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ABSTRACT

Streamline visualization can be formulated as the problem of streamline placement or streamline selection. In this
paper, we present an importance-driven approach to view-dependent streamline selection that guarantees coher-
ent streamline update when the view changes gradually. Given a large number of randomly or uniformly seeded
and traced streamlines and sample viewpoints, our approach evaluates, for each streamline, the view-dependent
importance by considering the amount of information shared by the 3D streamline and its 2D projection as well as
how stereoscopic the streamline’s shape is reflected under each viewpoint. We achieve coherent view-dependent
streamline selection following a two-pass solution that considers i) the relationships between local viewpoints
and the global streamline set selected in a view-independent manner and ii) the continuity between adjacent
viewpoints. We demonstrate the effectiveness of our approach with several synthesized and simulated flow fields
and compare our view-dependent streamline selection algorithm with a naive algorithm that selects streamlines
solely based on the information at the current viewpoint.

Keywords: flow visualization, importance-driven, view-dependent, streamline placement, streamline selection,
coherent update

1. INTRODUCTION

In many fields of science and engineering, visualizing vector fields plays an essential role in visual interpretation
and understanding of the underlying flow features and patterns. Well-known vector field visualization techniques
include geometry-based methods such as particle tracing, texture-based methods such as line integral convolution
(LIC),! spot noise,? and image-based flow visualization (IBFV).? Visualization of streamlines and pathlines is still
the most commonly used method because they are easy to compute and can be rendered at various resolutions
with interactive rates.

A central issue for streamline visualization is seed placement. There exist several effective seeding strategies
for 2D and 3D vector fields including image-guided* and flow-guided”® algorithms. For 3D flow fields, seeding
too many or too few streamlines is not able to reveal flow features and patterns well either because it easily leads
to visual clutter in rendering (too many) or it conveys little information about the flow field (too few). Not only
does the number of streamlines placed matter, their spatial relationships also influence our understanding of the
flow field. Ideally, a streamline seed placement algorithm should retain important features in the vector field so
that desired insights can be gained.

An alternative to seed placement is streamline selection. That is, we first place a large number of seeds
either randomly or uniformly in the domain to produce a pool of streamlines. We then either automatically
select representative or interesting streamlines from the pool® % or manually sketch a pattern to match similar
streamlines for selective display.!! Although the task is shifted from selecting good seeds to selecting good
streamlines, the goal remains the same: we aim to produce a set of streamlines that capture flow features and
patterns. In this paper, we present an importance-driven approach to interactive 3D streamline selection and
visualization. Our goal is to perform selective streamline display which could not only reduce visual clutter
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but also well characterize view-dependent vector field features. We also aim to maintain coherent streamlines
updates between adjacent viewpoints.

Our approach is based on the observation that each streamline has a range of views that show its characteristics
in the least ambiguous manner. We refer to these views as streamline intrinsic views. We leverage the concepts
of information theory to derive the view-dependent importance of a streamline by computing the amount of
information shared by the 3D streamline and its 2D projection under different viewpoints. Taking into account
the shape characteristic of the streamline under different viewpoints as well, we obtain an importance measure
that allows us to identify the intrinsic views of the streamline. Based on this importance measure, we present
solutions for both view-independent and view-dependent streamline selection and visualization. For the view-
independent case, our solution selects a set of overall important streamlines among all viewpoints and treats it as
the globally optimal streamline set. For the view-dependent case, our algorithm dynamically selects important
streamlines on the fly and is able to maintain coherent update of streamlines displayed by considering the
relationships between local viewpoints and the global streamline set as well as the continuity between two
adjacent viewpoints. We experiment our algorithm with several synthesized and simulated flow fields of different
characteristics. The effectiveness of our algorithm is demonstrated through qualitative and quantitative results
and comparison with a naive view-dependent streamline selection algorithm that selects streamlines solely based
on the information at the current viewpoint.

The main contributions of our paper are as follows: First, we propose a novel view-dependent streamline
selection algorithm which guarantees coherent update of streamlines displayed when the viewpoints change
gradually. Second, we also provide a view-independent streamline selection algorithm which selects a set of overall
important streamlines among all viewpoints. Third, we identify the intrinsic views for streamlines based on their
importance value which combines two view-dependent criteria: mutual information and shape characteristic.

2. RELATED WORK

One of the main focuses on flow visualization is seed placement. Jobard and Lefer® presented an evenly-spaced
seeding algorithm. They took a greedy strategy to place seeds in the neighborhood of previously placed stream-
lines. A distance threshold is used to explicitly control the density of streamlines. Liu et al.'> proposed another
evenly-spaced streamline placement algorithm for fast, high-quality and robust layout of flow lines. Their solution
features double queues to prioritize topological seeding and adaptive distance control to minimize discontinuities.
Verma et al.” argued that the goal of streamline placement is to clearly reveal flow features such as critical points.
Therefore, they proposed a flow-guided streamline seeding algorithm that explicitly detects critical points first
and then applies different seeding templates to different types of critical points for feature highlighting. This
approach was later extended to 3D streamline seeding by Ye et al.® Mebarki et al.'? took a farthest seeding
strategy and placed the seed successively at the place that is farthest away from all previously placed streamlines
(i.e., the center of the biggest void region in the field). Schlemmer et al.'* presented another seeding solution
that leverages a user-specified scalar function to control the streamline density. Streamlines are prioritized ac-
cordingly and those in the most important regions are drawn first to depict flow features. Li and Shen® presented
an image-based 3D streamline placement strategy that resolves visual clutter due to streamline projection by
placing seeds in the 2D image space. Liu and Moorhead'® proposed an interactive view-driven evenly spaced
streamline placement algorithm for 3D surface flows. Their algorithm integrates streamlines in 3D space while
controlling the streamlines density in the 2D view space. Spencer et al.!® proposed an efficient algorithm to
generate evenly spaced streamlines over surfaces by performing streamline integration in the image space. Li et
al.'” proposed illustrative streamline placement to depict the flow patterns succinctly. This algorithm places
a new streamline only when it represents flow characteristics that have not been shown by previously placed
streamlines. Xu et al.'® presented an information-theoretic approach for streamline seeding. Their approach
first uses seed templates to place streamlines near regions of high entropy values, then successively places more
streamlines according to the conditional entropy between the original flow field and the field reconstructed from
previously placed streamlines. Wu et al.'® presented a streamline placement algorithm that produces evenly
spaced long streamlines while preserving topological features of a flow field. The flow field is decomposed into
several topological regions and in each region seeds are placed along a seeding path.
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Figure 1. The overview of our coherent importance-driven streamline selection and visualization. Our approach consists of
a view-independent solution that selects best streamlines considering all sample viewpoints and a view-dependent solution
that dynamically selects important streamlines on the fly.

An alternative to seed placement is to either uniformly or randomly place seeds in the field and then adjust the
resulting streamlines or select a subset of streamlines for informative visualization. Turk and Banks* proposed
to use an energy function to guide streamline placement. Their algorithm starts with uniformly or randomly
seeded streamlines and then follows an iterative process to improve the visualization by taking several primitive
streamline operations (move, insert, delete, lengthen, shorten and combine) and gradually reducing the energy.
The energy is defined as the difference between a low-pass filtered version of the streamline image and the desired
visual density. Chen et al.” selected streamlines from randomly-seeded candidates based on their distance, shape
and orientation to accentuate regions of interest. Their similarity-guided approach produces streamlines that
accentuate regions of interest without explicit feature detection and extraction. Marchesin et al.!® presented a
view-dependent solution for streamline selection. Starting from a pool of randomly seeded streamlines, they first
removed streamlines that have low 3D entropies or have a large overlap with other streamlines given the view,
then added new streamlines to cover empty areas to provide more context information. Lee et al.2’ presented
a view-dependent algorithm that minimizes the occlusion and reveals important flow features for 3D flow fields.
They utilized Shannon’s entropy as a measure of vector complexity and derived an entropy field from the input
vector field. Using the maximal entropy projection (MEP) framebuffer that stores maximal entropy values as
well as the corresponding depth values for a given viewpoint, they developed a view-dependent algorithm to
evaluate and choose streamlines guided by the MEP framebuffer.

Our work falls into the category of streamline selection. Unlike the work by Marchesin et al.!’ which only
evaluates 3D linear and angular streamline entropies, we evaluate the information loss when 3D streamlines
are projected to the 2D image plane. Our strategy is similar to the work of Furuya and Itoh.?! Instead
of only considering a streamline’s projected length using entropy,?' we take into account both direction and
magnitude of the vectors along the 3D streamline and its 2D projection using mutual information. Moreover, we
also incorporate the streamline’s shape characteristic to obtain our streamline importance measure. Since our
solution takes into account view changes in streamline importance evaluation and we carefully select streamlines
under each viewpoint by considering the overlap of streamlines between the current and previous viewpoints,
we are able to produce coherent transition between viewpoints as the user rotates the flow field, which is not
achieved in the work of Marchesin et al.'® and Lee et al.?® Both Xu et al.'® and our method uses information
theory for importance evaluation. While the evaluation of information content in Xu et al.'® is on the flow field,
we evaluate the information content on the integrated streamlines.

3. ALGORITHM OVERVIEW

We sketch the main steps of our algorithm in Figure 1. Given an input 3D vector field, we first produce a large
number of randomly or uniformly seeded and traced streamlines over the field. To favor long streamlines that
better reveal the continuity of the flow field, we integrate each streamline as long as possible until it leaves the
domain or the velocity becomes zero. This step of streamline placement can be stopped until a target number of
streamlines has been generated or the streamline pool produced is dense enough (e.g., every voxel has been passed
through by at least one streamline). Then we evaluate the importance for each streamline and order them into a



priority queue for every single sample viewpoint. More important streamlines are those whose 3D information is
high and in the meanwhile, whose 2D projections correspond to their respective intrinsic views that reveal most
of their 3D information. In other words, more important streamlines are those whose 2D projections are able to
present more 3D shape information of the underlying flow field at the current viewpoint.

With the streamlines prioritized, we are able to perform view-independent or view-dependent streamline
selection and visualization. For the view-independent scenario, our algorithm selects best streamlines considering
all sample viewpoints. Overall, the selected streamlines are important from different viewpoints. For the view-
dependent scenario, our algorithm dynamically selects important streamlines. We leverage a 2D density map and
its effective area to control the density of streamlines displayed in the image plane. Since the view-dependent
selection is based on both the global streamline information and the continuity between local adjacent viewpoints,
our algorithm is able to maintain coherent update of streamline displayed when the view changes gradually.

4. STREAMLINE IMPORTANCE EVALUATION

Given a viewpoint, we evaluate the importance of each streamline by considering three criteria. In the following
we describe these three criteria and present their combination in the form of a joint importance measure.

o How much information the streamline contains in 3D. A 3D streamline has more information if its entropy
is high, i.e., it shows a more even distribution of vectors associated with the streamline’s points in terms of
direction and magnitude. (The streamline’s points are the equidistant positions along the streamline with
respect to an arc-length parameterization.) Therefore, a streamline traced over a turbulent flow region is
likely to contain more information than a streamline traced over a laminar flow region.

e How much information about the 3D streamline is revealed in the 2D projection. Due to the 3D to 2D
projection, information loss is inevitable. Some viewpoints can preserve the characteristics of the 3D
streamline better than other viewpoints. A good projection is the one that shows the streamline in the
least ambiguous way. That is, the corresponding viewpoint is an intrinsic view.

o How stereoscopic the shape of the streamline is reflected under the given viewpoint. We call this criterion the
shape characteristic of the streamline. Since the shape of the streamline’s 2D projection varies dramatically
under different viewpoints, a good shape characteristic should reveal the 3D pattern of the streamline as
much as possible. For example, the 2D projection of a spiral that allows us to infer both its curvature and
torsion information is preferred than those revealing only one of them.

4.1 Streamline Entropy

We evaluate the streamline importance based on its entropy value. For each streamline, we employ a sliding
window technique along each point and evaluate its entropy within the local window region. To better evaluate
the entropy, we assume that each streamline has been reparameterized by the arc length and we use newly
created sample points along the reparameterized streamline. The entropy of a discrete random variable X with
alphabet X takes the following equation

H(X)=-> p(z)logp(x), (1)

where p(z) is the probability mass function, z € X. To compute p(z) for every point on the streamline, we
interpolate its vector from the original vector field and evaluate the vector variation within the window centered
at the point. We consider both direction and magnitude of the vectors. For vector direction, we decompose a
unit sphere into a certain number of patches of equal area with small diameter following the algorithm proposed
by Leopardi.?? (We also use this method to partition a view sphere into sample viewpoints, refer to Figure 2
(a).) All vectors falling into the same patch will be quantized into the same bin of vector direction. For vector
magnitude, we quantize it into a certain number of levels. A 2D histogram consisting of vector direction and
magnitude is created for each sliding window. p(x) is computed as the normalized bin count of the 2D histogram.



4.2 Mutual Information

We quantify the view-dependent streamline importance by utilizing two view-sensitive terms. The mutual in-
formation between the 3D streamline X and its 2D projection Y is one of them.?3 Given two discrete random
variables X and Y, the mutual information is defined as

I(X;Y) = 2,y)log L&) 2
(X;Y) ;%:p( Y) 8 @) (2)
where p(z) and p(y) are the marginal probabilities of X and Y respectively, and p(z,y) is their joint probability.
If I(X;Y) is high, then the 3D streamline has a high entropy and its 2D projection preserves much of the
3D information. Conversely, if the 3D streamline has a low entropy, or its 2D projection loses much of the
3D information (even though the 3D streamline has a high entropy), then I(X;Y") is low. Therefore, we favor
streamlines that have high information content while their 2D projections reveal their characteristics well.

To compute the marginal probability p(x), we use a similar solution presented in entropy evaluation and
consider both vector direction and magnitude for the points along each streamline. The only difference is that
we do not use the sliding window here and p(z) is taken over the entire streamline. To compute the marginal
probability p(y), we use the projections of all vectors along all points of the streamline. To quantize projected
2D vector directions, we evenly partition a unit circle into a certain number of angle ranges. All vectors falling
into the same range will be quantized into the same bin of vector direction. For projected vector magnitude,
we quantize it into a certain number of levels as well. To compute the joint probability p(z,y), we create a 2D
joint histogram where the two axes are for all vector direction and magnitude combinations for variables X (3D
streamline) and Y (streamline 2D projection), respectively. In the joint histogram, the normalized bin count
corresponds to p(x,y).

4.3 Shape Characteristic

The shape characteristic is the other term for computing view-dependent streamline importance. Since the shape
of a streamline X varies along with the changing of viewpoints, we use this term to indicate how stereoscopic
the shape of X is under a specific viewpoint v. We also define the simplification of a streamline by uniformly
downsampling the original full-scale streamline. Since the number of points along a streamline is usually fairly
large (e.g., in the order of hundreds or thousands), we utilize the streamline simplification to compute its
shape characteristic to reduce computation complexity. Let us denote the simplification of streamline X as
X = {p1. P2, ..., Pr}, the viewing vector as 7, and the angle between T and p;p;41 as 6. Then we can define
the shape characteristic of p;p;+1 as

\7r/470’|)7 -

a(pifis1,v) = amin + (1.0 — cmin) (1.0 _

/4
where aupin is the minimum value for the shape characteristic (we set amin = 0.1 in this paper) and
, =0, 0>m/2
9—{ 6, 0<n/2 4)

It is obvious that a(p;pit1,v) gets its maximum (minimum) value of 1.0 (min) Wwhen @ and p;p; 41 form a 45°
or 135° (0°, 90° or 180°) angle. Now we define the shape characteristic of streamline simplification X as

k=1 ,~ « .
- L o (Pipis1, )| Pipi
OZ(X, ’U) _ 27,71 (51]1714'} - )”p?,pz-‘rlH ) (5)
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Intuitively, large shape characteristic value indicates a more “stereoscopic” shape of the streamline under a specific
viewpoint which can reveal more streamline shape patterns. To gain a more comprehensive understanding of

how the shape characteristic works, please refer to the work of Tao et al.2?> where they made a side-by-side
comparison between two viewpoint selection results with and without considering shape characteristic.
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Figure 2. (a) a streamline and all 100 sample views based on the spherical partition. (b) the variation of the streamline’s
importance value as the view changes gradually from the north pole to the south pole. (c) the best view of the streamline.
(d) the worst view of the streamline. In (a) and (b), the best and worst views are marked in red and blue, respectively.

4.4 View-dependent Streamline Importance

With mutual information and shape characteristic defined above, we obtain the view-dependent importance
M(X,v) of streamline X under viewpoint v as

_ aX0)I(X5X,)
EXEX OK(X,U)I(X; Xv)’

where X, denotes the 2D projection of X under v and X denotes the streamline pool. In Figure 2, we show
an example streamline and the variation of its importance value with all sample viewpoints. Two views corre-
sponding to the best and worst cases are also given. As we can see, the best case corresponds to an intrinsic
view having an almost 45° angle with the streamline where much of the 3D streamline characteristics (curvature
and torsion) is revealed in the 2D projection. The worst case hides most of the 3D information and displays the
streamline in the least certain way.

M(X,v) (6)

5. STREAMLINE SELECTION

Our view-independent streamline selection serves as the first step for view-dependent streamline selection.
Streamlines selected in the view-independent manner will be used to adjust the view-dependent selection results
so that the selected streamlines under each viewpoint always inherit the global “flavor”. In the following, we
introduce our view-independent streamline selection algorithm first, followed by the view-dependent algorithm.

5.1 View-independent Selection Algorithm

After importance evaluation, all streamlines are sorted in a priority queue based on their importance values
(Equation 6). As the view changes, the priority queue gets updated as well. To select streamlines for visualization
in a view-independent manner, we go over all sample viewpoints and compute the accumulated importance value
for each streamline. The final priority queue is derived based on the average importance value of each streamline.
We add a distance check to avoid selecting redundant streamlines even though their accumulated importance
values are high. To achieve this, we compute the minimum distance of the current streamline under consideration
to all streamlines that have been selected. The distance between two streamlines is defined as the FEuclidean
distance between their corresponding importance values under all sample viewpoints. If this minimum distance is
larger than a given distance threshold d,, then the current streamline is selected. Otherwise, it is discarded. The
creation of streamline priority queue based on all sample viewpoints can be done during the preprocessing (refer
to Figure 1). At runtime, we simply select a certain number of top-ranked streamlines that pass the distance
check for the viewing.

5.2 View-dependent Selection Algorithm

Our view-dependent selection algorithm consists of five steps. First, we obtain a global streamline set S from
the view-independent selection algorithm. Second, all the streamlines are sorted based on their importance
values under a given viewpoint. Third, we combine the top-ranked streamlines of the first and second steps
and put them into a streamline set S;. Forth, in order to consider the coherence between current and previous
viewpoints, we create a new streamline set which is the combination of streamline sets S; under the current
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Figure 3. Left: an example of the 5 x 5 influence region for each pixel along the streamline projection. The weight assigned
to each pixel in the influence region is inversely proportional to its Manhattan distance to the central pixel. The weighted
average mask is used to compute the importance of the streamline projection to the density map. Right: the density map
of a hurricane data set and a zoom-in to its middle-right region after several streamlines are selected.

viewpoint and S;_; under the previous viewpoint. Finally, we dequeue each streamline in the new set from step
four and leverage a density map to determine whether the streamline should be displayed in the final image or
not. By adjusting parameters of the density map, users can easily control streamline density in the display. In
the following, we describe our view-dependent streamline selection algorithm in detail.

e Step 1: Sort the initial IV streamlines in the pool based on the view-independent selection algorithm and
obtain a global set S by choosing a certain number of top-ranked streamlines. This global streamline set
is the initial reference for view-dependent streamline selection. The number of streamlines selected in S is
chosen large enough for the rest of steps. In this paper, since the number of finally selected streamlines is
usually 1/4 of the total streamline number N, we double this value and set the size of S to N/2.

e Step 2: Given a viewpoint v;, update the priority queue for all streamlines according to their view-dependent
importance values in the descending order. Choose the first N/2 streamlines as the initial streamline set
S; under v;. The reason for us to choose N/2 streamlines is to ensure that S and S; share the same size.

e Step 3: Compute the overlap between S and S; and keep the common streamlines in S;. Then for the
rest of streamlines, remove a certain number of streamlines from .S; based on the mean of the closest
point (MCP) distances.?* Specifically, we compute the MCP distance for each streamline s; in S; to all
streamlines in S and define the distance from s; to .S as the mazimum MCP distance. In order to maintain
the global streamline information under the current viewpoint, we always prefer the streamlines in S; with
small distance values since they are close to S. By contrast, the streamlines in S; with large distances to .S
will be discarded. Next, the same number of streamlines from S will be added to S; based on their view-
independent importance. That is, we traverse each streamline in S according to the decreasing importance
value and check whether the streamline is shared by S and S;. If not, we add it into S;. We keep doing
this until we reach the required adding number. Now the newly selected streamlines in S; contain both
view-dependent and view-independent characteristics. The adding or removing number is user-defined.
A larger value indicates that the new set S; is more similar to S while a smaller value means that S;
preserves more of the local information. We test several candidate values and find that 1/5 of the size of
S is appropriate which well balances global and local streamline characteristics in .S.

e Step 4: In order to maintain a coherent streamline update between two adjacent viewpoints, we compare 5;
under viewpoint v; with S;_1 under its previous viewpoint v; 1. This procedure is almost the same as Step
3. First of all, we compute the streamline overlap between S; and S;_1 and keep the common streamlines
in S;. Then for the rest of streamlines, we remove a certain number of streamlines from S; based on their
MCP distances to S;_1. Next, we add the same number of streamlines from .S;_; to S; according to their
importance values. Now we obtain a new S; which considers the coherence of the current and previous
viewpoints.

e Step 5: During this step, we compute the final streamline set for view-dependent display. We propose to
use a density map to keep track of which regions in the rendered image have been covered by streamline
projections and which regions have not. We define the effective area of a density map under a specific



viewpoint as the projection area of the date set’s bounding box. This would allow us not only to control
the streamline number based on the effective area but also to balance streamline selection by reducing visual
clutter while revealing interesting flow features and patterns. Note that we do not require the density map
to have the same resolution as the final image. A low resolution density map can speed up its update and
the subsequent streamline selection process. We assume that each streamline projection L, has its own
influence region on the density map. For simplicity, we use a m x m local mask for each pixel along the
projection where the actual mask size is proportional to the final image size. Figure 3 shows an example
with a 5 x 5 mask. This step includes the following sub-steps:

— Sub-step 1: Initialize the density map with an equal density value for all pixels. In the following
sub-steps, a streamline L will gain some density value from the pixels it passes through and we define
the total density value gained by L as its importance value. Compute the overall effective density
value as the summation of all pixels’ density values inside the effective area.

— Sub-step 2: Dequeue the streamline L with the highest priority value from S; and compute its 2D
projection’s entropy value H(L,).

— Sub-step 3: Maintain a pixel list that records each pixel along L,, in the image plane. We also define
the influence region of the pixel in the list as a m x m local square centered at that pixel. Then for each
pixel in L, use a weighted average mask (the influence region) multiplied by H(L,) to accumulate
the importance value gained by L from the density map (see Figure 3). Normally, the weight for the
central pixel in the mask is set to 1.0. The importance value gained by L from one pixel is bounded
above by a maximum importance threshold d;.

— Sub-step 4: Subtract the importance values in the pixel list from the density map. Each pixel’s
density value is bounded below by zero. The summation of total density value loss is defined as the
final importance value gained by streamline L from the density map. If this value is above a given
density threshold d, (i.e., L gains enough importance from the density map), L is selected. Otherwise,
L is discarded.

— Sub-step 5: Go to Sub-step 2 until the total importance gained by all selected streamlines is above a
given threshold. In this paper, we set this threshold to be 2/3 of the overall effective density value.
The user can adjust this value to control the density of streamlines displayed.

With this view-dependent streamline selection algorithm outlined above, the final streamlines set .S; is determined
not only by the local importance of streamlines but also by their relationships with the global streamline set as
well as the streamline set under the previous viewpoint. The motivation for using the initial density map with an
equal value is to favor evenly-placed streamlines across the image instead of being cluttered in any one location.
This is similar to the image-guided streamline placement algorithm introduced by Turk and Banks.* We assign
a larger importance value to a streamline with a higher 2D projection entropy. Such a streamline, if selected,
would be less likely to be occluded by other streamlines. Setting a maximum importance threshold for each
influenced pixel is to ensure that heavily self-occluded streamlines would not get an excessively high importance
value. Furthermore, the use of effective area helps us balance the number of streamlines selected under different
viewpoints based on the projection of the volume’s bounding box.

6. RESULTS AND DISCUSSION

We experimented our approach with eight flow data sets which are listed in Table 1. The five critical points
data set® is a synthesized flow field consisting of two spirals, two saddles and one source. The two swirls data
set is from a simulation of swirls resulting from wake vortices. The tornado data set is from a simulation of a
tornado event. The supernova data set is from a simulation of the explosion of stars. The crayfish data set is
from a simulation of the heat flow around a cooking crayfish. The solar plume data set is from a simulation
of down-flowing solar plumes for studying the heat, momentum and magnetic field of the sun. The computer
room data set is from a simulation of air flows inside a computer room. Finally, the hurricane data set is from
a simulation of Hurricane Isabel, a strong hurricane in the west Atlantic region in September 2003. In the
following, we present the machine configuration and timing results, followed by streamline selection results using



average importance | line
threshold | initial # points | initial selected | evaluation selection
data set dimension Os # lines | per line # views | # lines | time time
five critical pts | 51 x 51 x 51 40.0 500 110 360 250 11.27s 0.006s
two swirls 64 x 64 x 64 40.0 500 157 360 250 11.52s 0.008s
tornado 64 x 64 x 64 40.0 500 295 360 250 12.05s 0.008s
supernova 100 x 100 x 100 | 50.0 500 184 360 250 12.20s 0.008s
crayfish 322 x 162 x 119 | 50.0 800 209 360 400 19.12s 0.012s
solar plume 126 x 126 x 512 | 50.0 600 100 360 300 13.90s 0.007s
computer room | 417 x 345 x 60 60.0 800 173 360 400 18.60s 0.010s
hurricane 500 x 500 x 100 | 60.0 600 341 360 300 14.18s 0.010s
Table 1. The threshold and timing results of eight flow data sets for view-independent streamline selection. The view-

independent timing is the total time to handle 360 sample viewpoints.

density map timing
threshold | threshold | importance | line
data set dimension | mask s A4 evaluation selection
five critical pts | 400 x 400 | 3 x 3 1.0 80.0 0.031s 0.340s
two swirls 400 x 400 | 3 x 3 1.0 80.0 0.032s 0.427s
tornado 400 x 400 | 3x 3 1.0 100.0 0.033s 0.514s
supernova 600 x 600 | 7x 7 1.0 120.0 0.034s 0.485s
crayfish 600 x 600 | 7x 7 1.0 250.0 0.053s 0.897s
solar plume 800 x 800 | 15x 15 | 1.0 120.0 0.039s 0.982s
computer room | 800 x 800 | 15 x 15 | 1.0 200.0 0.052s 0.857s
hurricane 800 x 800 | 15 x 15 | 1.0 200.0 0.039s 1.215s

Table 2. The thresholds and timing results of eight data sets for view-dependent streamline selection. The view-dependent
timing is the average time to handle one of the 360 sample viewpoints.

our view-independent and view-dependent algorithms. We refer readers to the accompanying video for the best
evaluation of our approach.

6.1 Configuration and Timing

We used a hybrid CPU-GPU solution in our computation with the following hardware configuration: Intel Core
i7 quad-core CPU running at 3.20GHz, 24GB main memory and an nVidia GeForce GTX 580 graphics card.
We implemented streamline importance evaluation in the GPU using CUDA. For the view-independent case, the
global streamline set was computed using the GPU. For the view-dependent case, all computations were done by
using the CPU including streamline selection due to the sequential nature of streamline selection with the use
of the density map. The timing results are reported in Tables 1 and 2. As we can see, it took up to 20 seconds
for view-independent streamline selection, evaluating all 360 sample viewpoints. However, since this step can be
done during the preprocess stage and the timing for view-dependent streamline selection took only less than one
second, our implementation can deliver a performance for supporting realtime interaction.

6.2 View-independent Selection Results

Figure 4 shows the results of view-independent streamline selection with the supernova data set. A total of
100 streamlines are selected from the initial pool of 500 randomly seeded streamlines. The first image shows
the overall streamline pool while the rest three snapshots show the selected streamlines under three different
viewpoints. We map velocity magnitude to streamline color: blue to white to red is for low to medium to
high magnitude. Our streamline selection favors “interesting” streamlines that reveal critical flow feature and
patterns in a less cluttered view. Redundant streamlines, even with high importance values, are pruned to avoid
repetition. However, since this view-independent selection algorithm only considers the global information, it
is possible that the results may miss some flow patterns due to the lack of considering the view-dependent
information, such as local clutter and occlusion under some particular viewpoints.
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Figure 4. View-independent streamline selection with the supernova data set. The leftmost image shows the total 500
streamlines from the initial pool, followed by three images showing the same top 100 streamlines selected in the view-
independent manner. Velocity magnitude is mapped to streamline color.

Figure 5. View-independent vs. view-dependent streamline selection with the five critical points data set under two
different viewpoints. In both cases, we can observe that one critical point (source) near the center of the vector field is
occluded in the view-independent selection results shown in (a) and (c). By contrast, this source is clearly visible in the
view-dependent selection results shown in (b) and (d). The source is highlighted in a red circle.

6.3 View-dependent Selection Results

In Figure 5, we compare streamline selection under view-independent and view-dependent cases with the five
critical points data set. Two different viewpoints are shown in the figure. Clearly, in both cases, the view-
dependent selection tends to better cover regions with less dense streamlines due to the use of the density
map. Since the streamlines with high priority mainly go through local critical regions and they gain the most
importance value from the density map, the streamlines with low priority will not obtain enough importance
value to be selected. This is the reason why the local interesting regions are less occluded by dense streamlines.
The view-independent selection, however, tends to select more interesting streamlines in regions even though
they are already pretty dense in the projection. This is because the view-independent selection only cares the
overall importance of the streamlines but never considers local streamline occlusion under a given viewpoint.
Specifically, in both cases, the view-independent selection hides a critical point (source) near the center of the
vector field while the view-dependent selection shows this critical point much more clearly.

We also verified the usefulness of using the effective area by showing how it influences the view-dependent
selection results with the hurricane data set. As shown in Figure 6, we used five consecutive viewpoints along
the view sphere to show how the streamline number changes under different viewpoints. From the quantitative
results obtained, it is clear that the number of streamlines selected varies proportionally with the change of
effective area. Our solution is able to balance the number of streamlines as well as their density in the projection
under different viewpoints.

6.4 Coherent Streamline Update between Adjacent Viewpoints

Figure 7 shows the streamline update along four consecutive viewpoints with the two swirls, solar plume and
tornado data sets. In order to show our coherent streamline update effect in a more intuitive way, for the tornado
data set, we differentiated the streamlines selected from the previous viewpoint in gold and the newly selected
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Figure 6. The number of streamlines selected increases with the increase of effective area for the hurricane data set.
From left to right, the numbers of streamlines displayed are 57, 86, 103, 116 and 128, respectively. The corresponding
overall effective density values are 87970, 96659, 163477, 189974 and 209153, respectively. The five viewpoints shown are

consecutive on the view sphere.

Figure 7. Coherent streamline update of three data sets: two swirls (top), solar plume (middle) and tornado (bottom).
Left to right, each image is from one snapshot of four consecutive viewpoints. For the tornado data set, we differentiate
the newly selected streamlines in blue while the streamlines remaining from the previous viewpoint are in gold.

streamlines in blue. Clearly, the less number of blue streamlines is, the better the current viewpoint preserves
the previous viewpoint’s information and the more coherent the view-dependent selection results are.

Figure 8 shows the statistics of the numbers of streamlines selected and shared with the supernova data set.
We can see that the number of streamlines shared closely follows the trend of the number of streamlines selected.
This is also confirmed by their ratio which remains flat over all sample viewpoints. These results show that our
algorithm can guarantee coherent streamline update between consecutive viewpoints.
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Figure 8. The statistics of the numbers of streamlines selected and shared with the supernova data set over 360 sample
viewpoints. The blue line represents the total number of streamlines selected Ng;; under the current viewpoint. The red
line indicates the total number of streamlines shared Ngpqreq by the current and previous viewpoints. The green line
displays the ratio: 7 = Nspared/Naii-

We also compared our algorithm with a naive view-dependent streamline selection algorithm that directly
selects streamlines based on their decreasing importance values under the current viewpoint in conjunction with
the density map control. We conducted the comparison with the computer room and crayfish data sets. For
the computer room data set shown in Figure 9, we differentiated the streamlines in the same way as we did in
Figure 7. For each pair of images under the same viewpoint, we selected the same number of streamlines for
fairness. Our algorithm always yields less blue streamlines than the naive algorithm under the same viewpoint.
For the newly selected streamlines (shown in blue), they are also more similar to the streamlines (shown in
yellow) that have been selected under the previous viewpoint. Therefore, we confirm that our algorithm achieves
more coherent streamline update than the naive algorithm.

For the crayfish data set shown in Figure 10, the results under four consecutive viewpoints clearly show
that our algorithm maintains a more coherent streamline update. The statistics results also confirm that our
algorithm yields more shared streamlines (and therefore, less different streamlines) than the naive algorithm. As
a matter of fact, the streamline selection result produced from our view-dependent algorithm is in between the
result from the naive view-dependent algorithm (where the coherence is not considered) and the result from the
view-independent algorithm (fully coherent, but the variation between views is not considered). The user has the
freedom to adjust the values of related parameters to yield desirable results with different degrees of coherence.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an importance-driven approach to coherent view-dependent streamline selection
and visualization. By defining a streamline importance measure that combines mutual information and shape
characteristic, we prioritize a large pool of candidate streamlines accordingly for selective visualization. We de-
velop an algorithm for coherent view-dependent streamline selection by taking into account both the relationships
between local and global viewpoint information and the coherence of the current and previous viewpoints. We
demonstrate our view-dependent streamline selection algorithm with several flow data sets and compare it with
a naive algorithm. By presenting interesting streamlines in the first place to reveal essential view-dependent flow
features, we are able to quickly convey the desired insight into the flow fields. This helps the users gain more
understanding about the data in a shorter amount of time, which is critical for tackling data at scales. Coherent
streamline update provides the users with a smooth way to explore the vector field over the view sphere. Our
approach thus nicely complements existing work on streamline placement by providing a viable alternative to
effective 3D streamline visualization.

However, there are several limitations in our current work which we would like to improve in the future.
First, our method is not a flow-guided method such as the work by Ye et al.® Therefore, like all solutions
based on random or uniform seeding, we may need to generate a large pool of initial streamlines through dense
seeding in the first place in order to capture all important features in the flow field. We may also need to select



Figure 9. Our coherent vs. naive view-dependent streamline selection with the computer room data set. Top: the view-
dependent selection results from four consecutive viewpoints using our coherent algorithm. Bottom: the corresponding
results using the naive algorithm. We differentiate the streamlines selected in the previous view in gold and the streamlines
newly selected in blue. From left to right: the total numbers of streamline selected are 138, 161, 193 and 198, respectively
for both algorithms. Except for the leftmost image, 32 (66), 38 (79) and 40 (82) blue streamlines are shown for the
coherent (naive) algorithm, respectively.

more streamlines than the explicit feature-driven techniques in the visualization. Furthermore, our solution does
not work well when the flow field consists of features at different scales as the entropy-based method is not
sensitive to small-scale features. In this scenario, some shorter streamlines revealing small-scale features might
be of low importance values due to their low 3D streamline entropies. We would like to improve our importance
measure by taking into account the scale so that features of various scales can be captured without substantially
increasing the number of streamlines selected. Second, the view sphere partition algorithm?? we adopted does not
produce “smooth” view change as the change would become more dramatic towards the two poles (please refer
to the accompanying video). We will consider adding intermediate viewpoints to improve the smoothness of view
change. Third, for our view-dependent selection algorithm, we only consider the correlation between the current
viewpoint and its previous one along a predefined traversal scheme to maintain coherent streamline update.
However, we can instead utilize information from several viewpoints rather than only one. For instance, we may
take into account several neighboring viewpoints centered at the current one. This allows the current viewpoint
to incorporate more information from its neighborhood. As a result, we can achieve coherent streamline update
with different viewpoint traversal schemes.
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Figure 10. Our coherent vs. naive view-dependent streamline selection with the crayfish data set. First row: the view-
dependent selection results from four consecutive viewpoints using our coherent algorithm. Second row: the corresponding
results using the naive algorithm. From left to right: the total numbers of streamline selected are 78, 80, 92 and 97,
respectively for both algorithms. Except for the leftmost image, 16 (41), 18 (49) and 19 (48) streamlines are newly
selected for the coherent (naive) algorithm, respectively. Third row: the statistics of the numbers of streamlines selected
and shared over 360 sample viewpoints. The blue line indicates the total number of streamlines selected under each
viewpoint. The red line shows the total number of streamlines shared by the current and previous viewpoints using our
coherent algorithm while the green line shows the corresponding numbers using the naive algorithm.
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