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Abstract

The winged- and half- edge data structures are commonly used representations for polyhedron models. Due to the
complexity, students in an introductory to computer graphics course usually have difficulty in handling these data
structures and developing applications. This paper describes the authors’ effort in the development of a visualization
and animation tool for teaching and learning these data structures. This tool also includes a simple pseudo code-like
language for algorithm design. Instructors may employ this tool for presentation and demonstration purposes. Students
may use the simple language to develop and experiment with new algorithms before their actual implementation. The
visualization and animation system may be used to explore and understand the relationship among mesh elements
and algorithm execution.
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1. Motivation

No matter how sophisticated and capable a ren-
dering system is, a scene must include geometric
objects in order to generate images. As a result,
the way of representing geometric objects for effi-
cient rendering and manipulation is an extremely
important topic in computer graphics. While there
are many different polyhedron model representa-
tions, the winged- and half- edge data structures
are the most popular and commonly used ones.
The winged-edge data structure was proposed by
Baumgart more than 30 years ago [1,2], originally
for computer vision. It has been discussed and

? A preliminary version of this paper by the first author

was published in [20] and received a Best Graduate Student
Paper for MICS 2005 award.
∗ Corresponding author

Email address: shene@mtu.edu (Ching-Kuang Shene).
URL: http://www.cs.mtu.edu/∼shene (Ching-Kuang

Shene).

analyzed extensively [12,26,28] and has become a
popular topic in computer graphics [9,10,19,24,25],
especially for modeling practice [3,8,11,18]. Its vari-
ation, the half-edge data structure, is frequently
used in edge-based mesh representation, design and
modeling. Since winged- and half- edge data struc-
tures provide a more compact and efficient rep-
resentation than the conventional data structures
being taught in a typical computer graphics course,
and since modeling is an important skill, it is worth
to present this topic to some depth in computer
graphics and related (e.g., geometric modeling or
computer-aided design) courses.

A third year elective course Elementary Geomet-
ric Objects and Processing [21] was created to intro-
duce design and modeling skills to computer science
students nearly ten years ago. The authors’ experi-
ence in teaching this course showed that it is usu-
ally difficult for students to design algorithms for the
winged-edge data structure due to the complexity of
the edge table (Section 7). Many students used the
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winged-edge data structure tables in a straightfor-
ward way, defeating the original purpose completely.
Presenting a data structure that records complex
adjacency relationships is also a challenging task to
instructors. Experience also showed that class dis-
cussion alone may not be the best way, and that a
visualization and animation tool may be needed to
reveal the nature of the data structure. While there
are programming tools supporting the winged- and
half- edge data structures (e.g., CGAL [4] and Open-
Mesh [5]), the authors could not find reasonable
pedagogical visualization and animation tools for
the data structures and their related algorithms. Al-
though algorithm animation systems are available,
they are too general to be used for 3-dimensional
geometric visualization and animation, and the use
of C/C++ and Java and additional instrumenta-
tion may be too tedious for students to use. Con-
sequently, after teaching the topic for many years,
the authors decided to develop a visualization and
animation tool for the winged- and half- edge data
structures.

The major goal is to develop a tool that can be
used to visualize the tabular and mesh structure
clearly, and permits instructors and students to de-
sign and animate various basic winged- and half-
edge related algorithms. This paper presents the
authors’ effort in addressing the above mentioned
teaching and learning challenges. To simplify pre-
sentation, only the winged-edge data structure will
be discussed even though this tool supports the half-
edge data structure equally well. In the following,
Section 2 reviews the winged-edge data structure;
Section 3 emphasizes the importance and efficiency
of the data structure; Section 4 briefly discusses this
system; Section 5 presents the visualization com-
ponent; Section 6 has the details of a simple lan-
guage for algorithm design, visualization and ani-
mation components, and a complete example; Sec-
tion 7 presents the authors’ long term experience in
teaching this topic and their findings; and, finally,
Section 8 has the conclusions.

2. The Winged-Edge Data Structure

This paper is only concerned with orientable 2-
manifold meshes without boundary. Thus, each edge
has exactly two incident faces, and faces are oriented
in a compatible way so that each edge receives op-
posite directions from its incident faces. Vertices of
a face are conceptually oriented clockwise. Some in-

sist that this orientation has to be counter-clockwise
in order to generate correct normal vectors for ren-
dering. This is incorrect since the winged-edge data
structure does not store vertices in any particular
order, and the order of vertices of each face has to
be generated with a traversal algorithm which can
be clockwise or counter-clockwise.

In Fig. 1, edge a has incident faces 1 and 2, and
the traversal of each incident face under the pre-
defined orientation induces a predecessor edge and a
successor edge. The predecessor and successor edges
of edge a with respect to face 1 are edges b and
d, respectively, and the predecessor and successor
edges of edge a with respect to face 2 are edges e and
c, respectively. Since each face induces a different
direction to the common edge, a direction must be
chosen in order to specify the “left” face and the
“right” face. For example, in Fig. 1, if the chosen
direction is from vertex X to vertex Y , the left face
is face 1 and the right face is face 2. Otherwise, the
left and right faces are 2 and 1, respectively.

face 1 face 2

X

Y

a

b c

d e

Fig. 1. The Winged-Edge Data Structure

Once the orientation of an edge is chosen, one can
assemble nine pieces of information from an edge:
the edge name, the start and end vertices, the left
and right faces (i.e., the wings), the predecessor and
successor edges when traversing the left face, and
the predecessor and successor when traversing the
right face. In Fig. 1, if the start and end vertices of
edge a are X and Y , respectively, the predecessor
and successor edges when traversing the left face
are b and d, respectively; and the predecessor and
successor edges when traversing the right face are e
and c, respectively (Table 1).

The winged-edge data structure of a mesh consists
of three tables: vertex table, edge table, and face
table. There is one entry for each edge in an edge
table, and each edge entry consists of the nine pieces
of information in Table 1; however, if the edges of
a mesh are numbered, one may use the table index
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Table 1

Table Entry for Edge a

Edge Vertex Face Left Traverval Right Traversal

Name Start End Left Right Pred. Succ. Pred. Succ.

a X Y 1 2 b d e c

for the edge name. Each entry in the vertex table
contains the coordinates of a vertex and a pointer
to an incident edge in the edge table. Each entry in
the face table only contains a pointer to an incident
edge in the edge table. For example, the vertex table
entry of vertex X in Fig. 1 may have a pointer to
edge a, d, e or any other incident edge. Similarly, the
incident edge of face 1 may be edge b, a, d or any edge
of face 1. Fig. 2 is a tetrahedron of four vertices, six
edges, and four faces. A possible winged-edge data
structure of this tetrahedron is shown in Table 2.

1 2

A

B

C

D

a

b

c

d

e
f

3: back face ACD
4: bottom face ABC

Fig. 2. A Tetrahedron

Table 2
Tables of a Tetrahedron in Fig. 2

Edge Vertex Face Left Right

Name S. E. L. R. P. S. P. S.

a A D 3 1 e f b c

b A B 1 4 c a f d

c B D 1 2 a b d e

d B C 2 4 e c b f

e C D 2 3 c d f a

f A C 4 3 d b a e

(a) Edge Table

V ertex Edge

A a

B b

C d

D e

Face Edge

1 a

2 c

3 a

4 b

(b) Vertex Table (c) Face Table

3. Why the Winged-Edge Data Structure

The advantages of the winged-edge data structure
may not be initially obvious due to its complex edge
table structure. However, the complexity of the edge
table structure does help answer many topological
inquiries easily and efficiently, such as finding all in-
cident edges (or faces) of a vertex. These topological
inquiries can be very time-consuming to perform for
a conventional data structure. A conventional data
structure usually has (1) a vertex table that stores
the coordinates of each vertex, (2) an edge table
which stores the two incident vertices of each edge,
and (3) each entry of a face table stores the vertices
(or edges) of that face with a linked-list. To find all
incident edges of a vertex, one must scan every edge
table entry and report those that are incident to the
given vertex. This requires 2E comparisons, where
E is the number of edges. Similarly, one must scan
every linked list in the face table to find the incident
faces of a given vertex or edge. Since each edge ap-
pears exactly twice in the face table linked lists, one
must follow 2E links to complete the scan.

Many topological inquires can easily be answered
with the winged-edge data structure. Since each en-
try in an edge table stores all incident elements of
that edge, answering topological inquires would only
require a local scan around the given element. For
example, to find all incident edges of a vertex, one
may simply retrieve an incident edge from the vertex
table, and follow the predecessor edge or successor
edge to the next edge. Therefore, if an application re-
quires many topological inquiries, the winged-edge
data structure is more efficient than a conventional
one. Additionally, the winged-edge data structure
may be used efficiently to implement Euler opera-
tors in solid modeling [10,18]. Complexity analysis
can be found in [12,28].

4. System Overview

This system has one main window that contains
three areas (Fig. 3(a)). The main window has menu
items for loading a mesh (Load Mesh), saving a mesh
(Save Mesh), loadingand running various algorithms

3



(a) (b)

Fig. 3. System Screen and the Configuration Window

provided by the instructor or designed by students
(Load Algorithm and Run Algorithm), changing the
system configuration (Configuration), switching be-
tween window mode and full screen mode for pre-
sentation purpose (Fullscreen), and exiting the sys-
tem (Quit). The large display area, the Mesh View,
shows the loaded mesh; and the bottom area, in this
order, has the face table, edge table and vertex ta-
ble. If an algorithm is being animated, the Algorithm
View area on the right edge shows the animated al-
gorithm. The Algorithm View area is further divided
into three sections: the top one shows all variables
and their current values, the middle one has the
animated algorithm with keywords and comments
shown in boldface and italic, respectively; and the
bottom one is for animation control.

Menu items Load Mesh, Save Mesh, Load Algo-
rithm and Run Algorithm will bring up a window ask-
ing the user to pick or input a filename and/or an
algorithm to use. Currently, supported formats in-
clude the widely used .obj and .ply formats, and
the simple tabular winged-edge .wtb format in Ta-
ble 2. More formats will be added in the future. A
user may choose an input format, load a mesh, ex-
amine its winged-edge tables, and save the mesh to
another format. Since this system converts its input
to the winged-edge table format to be used inter-
nally for visualization and algorithm animation, it
can also be used as a simple file format converter.

The Fullscreen menu item brings the system dis-
play to full screen for presentation purpose and

classroom use, and an Escape Fullscreen button
that appears at the upper-left corner on the screen
returns to windows view. The Configuration menu
item brings up a small window, the Configuration
window (Fig. 3(b)), allowing the user to set various
options. This window has four tabs, 3D View, Al-
gorithm View, Fullscreen Mode, and Colors. The 3D
View tab permits the user to set various display op-
tions: coordinate axes, the wireframe of the mesh,
the ID/labels of vertices, orientation of each face,
solid or transparent faces, and scaling factors of
the mesh structure and labels. The Algorithm View
tab permits the user to set font size to be used in
the Algorithm View area. The Fullscreen Mode tab
allows the user to set what is shown in full screen
mode, which may include the algorithm, tables and
menu buttons. This is very useful if the system is
being used for presentation and demonstration. Fi-
nally, the Colors tab provides the user a chance to
modify the color scheme used in the system. In this
way, the user would be able to adjust the colors for
his/her preference.

5. Visualizing the Data Structure

Since the main goal of this system is the visualiza-
tion of the winged-edge data structure, the design
merit is allowing the user to see every piece of infor-
mation in the winged-edge data structure of a mesh.

On the Mesh View, vertices and oriented edges
of the loaded mesh are shown as small spheres and
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Fig. 4. Mesh View

solid arrows, respectively. The displayed mesh can
be rotated by dragging with the left mouse button,
while the middle and right buttons are for transla-
tion and zooming. The user may click on a vertex,
an edge, or a face to display its related information
in winged-edge tables. For example, if the user clicks
on an edge, all information in Fig. 1 will be displayed
with the selected edge marked in a different color.
Fig. 4 shows the displayof selecting edge 7.The Mesh
View displays all nine pieces of information of edge 7.
Items are shown in different colors and marked with
labels. Each label has two components: the element
number (i.e., an index to the corresponding table)
and its description such as “Selected Edge”, “Left
Predecessor”, “Start Vertex” and “Right Face”.

The bottom of the main window shows all three
tables with elements highlighted in the same color as
used in the Mesh View. The user may also select an
element by clicking on the corresponding row in one
of the three tables. The edge table displays the se-
lected edge and the predecessor and successor edges
of the left and right faces using a different color. The
vertex table highlights the start and end vertices of
the selected edge, while the face table highlights the
left and right faces. Thus, the relationship of each
selected element with other elements is clearly re-
vealed, and it is easy for the user to verify and visu-
alize the organization of the winged-edge data struc-
ture of the loaded mesh. Fig. 5 shows the tables after
edge 7 is selected.

6. Animating Algorithms

The most important component of this system is
the visualization and animation of the winged-edge
data structure and its algorithms. The user may use
a simple pseudo code-like language to design algo-

rithms, which will be loaded, parsed, and animated
in step-wise or continuous mode (Section 6.1). Cur-
rently, this system provides the following basic al-
gorithms: (1) given a vertex find its incident edges
and adjacent faces, (2) given a face, find its inci-
dent vertices, edges and faces, and (3) given a ver-
tex, find its link and star. As an algorithm is be-
ing animated, the statement being executed is high-
lighted and the variables and their values are also
shown in various colors (Section 6.2). Additionally,
mesh elements (e.g., vertices, edges and faces), op-
erators (e.g., comparisons and selections), and val-
ues of variables are shown on the Mesh View, and
the lower-left corner of the Mesh View (i.e., the mes-
sage area) displays a description of each animated
step. In this way, the user will be able to follow the
execution of an algorithm easily (Section 6.3). Com-
bining data structure visualization, simple pseudo-
code algorithm design, and algorithm animation, in-
structors and students will have an environment for
teaching, practicing, and learning the basics of the
winged-edge data structure.

6.1. A Simple High Level Pseudo Code-Like
Language

This system uses a simple high level, pseudo code-
like language for algorithm design. This simple lan-
guage provides sufficient power for a user to eas-
ily use and look up any element in a winged-edge
structure, and hence hides the un-necessary imple-
mentation details from the users. A complete set
of syntax rules in EBNF form is in Appendix A.
Fig. 6 is an example that finds all incident edges of
a given vertex. In an algorithm, the user may use
types Vertex,Edge and Face, executable statements
if-then-else, while-do, and do-while, and as-
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Fig. 5. Tables Content Showing the Selected Edge

signment :=, equal =, not equal <> and “look-up”
operators. Look-up operators are keywords that can
be appended to a variable. For example, if e is an
edge (Fig. 6), e.startVertex is the start vertex
of edge e, and e.leftSuccessor is the successor
edge of e when traversing its left face. For vertex
v, v.incidentEdge is the incident edge of v in the
vertex table. Similarly, f.incidentEdge is the inci-
dent edge of face f in the face table. There are two
“action” operators, highlight and mark. The for-
mer highlights the elements on the Mesh View, and
the latter specifies algorithm output.

1 algorithm vertexAdjacentEdge(v : Vertex);

2 structuretype WingedEdge

3 description "Mark the adjacent edges of a vertex."

4 var e, se : Edge;

5 begin

6 e := v.incidentEdge;

7 se := e;

8 do

9 mark e;

10 if e.startVertex = v then

11 e := e.leftSuccessor;

12 else

13 e := e.rightSuccessor;

14 end;

15 while e <> se;

16 end;

Fig. 6. Find All Incident Edges of a Given Vertex

Algorithm vertexAdjacentEdge() in Fig. 6
takes a vertex v as its input and reports all of its
incident edges. Line 2 declares that the underly-
ing data structure is WingedEdge with keyword
structuretype, and line 3 specifies a description
string which is used by the system and the user to
identify this algorithm (e.g., picking an algorithm
to run). As in C++, a comment starts with a “//”
and extends to the end of the same line.

This algorithm uses two Edge variables e and se.
Line 6 retrieves an incident edge of v and stores it
to e, and line 7 saves this edge to se. The do-while
loop uses e as a working variable and loops around
v to find other incident edges. Edge e is marked

(line 9) because it is an incident edge of v. The
if-then-else statement moves e to the next edge.
To do so, e’s start vertex e.startVertex is retrieved
and compared with v. If they are equal, e is the
successor edge of its left face (line 11). Otherwise,
e is the successor edge of its right face (line 13).
The while condition (line 15) tests if edge e returns
to the initial edge se. If it does, the algorithm has
found all incident edges of v. Otherwise, the algo-
rithm loops back and uses e to find the next inci-
dent edge. Hence, edge e moves around vertex v in
counter clock-wise order. One can easily modify the
if-then-else for a clock-wise traversal. This shows
a fact stated in Section 2 that the orientation of each
face does not matter. What matters most is the al-
gorithm used to generate mesh elements.

User designed algorithms are saved in a text
file. When the system starts, the default algorithm
source code is read from a file, parsed, and com-
piled into a linear representation that is similar to
assembly code. This linear form is used internally
to execute the algorithm while the source code is
displayed in the Algorithm View area. A user may
load additional algorithms into the system at any
time with the Load Algorithm menu button, and use
the Run Algorithm menu button to select and run an
algorithm. Therefore, an instructor may design new
algorithms, load them, and use the animation fea-
ture for classroom presentation. On the other hand,
students may use this feature to practice algorithm
design and debugging. For example, a student may
use the system to verify a concept or an algorithm
before actual implementation takes place.

6.2. The Algorithm View

An executing algorithm waits for the user to select
elements for the algorithm’s parameters. Then, the
Algorithm View area highlights the syntactic element
being executed and the line that contains the ele-
ment. For example, in Fig. 7, which is the algorithm
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in Fig. 6, shows that the syntactical element being
executed is e.startVertex, retrieving the start ver-
tex of edge e. If execution continues, the next ele-
ment to be highlighted will be e.startVertex = v,
because the retrieved vertex will be compared with
the given vertex v. Note that the line containing the
executing element is highlighted differently. In this
way, the user will be able to know exactly which el-
ement in an algorithm is being executed.

Fig. 7. The Algorithm View Area

Before animation starts, elements of the mesh are
shown in light color so that they will not have a sig-
nificant impact on visualization. As animation con-
tinues, involved elements will be shown in different
colors with the same color pattern used to high-
light the rows of these elements (Fig. 8). The default
color scheme is shown in Table 3; however, this color
scheme can be modified with the Colors tab under
the Configuration menu button. Additionally, if an
element becomes the value of some variables, the
labels field (i.e., the last column) in its table entry
shows the variable names. For example, the edge ta-
ble in Fig. 8 shows that edge 8 is currently the value
of variables e and se, and vertex 10 is the value of
variable v. Hence, the user can accurately and eas-
ily keep track of the execution of the algorithm and
the value of each variable.

The algorithm shown in the Algorithm View area
can be animated in a step-wise mode or a continuous

Table 3

Default Color Scheme

Color Meaning

Gray Base color

Blue Algorithm output

Green Elements in a look-up operator

Yellow Highlighted elements

Purple Elements with variables referring to

Light Blue Elements in a comparison

mode with adjustable delay. In the step-wise mode,
the user may use the Step button or space bar to step
through the algorithm. In the continuous mode, the
user may set a time delay between steps to execute
the animation without user intervention. The user
may switch between modes or abort the animation
at any time.

6.3. Algorithm Animation – An Example

This section presents an example of applying the
algorithm in Fig. 6 to a tetrahedron (Fig. 2). After
loading the tetrahedron file and starting the algo-
rithm, the user clicks on vertex 1 to find its incident
edges. Thus, vertex 1 becomes the value of variable
v (i.e., the formal argument of the algorithm), which
is indicated by the label “1: v” (Fig. 9(a)). Although
the orientation of each face is not shown, a user may
turn on this feature. Then, the algorithm executes
line 6, and retrieves an incident edge of v from the
vertex table. As a result, this incident edge (i.e.,
edge 1) is shown in green (Fig. 9(b)). This edge is as-
signed to edge variable e, making the label of edge 1
“1: e” (Fig. 9(c)), and edge variable e now has value
1. Line 7 saves the value of e to se, making edge 1
the value of variables e and se (Fig. 9(d)).

Next, the execution reaches the do-while loop.
Edge e is marked in blue (line 9) because it is an
incident edge of v (Fig. 9(e)). The if statement
compares the start vertex of e with v. To do so,
e.startVertex is retrieved (i.e., vertex 1) and e is
shown in green (Fig. 9(f)) because a look-up oper-
ator is applied to e. Then, this vertex is compared
with v (Fig. 9(g)). There should be two solid ar-
rows pointing to vertex 1, one for vertex v and the
other for vertex e.startVertex. They are blocked
by the label of vertex 1; however, the user may ro-
tate or zoom the mesh to reveal the arrows. Since
e.startVertex and v are equal, both being vertex
1, the left successor of e is assigned to e. In this case,
the left successor is edge 4, and e becomes edge 4,
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Fig. 8. The Edge and Vertex Tables

(a) v.highlight (b) v.incidentEdge (c) e := v.incidentEdge (d) se := e

(e) e.mark (f) e.startVertex (g) if e.startVertex=v (h) e:=e.leftSuccessor

Fig. 9. Operator Animation – I

overwriting the original edge 1, as shown in Fig. 9(h).
Then, the algorithm executes while e <> se, and

two light blue solid arrows point to edge 1 and edge
4 (Fig. 10(a)) showing the edges under comparison.
Since e and se are not equal, the execution loops
back and repeats the steps shown in Fig. 9. The
loop body will execute two more times. When edge
e returns to edge se, e and se are equal, both being
edge 1 as shown by the two light blue solid arrows in
Fig. 10(b), and the execution of the do-while loop
completes. This brings the algorithm execution to
an end.

7. Experience Discussion

7.1. Course Background Information

While the content in a typical computer graphics
course varies, many textbooks focus more on ren-

(a) while e <> se (b) The Last while

Fig. 10. Operator Animation – II

dering with just a brief survey on modeling/design
skills. Wolfe’s survey also showed similar find-
ings [27]. Even though Wolfe’s work was published
in 1999 and many popular textbooks have been
updated and expanded since, the basic theme did
not change much. Some educators consider pro-
gramming in a graphics API being the skill that a
student must know for his/her career. This is not
entirely true, because knowing an API, which is
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similar to knowing a programming language, is just
the beginning and students must acquire other vital
skills to have successful professional careers.

Under the support of National Science Founda-
tion, the authors addressed this issue by including
the following four important components in a more
balanced way: rendering, modeling/design, anima-
tion and postprocessing [14,15], and created a ju-
nior elective course Elementary Geometric Objects
and Processing [21] in which the most fundamen-
tal and important topics in modeling and design are
presented. Topics covered include boundary repre-
sentations, constructive solid geometry, continuity
issues, Bézier, B-Spline and NURBS curves and sur-
faces, curve and surface interpolation and approxi-
mation, subdivision surfaces, mesh representations,
mesh simplification and compression, and multires-
olution modeling. A web-based tutorial was devel-
oped to disseminate this material, which has become
a popular reference on the web for educators, stu-
dents, researchers and professionals [22]. Details can
be found in [7,6,17,13,16,23,29–31].

7.2. Findings

In our course (mentioned in Section 7.1), a pre-
test is conducted in the first class meeting and a
post-test and attitudinal survey are performed in the
last. See [16] for some preliminary results. Through
these tests and survey, the authors hope to deter-
mine what the most difficult topics are and how the
problems can be addressed properly. The most dif-
ficult topics according to the students, surprisingly
enough, are the winged-edge data structure, conti-
nuity issues for curves and surfaces, and curve and
surface interpolation and approximation. It is un-
derstandable that the latter two may be difficult due
to the unavoidable mathematical content. But, why
would the winged-edge data structure be difficult?
Surveys in recent years revealed that the difficulty
is not in the data structure itself. Instead, the most
difficult part, as virtually all students agreed upon,
is how to use this data structure to develop applica-
tions (i.e., the algorithmic component). The second
exercise in this course is to design a program that
reads in a mesh in the winged-edge tabular format
and displays it in a window. Other problems also
appeared in quizzes, midterm and final exams.

Carefully examining student programs showed
that some students completely ignored the adja-
cency relations recorded in the tables, and their

programs searched the tables to answer topological
inquires. As a result, the performance of their pro-
grams cannot be efficient. Initially, this inefficiency
was not obvious for simple meshes; however, when
students were asked to implement other mesh appli-
cations that require many topological inquires (e.g.,
subdivision surfaces), sooner or later, they discov-
ered that the speed difference may be many times
slower for larger meshes and can be prohibitively
high for complex meshes. Moreover, experience also
showed that students struggled more in the winged-
edge data structure than they did in other topics
that many educators considered to be difficult (e.g.,
knot insertion and de Boor’s algorithm in B-Spline
curves and surfaces). The main evidence is that the
successful rate of the winged-edge data structure
exercises was lower than those of B-Spline based
exercises. The former had an average successful
rate around 80% while the latter was usually higher
than 90%.

7.3. Overcoming the Problems

Initially, the authors believed that extensive class
discussion would be sufficient to explain the concept,
merit, and use of the winged-edge data structure;
however, it became obvious very soon that this was
not the case for two major reasons. First, class dis-
cussion, no matter how sophisticated is, cannot cap-
ture the 3-dimensional sense of a mesh, because stu-
dents cannot “rotate” a drawing to “see” the details
of the “other side”. The high probability of making
minor mistakes here and there (e.g., incorrect inter-
pretation of left and right faces of an edge on the
“other side” of the board) could easily produce in-
correct and totally useless tables. Consequently, it
is not easy to successfully and correctly construct a
winged-edge data structure for a moderately com-
plex model. Even a cube can be very challenging
for board work. Second, algorithms that use the
winged-edge data structure representation are usu-
ally not very straightforward and require some addi-
tional thinking and understanding. This means only
presenting the data structure is insufficient for stu-
dents to use it properly and successfully. A discus-
sion of the merit of the data structure and algo-
rithms is required.

In recent years, the subdivision techniques have
proven to be a promising modeling tool, and the
use of meshes increases steadily. Thus, computer
graphics educators face a grand challenge: how can
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we help students learn mesh based modeling and
design skills? To address this issue, a number of
mesh based tools such as subdivision techniques,
mesh simplification, mesh compression, multireso-
lution modeling, and mesh reconstruction are under
construction. All of these tools start with a mesh
representation. While there are many data struc-
tures for mesh representation, the winged- and half-
edge data structures are certainly the most basic
and commonly used ones. Therefore, it is reasonable
to start with a visualization and animation tool for
these two data structures.

This tool was used in classroom presentations and
given to students for their own practice. However,
a controlled tests of the effectiveness of this tool
was not performed for a major reason. The authors
felt that dividing the class into two groups, one of
which would be taught with the tool and the other
without, is not fair to the students, especially that
the value of visualization and animation tools have
been widely considered effective and justified. The
authors’ experience and student feedback indicated
that this tool is useful in understanding the merit
and details of the data structure, and can help the
students develop their own programs. More impor-
tantly, once they understand the key concept, stu-
dents can indeed use the data structure successfully,
and appreciate the speed gain when handling large
meshes. Since this tool includes a set of basic algo-
rithms and can overcome the difficulties mentioned
earlier, it can also be used as a platform for further
study. For example, an instructor may ask the stu-
dents to design some simple algorithms such as (1)
given a tetrahedron, find the “opposite” face of a
vertex, (2) given a cube, find the “opposite” face of a
face, (3) given a quad mesh, find the two “opposite”
edges of an edge, (4) given an octahedron, find the
“opposite” vertex of a selected vertex, and (5) deter-
mine if a given vertex is extraordinary (i.e., valency
not being 4). In summary, the authors believe this
tool is worth being used by instructors for classroom
presentation and demonstration, and students to vi-
sualize and animate the basic data structure and al-
gorithms. This and other tools being developed will
be part of the authors’ MeshMentor distribution.

8. Conclusions

The above presented a visualization and anima-
tion tool for the winged- and half- edge data struc-
tures. Previously, board work and diagrams were

used in classroom presentation. After many years’
experience and input from other educators and stu-
dents, the authors decided to convert their mate-
rials to a visualization/animation tool. This tool
can help users visualize the winged-edge data struc-
ture with a graphical display and the traditional ta-
ble format with extensive labeling. With the sim-
ple pseudo code-like language, instructors may use
this tool for presentation and demonstration pur-
poses with the supplied basic algorithms or other
new algorithms. The animation component is capa-
ble of animating an algorithm written in the simple
language and showing all activities during its execu-
tion. This makes algorithm presentation, learning,
design and evaluation much easier.

Since mesh related techniques have become more
important and widely used, it is time for computer
graphics educators to rethink course content and
add mesh related topics to their syllabi. Because
winged- and half- edge data structures are basic,
they are certainly good candidates to be considered.
The authors hope their work may serve as the start-
ing point for emphasizing the modeling component
in computer graphics courses. After all, there would
be no image if their are no geometric objects in a
scene. In the near future, this tool will be extended
in a number of directions. For example, the sim-
ple language may be extended to allow integer and
float types, array, and calls among algorithms, and
permit modifications (i.e., adding and removing ele-
ments) to be applied to the existing data structures.
With these new features, a user may use this tool to
design more complex algorithms such as mesh com-
pression and triangle strip generation for more effi-
cient rendering of triangular meshes. An algorithm
library may be possible. The visualization and an-
imation components may also be extended to sup-
port these new features. Interested readers may find
more about this work and future developments at
www.cs.mtu.edu/~shene/NSF-2.

Appendix A. EBNF Definition of Our
Simple Language

The following is a list of syntax rules in the
EBNF form, where non-terminals are in italic and
terminals (i.e., reserved words) and operators are
in courier font. The non-terminal expr is defined as
usual; however, only comparison operators = and <>
are supported currently. In a future version with the
Integer and Float types, all arithmetic operators
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will be supported fully.

file := algorithm declaration ;
[ algorithm declaration ; ]∗

algorithm declaration :=
algorithm identifier ( parameter list ) ;

structuretype meshtype
[ description string ]
[ var decls list ; ]

begin
[ statement list ]

end
parameter list :=

identifier list : type
[ ; identifier list : type ]∗

decls list := identifier list : type
[ ; identifier list : type ]∗

identifier list := identifier [ , identifier ]∗

statement list := statement ; [ statement ; ]∗

statement := assignment | while statement
| do while statement | do statement | if statement
| break | continue | action statement

while statement := while expr do statement list end
do while statement := do statement list while expr
do statement := do statement list end
if statement :=

if expr then statement list
[ else if expr then statement list ]∗

[ else statement list ]
end

action statement := action type element
action type := mark | highlight
element := identifier | element . pointer
pointer := startVertex | endVertex

| leftFace | rightFace | leftPredecessor
| rightPredecessor | leftSuccessor
| rightSuccessor | vertex | face
| incidentEdge

assignment := identifier := expr
mesh type := WingedEdge | HalfEdge
type := Vertex | Edge | Face
identifier := letter [ letter | digit ]∗

string := " character∗ "
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