another facet of Russell's paradox that will cause a
correctly written program not to halt. Then, type theory is introduced to make a
programming language weaker so that a compiler can perform “checks’ to prevent
self-reference. We aso will include some contemporary and interesting topics (e.g., the
guantum and DNA computing models). In this way, most mgor developments in
computation theory are covered. Once these materials are in place, we will teach an
experimental theory coursewith our new materials and conduct arigorousand controlled
classroom evaluation and assessment study.

ACKNOWLEDGMENT

The authors are supported by the National Science Foundation under grant
DUE-0127401. The second author is also supported by an IBM Eclipse Innovation
Award 2003.
REFERENCES

1 ACM/IEEE, Computing Curricula 2001, available at
wWww. acm or g/ si g/ si gcse/ ccs001,

2 Walter S. Brainerd and Lawrence H. Landweber, Theory of Computation, John
Wiley & Sons, 1974.

3 M. D. Davis, R. Sigal and E. J. Weyuker, Computability, Complexity, and
Languages, second edition, Academic Press, 1994.

4 M. D. Davis, The Universal Computer, W. W. Norton & Company, 2000.

5 W.J. Dowling, There AreNo Safe Virus Tests, American Mathematical Monthly,
Vol. 96 (1989), No. 9, pp. 835-836.

6 A. J. Kfoury, R. N. Moll and M. A. Arbib, A Programming Approach to
Computability, Springer-Verlag, 1982.

7 Katherine St. John, Computer Science 75010: Theoretical Computer Science,
Graduate Center, City University of New Y ork, 2002.
(http://conet.| ehman. cuny. edu/ stj ohn/teachi ng/tcs)

8 John S. Mallozzi and Nicholas J. de Lillo, Computability with Pascal, Prentice
Hall, 1984.

9 Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability,
paperback edition, MIT Press, 1987.

10 Ching-Kuang Shene, Can Computation Theory Be Taught inan Interesting Way?
aposter in ACM 33rd SSIGCSE Technical Symposium, 2002, pp. 426.

11

12

13

Carl H, Smith, A Recursive Introduction to the Theory of Computation,
Springer-Verlag, 1994.

Robert |. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag,
1987.

A. Turing, On Computable Numbers, with an Application to the
"Entscheidungsproblem’, Proceedings of the London Mathematical Society,
second series, Vol. 42 (1936), pp. 230-265. Correction, Vol. 43 (1937), pp.
544-546.

