
TOWARD AN INTUITIVE AND INTERESTING THEORY
COURSE: THE FIRST STEP OF A ROAD MAP

John L. Lowther and Ching-Kuang Shene
Department of Computer Science

Michigan Technological University
Houghton, MI 49931-1295

E-mail: {john,shene}@mtu.edu

 Abstract
This paper presents the first step of an attempt in designing intuitive and

interesting materials for a theory course. The materials developed cover the AL5 Basic
Computability unit of the ACM/IEEE Computing Curricula 2001, and can be used in a
stand-alone theory course. This paper describes a “programming approach” to basic
computability. Topics include a proof of the Halting Problem and the use of a simple
reduction technique to prove other interesting problems. Details of the chosen
computation model, the construction of a universal program, and the Isomorphism
Theorem are also discussed. Future topics for this course include advanced
computability, computability with real numbers, and the connection between theory and
programming languages.

1. INTRODUCTION

In the mind of many students, a theory course is boring, dry, useless, and lacks
interesting topics except for, possibly, the Halting Problem. Computation theory was
developed at the turn of the 20th century as a direct response to David Hilbert's
Entscheidungsproblem: find a mechanical procedure to prove all mathematical theorems.
In today's language, this mechanical procedure is an algorithm. Eventually, three
equivalent approaches, 8-definability of Church-Kleene (1932-34), general recursiveness
of Gödel-Herbrand (1934) and Turing machines (1936), were developed. In the 50's,
8-calculus became the foundation of type theory and programming language development
(e.g., LISP, ISWIM and ML); general recursiveness was developed into the now
well-known recursive function theory; and Turing machines became a standard computer
science topic. Thus, it is hard to believe a 70-year old well-developed field has no
interesting and contemporary topics to teach. To address this problem, we surveyed the
literature in classical and modern computation theory to find interesting ways of
re-interpreting the materials that are currently covered in a typical course and as specified
in unit AL5 Basic computability of CC2001 [1].

Since students are used to writing and reasoning about their programs and since
programming and reasoning in a high-level language is easier than doing the same with
Turing machines, we chose a programming approach. Note that the programming
approach is not new [6,8]; however, ours is more approachable and easier to understand.
We divide the course materials into four categories: foundations, advanced computability,
computability with real numbers, and the connection between theory and programming
languages (e.g., design, semantics and type theory). This paper reports our effort to make
the foundations of computability more intuitive and interesting, and paves the way to the
remaining three categories.

In this paper, Section 2 reviews the proof that the Halting Problem is not
computable, Section 3 explores related results and shows that there is no universal
anti-virus program, and Section 4 discusses a simple reduction technique that can help
prove more non-computability problems. To establish a rigorous foundation, Section 5
presents a simple assembly language-like language and discusses a standard method for
encoding a program as a natural number. With this encoding method, Section 6 presents
Turing's most important contribution to modern computer design, the concept of universal
program. Section 7 discusses the Isomorphism Theorem that shows the computability
results obtained in this paper are universal and can be applied to any programming system
and programs written in any language as long as the systems satisfy a minor constraint.
Finally, Section 8 has our conclusions.

2. THE HALTING PROBLEM

Without loss of generality, all functions are from N to N, where N = { 0, 1, 2, ...,}
is the set of natural numbers. A function is total if its domain is N. Otherwise, it is
partial. A function is partially computable if it is computed by some program. Note that
this program may not halt on some input because it is partial. A function is computable
if it is computed by some program that halts on every possible input (i.e., total). The
Halting Problem asks if there is a program that can determine if a given function is
computable. Turing showed in his seminal paper that the Halting Problem is not
computable [13].

If the Halting Problem is computable, a program Halt(p,x) exists that computes
the Halting Problem, where p is an arbitrary program to be tested for halting and x its
input, such that Halt(p,x) returns TRUE if program p running on input x halts. With
Halt(), we can write a new program H() as follows:

 function H(x)
 begin

 while Halt(x,x) do;
 end H

Thus, H(x) halts if and only if Halt(x,x) returns FALSE, and we have

H(x) halts] ¬Halt(x,x)

On the other hand, “H(x) halts” means program H running on input x halts, which is
equivalent to “Halt(H,x) returns TRUE”' Combined with the previous result, we have

Halt(H,x)] ¬Halt(x,x)

Since x is an arbitrary input, it can be replaced by H:

Halt(H,H)] ¬Halt(H,H)

This is a contradiction and Halt(p,x) is not computable.

Students in general do not have much difficulty in understanding this line of
reasoning; however, they ask a lot of questions. Here is a list of some important ones.

First, can we use a program as an argument, especially replacing x by H in the last step,
because the “type” of the arguments are different? Second, is this line of reasoning,
language and system dependent? In other words, does this argument hold if the
“program” is written in a different language and runs on a different operating system or
machine? Third, Hilbert expected a “mechanical procedure” and we use a”`program.”
Are mechanical procedures, algorithms, and programs the same?

The first question is difficult to answer completely because we need to convince
students that first-order programming languages (e.g., LISP) treat programs and data
indifferently and a program can be modified and then executed. However, there is an easy
and initially acceptable explanation. We encourage students to think each byte of the
executable file of a program as a base 256 digit. Thus, a program in its binary executable
form is simply an integer, and can be handled and processed in the usual way. A rigorous
answer to this question will be discussed later (Section 5). The second question relates
to the Isomorphism Theorem which states, intuitively, that a result derived from one
programming system also holds in other programming systems as long as some
fundamental assumptions are fulfilled (Section 7). Therefore, we can use any
programming system for our reasoning. The answer to the third question is the
Church-Turing Thesis.

3. EXPLORING FURTHER

Next, we explore possible applications of the proof technique described in the
previous section. There are two key concepts. The first is the while statement that negates
what we expect. More precisely, H() halts only if Hal}(x,x) returns FALSE. The second
is self-reference: running x as a program on x as an input. In fact, self-reference is even
more important than negation, because it is used in the foundation of mathematics, set
theory, and type theory in programming languages.

A universal anti-virus program determines if a program running on an input is a
virus. We shall show that no such program exists [5]. Assume Anti-Virus(p,x) is an
anti-virus program that returns TRUE if program p running on input x is a virus. Consider
program V() below:

function V(x)
begin

 if ¬Anti-Virus(x,x) then
 inject a virus and destroy the OS

 end V

Program V(x) does the opposite of what Anti-Virus() says. Is V() is a virus? Since V(x)
is a virus only if Anti-Virus(x,x) returns FALSE, we have

V(x) is a virus] ¬Anti-Virus(x,x)

Since “V(x) is a virus” means that V running on input x is a virus, Anti-Virus(V,x)
should return TRUE. Hence, we have

V(x) is a virus] ¬Anti-Virus(V,x)

Combining these two results we have

Anti-Virus(V,x)] ¬Anti-Virus(x,x)

Finally, replacing x with V for self-reference, we have

Anti-Virus(V,V)] ¬Anti-Virus(V,V)

This is a contradiction and Anti-Virus() is not computable. Hence, there is no
universal anti-virus program!

This proof and that of the Halting Problem follow exactly the same line of
reasoning: (1) assume the problem is computable so that a program is available to solve
the problem, (2) use this program to write a related program that negates its original
purpose, (3) ask the question if the new program satisfies the assumption of the problem,
and (4) use self-reference to derive a contradiction that the given problem is not
computable. While the Halting Problem may appear too theoretical, the non-existence
of universal anti-virus program easily inspires students' curiosity. With some effort,
students can create many interesting problems that can be proved to be non-computable.
For example, there is no universal debugger that can scan a given program and its input
to determine if it is bug-free. We believe this approach can significantly increase the
understanding of the basic proving technique for similar problems.

4. SIMPLE REDUCTIONS

This section describes a simple reduction technique. Intuitively, problem A
“reduces” to problem B if with the help of a program P we can show that A holds if and
only if B holds. Normally, program P is an instance of A and contains an instance of B.
In other words, an instance of B is embedded in an instance of A. Thus, the computability
of B dictates the computability of A. Or, the computability of A depends on the
computability of B. We choose to use an intuitive approach without a formal definition
because the many-one reduction concept requires more preparation. Since the Halting
Problem is not computable, it is usually problem B.

A constant program always returns the same value for every input. Is checking
whether or not a program is constant, computable? We shall reduce this problem to the
Halting Problem. Let p be an arbitrary program and c a constant. Consider program C():

function C(x) // instance A
begin

 run program p using p as its input; // instance B
 return c;

end C

Thus, C() is a constant program iff program p running on itself as input halts. Since
“program p running on itself as input halts” is Halt(p,p), we have

C() is a constant function] Halt(p,p)

Hence, testing to see if C() is a constant function reduces to the Halting Problem
via the above program. Since p is an arbitrary program and Halt(p,p) is not computable,
checking if C() is a constant function is not computable! The non-existence of universal
anti-virus program can also be proved similarly.

This reduction is a starting point for showing the non-computability of many other
problems. For example, the Equality problem is not computable. Given two programs
f(x) and g(x), the Equality problem asks if f(x)=g(x) for all x 0 N. This is not
computable, since it is equivalent to checking if program (f !g)(x) is a zero (constant)
program. It happens very frequently in real world that an old system written in an old
language (e.g., Fortran 66) must be reengineered or cloned using a modern language (e.g.,
C++). The question is: Do both systems perform exactly the same way? This is the
Equality problem, which is not computable. Therefore, making sure the old and the new
systems perform the same way is an art rather than a science!

The same reduction technique can also help prove other interesting results.
Consider the following program I(x):

function I(x) // instance A
begin

 run program p using p as its input; // instance B
 return x;

end I

It reduces identity checking to the Halting Problem since

I(x) is an identity program] Halt(p,p)

Therefore, checking if a program is an identity program is not computable. In fact,
this program provides more than we expect. Program I(x) is also increasing, one-to-one
and onto. Thus, checking if a program satisfies one of these properties is not computable.
Once we reach this point, our experience shows that some students ask a simple and very
important question: Why can this simple scheme be used to prove the non-computability
of so many problems? Is there a general way to do this? Even if students do not raise this
question, we should point out that Rice's Theorem is the answer. Rice's Theorem states
that virtually all interesting properties that involve checking the input-output behavior of
a program are not computable.

5. BUILDING A SOLID FOUNDATION

In this section, we shall make our computation model rigorous and answer the first
question posted at the end of Section 2. There are many such computation models in
existence, some of which use assembly instructions, while some others use very simple

high-level instruction-like statements. In general, these computation models are similar
to each other with minor variations. The computation model we use can be found in
many well-known computation theory textbooks [2,3].

5.1 Computation Model

Our computation model consists of memory and instructions. The memory has
three sections, input, working and output. Each of the input and working memory has
a finite but unbounded number of variables. Input variables are named as X1, X2, ..., and
working variables are W1, W2, The output has only one variable Y. Each of these
variables can hold an arbitrary precision natural number. The input and working variables
are used for passing arguments to a program and for saving intermediate results,
respectively. The output variable is used for returning a single value. With a standard
encoding technique (e.g., Gödel numbering), one can encode multiple output values into
a single natural number. All variables are initialized to zero before a program runs, and
can be used in a program for computation.

We only need the following three instructions:

L: X 7 X + 1 Add 1 to variable X
L: X 7 X ! 1 Subtract 1 from variable X
L: IF X … 0 GOTO L Goto label L if X … 0

Each instruction has an optional label L chosen from L1, L2, If the target label L in the
IF-GOTO instruction does not exist, the program halts. Otherwise, the execution
transfers to the first occurrence of L from the beginning of the program. If the value of
a variable is zero, the subtraction instruction has no effect (i.e., cut-off subtraction).

Other instructions can be implemented using macros. Let A, B and C be three
variables. Macro B 7 A can be implemented by subtracting 1 from A and adding 1 to B
until A is zero; C 7 A+B can be done by copying A to C and adding 1 to C B times; C 7
A*B can be done by adding A to C B times; integer division lA/Bm and remainder can be
done with subtraction; and unconditional goto can be implemented with a non-zero
variable. Note that the value of one of the involved variables may be destroyed in a
computation. However, one can always restore its original value with an extra copy.
Thus, all commonly used instructions can be implemented with macros, and a program
can always be “compiled” to this simple language.

5.2 Encoding a Program

We shall encode each instruction into a natural number. The variables are ordered
into a linear sequence: Y, X1, W1, X2, W2, X3, W3, The number (or address) of
variable V, #(V), is its position in the sequence: #(Y)=0, #(Xi)=2i!1 and #(Wi)=2i. Each
label is also numbered with its index (i.e., #(Li)=I).

The Gödel pairing function maps an order pair (x,y) to a natural number +x,y, =
2x(2y+1) !1. This is a one-to-one and onto function from N×N to N. For example,
+2,4,=22(2×4+1) !1=35. Conversely, given a natural number w, we can compute w+1,
extract the power of 2 (i.e., 2x), and compute y from the remaining odd number. For
example, given w=103, we have w+1=104=23×13=23(2×6+1) and 103=+3,6,. In the
following, if w=2x(2y+1) !1, we shall write x=B1(w) and y=B2(w). Thus, we have
B1(103)=3 and B2(103)=6.

Each of the three instructions has three fields: a label, a variable, and an operation
code for the addition and subtraction and a target label for the IF-GOTO. Therefore, they
can be encoded in the following way. If an instruction has no label, the label field is zero.
Since there are only three instructions, we can assign operation codes 0 and 1 to addition
and subtraction instructions, respectively. Since the IF-GOTO has a target label whose
number starts with 1, it can have an operation code of #(L)+1 $2.

L: V 7 V + 1 +#(L),+0,#(V),,
L: V 7 V - 1 +#(L),+1,#(V),,
L: IF V … 0 GOTO L +#(L),+#(L)+1,#(V),,

For example, “L1: X1 7 X1 ! 1" is encoded as +1,+1,1,,= +1,5,=21, and “Y 7 Y+1" is
encoded as +0, +0,0,,=0. On the other hand, since 22=+0,11, and 11=+2,1,, we have
22=+0,+2,1,,, and the corresponding instruction is “IF X1 … 0 GOTO L1.” In this way, any
instruction can be encoded into a natural number and any natural number can be decoded
back to a valid instruction.

After encoding each instruction into a natural number, encoding the whole
program is easy. Let the instructions of a program of k instructions be encoded in natural
numbers n1, n2, ..., nk. The program is encoded as

p1
n1p2

n2þpk
nk ! 1

where p1=2, p2=3, p3=5, ... (i.e., pi is the i-th prime number). Hence, a program can be
“assembled” into a natural number and a natural number can be “disassembled” back to
a program. Consequently, programs and natural numbers have a one-to-one and onto
correspondence, and we can assign each program with a nickname, its corresponding
number. The following program copies the non-zero input X1 to the output Y:

L1: X1 7 X1 ! 1
Y 7 Y + 1
IF X1 … 0 GOTO L1

Since the three instructions are encoded as 21, 0 and 22, the program has its number
22130522!1. On the other hand, since 2799=24305271!1, the program has four encoded

instructions: 4=+0,+0,1,,, 0 +0,+0, 0,,, 2=+0,+1,0,, and 1=+1,+0,0,,, and the program is

X1 7 X1 + 1
Y 7 Y + 1
Y 7 Y - 1

L1: Y 7 Y + 1

5.3 Discussion

While we can “disassemble” a natural number back to a set of encoded
instructions, there is no guarantee that the relation between higher-level source programs
and assembly instruction programs is also one-to-one. For example, we are not sure if
two consecutive X1 7 X1+1 instructions is the result of compiling X1 := X1 + 2, two X1
:= X1+1, or a part of X1 := X1 + 3. Hence, we will only use programs written in these
simple statements in our reasoning. The major advantage of using these primitive
statements is that the “disassembly” process is unique.

This “compile” and “assemble” process converts all possible programs to natural
numbers, including those may not halt (i.e., partially computable), and establishes a
one-to-one and onto relation. Hence, we shall name the programs as n0(X1,X2,ÿ),
n1(X1,X2,ÿ), n2(X1,X2,ÿ), ÿ, where the index i of ni is the number of the corresponding
program. When the arguments of a program is unimportant, we will only write n0, n1, n2,
ÿ.

6. A UNIVERSAL PROGRAM

We shall write a program Mn(X1,X2,ÿ,Xn,k) that takes a program k and its input
(i.e., X1, X2, ÿ, Xn), executes k, and delivers the result. Hence, Mn can be considered as
an interpreter that executes the instructions of program k. Because it can execute every
program that has n input arguments, Mn is called a universal program of order n.

Program for Mn is easy to write. The values of all variables can be encoded into
a natural number

M = 2Y3X15W17X211W213X317W3þ

where Y, Xi and Wi represent the values of the variables. Thus, Y is the power of the first
prime number p1=2, Xi and Wi are the powers of prime numbers p2i and p2i+1, respectively.
Since only the first n input arguments contain values and all other variables are zero
initially, the initial value of M is M = p2

X1p4
X2þ p2n

Xn. With the encoded program in k, the
encoded input in M, and a program counter c, Mn simply emulates what a CPU does:

function Mn(X1, X2, þ, Xn, k)
begin

 M := p2
X1p4

X2þ p2n
Xn;

 L := program length (i.e., no. of instructions);
 c := 1;
 while 1 # c # L do
 fetch the c-th instruction;
 decode the instruction;
 execute the instruction and update c;

 end while
end Mn

Because k is the encoded program, pk is larger than the prime number used for
encoding k's last instruction. Therefore, the length of k can be determined as follows: (1)
start with pk and go downward; (2) for each pj find its power nj in k; and (3) if nj is
non-zero, j is the length of k. Note that computing the power of pj can be done by
counting the number of times that pj can evenly divide k.

In the above, “fetch the c-th instruction” is actually computing the power of pc in
k. If the power is nc, the label, operation code, and involved variable are l = B1(nc), o =
B1(B2(nc)) and v = B2(B2(nc)). Since the value of a variable is the power of a prime
number pv in M, adding and subtracting 1 to and from a variable are equivalent to
multiplying and dividing M by pv, respectively. With this information, the following
executes the instruction:

c := c + 1; // advance program counter
e := the power of pv in M;
if o = 0 then // addition
 M := M * pv

else if o = 1 and e … 0 then // subtraction
 M := lM/pvm
else if o $ 2 and e … 0 then // IF-GOTO
 c := 0;
 for i:=1 to L do
 if B1(the power of pi in k) = o - 1 then
 c := i; // next instruction
 break;
 end if
 end for
end if

We have shown that the programming system based on our computation model
has a universal program that can execute any program of n arguments. Moreover, if n is
also an input argument, Mn can be modified easily to execute every program. Note that if
the input program is partially computable, Mn may not halt and is also partially
computable. Why is the universal program concept important? In Turing's words, “we

only need one machine” rather than building one machine for each program. This is
exactly the principle of building modern computers: we need general purpose computers
(i.e., universal programs) that can execute other programs. Therefore, Turing's universal
program concept is perhaps the most significant contribution to modern computer design
[4]! Some students may ask a simple question: would different CPUs yield different
computability conclusions? This is answered in the next section.

7. THE ISOMORPHISM THEOREM

A programming system is simply a list of all partially computable and computable
programs written in a particular language. A programming system is universal if it has
a universal program. A universal programming system is acceptable if the composition
construction operator of programs is computable. Note that non-universal programming
systems are not very interesting because each program requires a special computer. Non-
acceptable programming systems are not interesting either because there is no
“computable” way to join two programs together to become a single program. Given two
programs ni and nj in the list of programs, the composition nk = ni B nj is also a program
and should be a member of the programs list. In an acceptable programming system, the
construction of nk from ni and nj is computable. This means we can write a program,
which always halts, that takes i and j and outputs k. In our simple system, the
construction of k from i and j can easily be done in the following way: (1) preserve i; (2)
add copying macros to move the output of i from variables Xi's, Wi's and Y to X1, X2, ...
with variable renaming if necessary; (3) append j to the copy macros with variable
renaming if necessary; and (4) encode the resulting program. It is obvious that the
program that performs these four step always halts for any two input programs i and j.
Therefore, our simple system is an acceptable programming system.

Since a Turing machine is equivalent to a RAM model which, in turn, is obviously
equivalent to the simple language in this paper, Turing machine programs also form an
acceptable programming system. Under the Unix system, the Bourne shell language is
powerful enough to write an interpreter for simulating itself (i.e., universal program) and
the pipe command provides the needed composition operator. Hence, conceptually Unix
can be considered as an acceptable programming system. With the concept of acceptable
programming systems, we have the following:

The Isomorphism Theorem Given any two acceptable programming systems n1, n2, n3,
... and R1, R2, R3 , ..., there is a computable, one-to-one and onto function F such that nx

= RF(x) for every x.

Therefore, the computability of one programming system can be mapped by an
isomorphism F, which acts very similar to a cross-compiler/translator, to another system
as long as both are acceptable. Consequently, the computability results discussed earlier
are not specific to our simple language system, and are general results that can be applied
to all modern computer systems and languages. Hence, our approach that employs an

intuitive and easy to understand way of re-interpreting the computability theory is
equivalent and as powerful as other approaches. The Isomorphism Theorem signifies the
end of this paper's basic computability module. Since its proof requires other
sophisticated results, we do not present a proof in class. Instead, we discuss its meaning
and the impact on computability. We will offer a proof in the advanced computability
module.

8. CONCLUSIONS

For a number of years, we taught a beginning graduate level computability course
based on recursive function theory [3, 9, 11, 12]. We faced a major challenge because of
the huge differences in the theoretical background of our students. In fact, some were
only about the level of beginning undergraduate students in terms of theoretical training.
As a result, the rigorous development of the course topics was frequently interrupted by
simple but important questions. This inspired us to create intuitive explanations to be
used in classroom or office-hour discussions. This paper reports the result of this effort.

Since the complete set of knowledge units is still under development, there is no
rigorous classroom evaluation. Based on our experience in many years, this programming
approach, interesting examples, and discussions connecting programming, assembling and
disassembling, and cross compiling have helped students who had little theoretical
background understand the merit and appreciate the beauty of computability.
Additionally, the same set of material was also used in a CS orientation course. A brief
outline was published as a poster [10]. Reactions from students and poster visitors were
very positive and encouraging. Some instructors indicated that they will use some of our
examples and way of reasoning. The extended abstract of our poster was used in several
universities as a reading material [7]. This suggests that our approach is sound,
interesting and teachable.

In the near future, we will finalize the development of additional categories:
advanced computability, computability with real numbers, and the connection between
theory and programming languages. The Advanced Computability module will include
some of the most important theorems, their meaning, and their importance to
programming systems. Possible topics will include, but are not limited to, the s-m-n (or
parameter) theorem, recursion and fixed-point theorems, and Rice's Theorem and its
variations. The Computability with Real Number module will discuss the meaning of
“computable real numbers” based on finite precision arithmetic, a number of different and
equivalent computation models, the meaning of computable real functions and real
operators, and some well-known problems with real numbers. For example, there exists
a polynomial-time computable function f on [0,1] such that its derivative exists but is not
computable. Moreover, if the second derivative of f exists and is continuous on [0,1],
then the first derivative of f is polynomial-time computable. This module will also
include some interesting modern results (e.g., the Julia set and Mandelbrot set are not
computable). The Connection Between Theory and Programming Language module

will present the equivalence among Turing machines, recursive function theory and
8-calculus, and the impact of the latter two, especially the 8-calculus, on functional
programming and programming language development. We shall introduce the basic
concepts of 8-calculus and tie it to our programming approach. Then, we shall show that
the self-reference concept is actually another facet of Russell's paradox that will cause a
correctly written program not to halt. Then, type theory is introduced to make a
programming language weaker so that a compiler can perform “checks” to prevent
self-reference. We also will include some contemporary and interesting topics (e.g., the
quantum and DNA computing models). In this way, most major developments in
computation theory are covered. Once these materials are in place, we will teach an
experimental theory course with our new materials and conduct a rigorous and controlled
classroom evaluation and assessment study.

ACKNOWLEDGMENT

The authors are supported by the National Science Foundation under grant
DUE-0127401. The second author is also supported by an IBM Eclipse Innovation
Award 2003.

REFERENCES

1 ACM/IEEE, Comput ing Curr i cu la 2001 , ava i l ab le a t
www.acm.org/sig/sigcse/ccs001,

2 Walter S. Brainerd and Lawrence H. Landweber, Theory of Computation, John
Wiley & Sons, 1974.

3 M. D. Davis, R. Sigal and E. J. Weyuker, Computability, Complexity, and
Languages, second edition, Academic Press, 1994.

4 M. D. Davis, The Universal Computer, W. W. Norton & Company, 2000.

5 W. J. Dowling, There Are No Safe Virus Tests, American Mathematical Monthly,
Vol. 96 (1989), No. 9, pp. 835-836.

6 A. J. Kfoury, R. N. Moll and M. A. Arbib, A Programming Approach to
Computability, Springer-Verlag, 1982.

7 Katherine St. John, Computer Science 75010: Theoretical Computer Science,
Graduate Center, City University of New York, 2002.
 (http://comet.lehman.cuny.edu/stjohn/teaching/tcs)

8 John S. Mallozzi and Nicholas J. de Lillo, Computability with Pascal, Prentice
Hall, 1984.

9 Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability,
paperback edition, MIT Press, 1987.

10 Ching-Kuang Shene, Can Computation Theory Be Taught in an Interesting Way?
a poster in ACM 33rd SIGCSE Technical Symposium, 2002, pp. 426.

11 Carl H, Smith, A Recursive Introduction to the Theory of Computation,
Springer-Verlag, 1994.

12 Robert I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag,
1987.

13 A. Turing, On Computable Numbers, with an Application to the
`Entscheidungsproblem', Proceedings of the London Mathematical Society,
second series, Vol. 42 (1936), pp. 230-265. Correction, Vol. 43 (1937), pp.
544-546.

