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ABSTRACT

Visual exploration of large and complex 3D flow fields is critically
important for understanding many aero- and hydro-dynamical sys-
tems that dominate various physical and natural phenomena in the
world. In this paper, we introduce the FlowGraph, a novel com-
pound graph representation that organizes streamline clusters and
spatial regions hierarchically for occlusion-free and controllable vi-
sual exploration. Our approach works with any seeding strategies
as long as the domain is well covered and important flow features
are captured. By transforming a flow field to a graph represen-
tation, we enable observation and exploration of the relationships
among streamline clusters, spatial regions and their interconnec-
tion in the transformed space. The FlowGraph not only provides a
visual mapping that abstracts streamline clusters and spatial regions
in various levels of detail, but also serves as a navigation tool that
guides flow field exploration and understanding. Through brush-
ing and linking in conjunction with the spatial streamline view, we
demonstrate the effectiveness of FlowGraph with several visual ex-
ploration and comparison tasks that can not be well accomplished
using the streamline view alone. As occlusion and clutter are almost
ubiquitous in 3D flows, the FlowGraph represents a promising di-
rection for enhancing our ability to understand large and complex
flow field data.

1 INTRODUCTION

Flow visualization plays a vital role in many scientific, engineer-
ing and medical disciplines, offering users a graphical represen-
tation of their vector data for visual understanding, interpretation
and decision making. For more than two decades, flow visual-
ization has been a central topic in scientific visualization and a
variety of techniques, including glyph-based [17], texture-based
[12], integration-based [14], partition-based [19] and illustration-
based [1] techniques have been presented. We focus on integration-
based flow visualization as it is most widely used in practice. For
integration-based flow visualization, particles or seeds are placed in
a vector field and advected over time. The traces or field-lines that
the particles follow, i.e., streamlines for steady flow and pathlines
for unsteady flow, depict the underlying vector data.

The ever-growing size and complexity of flow data produced
from scientific simulations pose significant challenges which are
not thoroughly addressed by existing visualization techniques.
Among them, a fundamental challenge is the poor scaling of visu-
alization algorithms from 2D flow to 3D flow visualization due to
occlusion and clutter. When depicting a 3D flow field using stream-
lines, it is often possible to reduce spatial occlusion (e.g., through
streamline seeding or filtering) but not eliminate it. This prevents
an occlusion-free observation and comparison of the relationships
among streamlines, a critical task commonly found in many flow
field applications. This challenge was echoed in recent state of the
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art reports on flow visualization [14, 1]. Furthermore, even though
streamlines can be organized into a hierarchy to facilitate the under-
standing [9, 23, 27], visual exploration could still remain a signifi-
cant challenge due to the lack of capability to observe streamlines
and their spatial relationships in a controllable fashion.

We therefore propose to design the FlowGraph, a visual rep-
resentation and an interface for exploring a 3D flow field. The
FlowGraph transforms streamline clusters and spatial regions into
a compound hierarchical graph representation to support effective
relationship overview and detail exploration in conjunction with the
spatial view of streamlines. Through brushing and linking, the user
can easily make connection between the graph view and the stream-
line view. We specifically design a set of functions that enable
hierarchical exploration of streamline clusters, spatial regions and
their interconnection, detail comparison among streamline clusters
in terms of their paths passing through different spatial regions, and
close examination of spatial regions by comparing different stream-
line clusters passing through them. Animation is leveraged to help
intuitive comprehension of graph transition and path illustration. A
graph layout algorithm is realized to maintain stable graph update
during the level-of-detail exploration. We also introduce animated
transition that switches between the entire compound graph and the
streamline cluster or spatial region subgraph, allowing observation
of the subgraphs in a less cluttered view. We demonstrate the ef-
fectiveness of the FlowGraph with several flow field data sets of
various characteristics. Our results show that the FlowGraph can
substantially augment our ability to understand and explore a flow
field in different levels of detail, providing the clarity and flexibility
previously unavailable.

2 RELATED WORK

Flow Field Exploration Techniques. Visual exploration of 3D
flow fields remains quite a challenge for which a variety of solutions
have been proposed. For instance, Heiberg et al. [10] proposed to
locate, identify and visualize a set of predefined structures in 3D
flows using vector pattern matching. Schlemmer et al. [20] pre-
sented the idea of invariant moments for analyzing 2D flow fields
which allows extraction and visualization of 2D flow patterns, in-
variant under translation, scaling and rotation. Rössl and Theisel
[18] mapped streamlines to points based on the preservation of the
Hausdorff metric in the streamline space. The image of the set of
streamlines covering the vector field is a set of 2-manifolds em-
bedding in Rn with characteristic geometry and topology. Other
researchers investigated sketch-based interface and interaction for
intuitive flow field exploration. For example, Schroeder et al. [21]
presented a sketch-based interface for illustrative 2D vector field
visualization which allows illustrators to draw directly on top of the
data. Their interface design strikes a good balance between sup-
porting artistic freedom and maintaining the accuracy with respect
to the underlying vector field data. Wei et al. [24] targeted 3D flow
fields and presented a solution that allows the user to sketch a 2D
curve for pattern matching in 2D and streamline clustering in 3D.
They also explored another way that creates streamline templates
hierarchically to support on-the-fly partial streamline matching in a
progressive manner.

Focus+Context Flow Visualization. To enable greater con-
trol of interesting flow features and patterns for detail examina-
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Figure 1: Illustration of L-node signature with a 2D space partitioning
example. (a) the signature of the streamline is an ordered sequence
(12,10,9,6,5,2,1). (b) the signature of the streamline cluster is an
unordered set (1,2,3,5,6,9,10,11,12).

tion, researchers also explored different focus+context techniques.
Fuhrmann and Gröller [7] presented magic lenses and magic boxes
to examine the region of interest with greater detail by showing
denser streamlines. This technique was extended to magic volumes
of varying focus regions such as cubes, prisms and spheres [13].
Laramee et al. [11] leveraged feature-based techniques [5] to extract
interesting flow regions, such as stagnant flow, reverse-longitudinal
flow and regions of high pressure gradient as the focus and achieved
focus+context rendering through interactive thresholding. Correa
et al. [3] introduced physical and optical operators to intuitively vi-
sualize the internal 3D flow through illustrative deformation. By
cutting along flow traces, they allowed clear observation of the in-
ternal 3D flow through optical transformation and elastic deforma-
tion. To explore blood flow in cerebral aneurysms, Gasteiger et al.
[8] proposed an interactive 2D widget for flexible visual filtering
and visualization of the focus+context pairs (i.e., relevant hemody-
namic attributes). Their widget supports local probing and conveys
changes over time for the lens region.

Comparison with Flow Web. Closely related to our work is the
flow web presented by Xu and Shen [25] for 3D flow field explo-
ration. In their flow web, a node represents a region in the domain
and the strength of a link between two nodes indicates the num-
ber of particles traveling between the two regions. Similar graph
representations have also been employed for workload estimation
for parallel and out-of-core streamline generation [16, 2]. Since
the flow web does not explicitly store information about streamline
clusters, queries such as identifying streamline bundles become a
trial-and-error process. It works for structural flow fields where a
path going through a list of nodes may indeed indicate streamline
passing through the corresponding regions in order. However, for
turbulent flow fields, this may not be true anymore. Rather than
only considering streamline clusters or spatial regions as nodes, our
FlowGraph integrates both streamline clusters or spatial regions as
nodes and thus presents a more complete picture. In this regard, the
flow web is actually a subgraph of the FlowGraph (without L-nodes,
L-L edges and L-R edges). The FlowGraph allows the user to fully
explore their relationships through interacting with the graph view
and making connection to the streamline view.

3 FLOWGRAPH DEFINITION AND CONSTRUCTION

We define the FlowGraph as a compound hierarchical graph that
consists of two kinds of nodes and three kinds of edges:

• R-nodes: A R-node represents a spatial region. We partition
the volume space hierarchically using octree and each non-
leaf R-node consists of eight child R-nodes. Each R-node
maintains three lists recording the streamlines going in, stay-
ing inside or going out of the R-node, respectively.

• L-nodes: A leaf L-node corresponds to a single streamline,
and a non-leaf L-node represents a cluster of streamlines. We
organize streamlines hierarchically and each non-leaf L-node
usually consists of a different number of child L-nodes. Each
L-node maintains a R-node string which indicates the leaf-

level regions which the L-node goes through. If the L-node
is a single streamline, the string records a sequence of the
leaf-level regions it traverses in order. Otherwise, this string
records a set of the leaf-level regions traversed by all stream-
lines in the L-node without ordering. We call this string the
signature of the L-node and define the size of the L-node as
the size of its signature, i.e., the number of leaf-level regions.
Figure 1 illustrates these two kinds of L-node signatures in a
2D scenario.

• R-R edges: A R-R edge is formed between two R-nodes at the
same level of the space hierarchy. The edge weight records the
number of common streamlines shared by these two R-nodes.

• L-L edges: A L-L edge is formed between two L-nodes at
the same level of the streamline hierarchy. The edge weight
records the number of common leaf-level regions traversed in
order by these two L-nodes.

• L-R edges: A L-R edge is formed between a L-node and a R-
node to show their interconnection. The edge weight records
the number of streamlines in the L-node passing through the
R-node.

3.1 Space Hierarchy Construction

We form the space hierarchy by partitioning the spatial domain
evenly in a top-down manner using octree. Starting from the en-
tire volume as a single region, we compute the flow entropy based
on the joint distribution of vector magnitudes and directions for all
vectors within. We partition each region further only if its entropy
value per voxel is larger than a given threshold. The smallest size of
a spatial region is also given as another termination condition. This
produces a spatial partition similar to an adaptive mesh refinement
(AMR) grid.
3.2 Streamline Hierarchy Construction

To construct the streamline hierarchy, we group spatially neighbor-
ing and geometrically similar streamlines in a bottom-up manner.
We define the following two types of similarity to measure the
distance between streamlines and the distance between streamline
clusters, respectively:

• Streamline similarity (for leaf level L-nodes): We consider
two factors when computing the similarity between two
streamlines l1 and l2: the longest common subsequence (LCS)
of the signatures of l1 and l2 and the mean of closest region
distances (MCR) between l1 and l2. We define the distance
between two regions as the distance of their center points. The
MCR is a approximation of the mean of the closest point dis-
tance (MCP) [15] between two streamlines. Specifically, we
treat each streamline as a point sequence which consists of
the center points of all leaf regions in the streamline’s signa-
ture. We compute the MCR of two streamlines as the MCP
between their center point sequences. Since the number of
regions for a streamline is much smaller than the number of
points on the streamline, our MCR has a much lower compu-
tation complexity than the MCP does. Furthermore, since the
MCR is always computed by using regions at the finest level,
its accuracy is also acceptable. The final similarity between
two streamlines l1 and l2 is defined as

Φ(l1, l2) =
LCS(l1, l2)

max(|l1|, |l2|)
−

MCR(l1, l2)

MCRmax l

, (1)

where max(|l1|, |l2|) is the maximum signature size of l1 and
l2, and MCRmax l is the maximum MCR among all pairs of
streamlines.

• Streamline cluster similarity (for non-leaf level L-nodes):
Given two streamline clusters c1 and c2, we consider two fac-
tors for determining their similarity. The MCR is the first fac-
tor and we apply the same method used in calculating stream-
line similarity to the two representative streamlines, one for c1

and the other for c2. To determine the spatial overlap of c1 and
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Figure 2: (a) the initial layout is produced using the force-directed graph layout algorithm. The size of each node in the graph is proportional to
the number of children within. (b) the triangle mesh produced from the initial node positions. (c) the adjusted layout after two nodes are selected
and expanded for detail examination. (d) the underlying triangle mesh is used to maintain the topology of the graph during layout adjustment.

c2, we define the second factor as the shared set (SS) of the
signatures of c1 and c2. Unlike the LCS computation which
considers the order in the signature, the shared set records all
common leaf-level regions shared by the two signatures. Fi-
nally, we define the similarity between two streamline clusters
c1 and c2 as

Φ(c1,c2) =
SS(c1,c2)

max(|c1|, |c2|)
−

MCR(c1,c2)

MCRmaxc
, (2)

where max(|c1|, |c2|) is the maximum signature size of c1 and
c2, and MCRmaxc is the maximum MCR among all pairs of
streamline clusters.

As we can see, these two similarity definitions are very similar. We
replace LCS with SS in the cluster similarity computation. This is
because multiple traversal orders may exist for a cluster containing
more than one streamline. For the rest of the paper, we do not dis-
tinguish these two similarity definitions explicitly and simply state
them as the similarity between two L-nodes.

With streamline similarity and streamline cluster similarity de-
fined, we take a bottom-up approach to group streamlines level by
level to construct the streamline hierarchy. For each level, we pick
the L-node with the longest signature size as the first representative
and put it into the representative pool. Then, for all other L-nodes,
we compute their similarity to the representative pool. We define
Φ(l, p), i.e., the similarity of one L-node to the representative pool,
as the maximum similarity of this L-node to all representatives cur-
rently in the pool, where l denotes the L-node and p denotes the
pool. By combining Φ(l, p) with the L-node signature size |l|, we
define the representative value of l as

υl =

(

1−
Φ(l, p)

max{Φ(l, p)}

)

+
|l|

max{|l|}
, (3)

where max{Φ(l, p)} denotes the maximum Φ(l, p), and max{|l|}
denotes the maximum L-node signature size among all representa-
tive candidates. The next representative is the one with the max-
imum υl which means this L-node is not only dissimilar with any
representatives in the pool (a low value of Φ(l, p)) but also traverses
a relatively long path (a large value of |l|). Then we put the new
representative into the pool and repeat this process until we identify
enough representatives for this level. Now we cluster each of the
rest of L-nodes into one of the representatives which this L-node
is most similar to. Finally, we obtain a new set of L-node clusters
and make it the input set for the next level clustering. We repeat the
entire process until a certain number of streamline levels is created.

In practice, for constructing the FlowGraph, it is desirable for
spatial regions or streamline clusters to have three to five levels in
their respective hierarchy. This is suggested through some empiri-
cal measure of the resulting graph complexity. For the streamline
hierarchy, the actual number of levels could be larger while we only
use several levels at the topmost of the hierarchy for FlowGraph

drawing. This would allow us to draw the FlowGraph in an efficient
way and maintain a good balance between clarity and complexity.

4 FLOWGRAPH DRAWING

We apply the Fruchterman-Reingold algorithm, a classical force-
directed graph layout algorithm [6] to draw the compound Flow-
Graph in 2D. To distinguish among different kinds of nodes, we use
nodes of different colors and shapes: orange squares for R-nodes
and yellow circles for L-nodes. An example is shown in Figure 2
with the solar plume data set. We also use edges of different colors
and styles. In Figure 2, L-R edges are drawn in gray dashed lines.
For the underlying graph representation, L-L edges and L-R edges
are undirected while R-R edges are directed. Given two regions
r1 and r2, we differentiate between streamlines going from r1 to r2

and streamlines going from r2 to r1. For simplicity, instead of using
double directed R-R edges, we draw a single undirected R-R edge
using the summation of the numbers of streamlines passing through
these two regions. While all L-L edges and L-R edges are used
for computing the layout, for R-R edges, we only use edges that
across neighboring spatial regions. This prevents the force model
from pulling two R-nodes together although they are far away in
the spatial domain. The resulting FlowGraph will better reflect the
underlying structural relationships among different R-nodes.

At runtime, the user explores the streamline hierarchy or the
space hierarchy by clicking a node in the FlowGraph to expand
and examine finer detail. Therefore, we need to adjust the layout
to accommodate such level-of-detail explorations. A good layout
should maintain a good balance between preserving the structural
information of the graph and revealing the dynamics while reducing
overlap or occlusion. We generate the initial layout for the coarsest
level of the FlowGraph. To achieve stable update, we apply a trian-
gulation scheme [22] to this initial graph and use the result of the
triangulation to perform constrained layout adjustment. The four
corners of the drawing area are considered as pseudo-nodes in the
triangulation. When a node is expanded in the FlowGraph, its ini-
tial size is proportional to the number of children in its next level
of detail. All nodes expanded are assigned the same scaling factor.
The user can also shrink an expanded node back by clicking the
empty region inside of the expended node. The surrounding nodes
which are pushed away due to the expansion will be pulled back to
their respective positions as much as possible.

Similar to the work presented in [4], we consider four kinds of
forces to reposition the nodes to reduce their overlap while main-
taining the topology of the coarsest level of the FlowGraph. These
forces include: a bidirectional repulsive force which pushes away
two nodes u and v from each other and is effective iff u and v over-
lap each other, a unidirectional repulsive force which pushes away
a node u without detail shown from a node v with detail shown
and is effective iff u is inside of v, a spring force which offsets the



Figure 3: A L-node is expanded in the computer room data set and
one of its child node is shown in purple. The corresponding child and
parent streamline clusters are shown in gold and white, respectively.

two repulsive forces introduced by reducing the gap between every
pair of nodes in the graph, and an attractive force which maintains
the topology of the underlying triangle mesh by flipping a triangle
back if it is flipped. More detail about the computation of these four
forces can be found in [4]. Figure 2 shows an example of layout ad-
justment during the level-of-detail exploration. As we can see, the
expanded nodes expel other nodes outside of their regions while the
global structure of the FlowGraph is still preserved. We apply this
layout adjustment strategy recursively to nodes at different hierar-
chical levels in the same way.

5 FLOWGRAPH EXPLORATION AND INTERROGATION

The FlowGraph contains a wealth of information that can be ef-
fectively utilized for flow field exploration and interrogation. By
simply observing the graph, we can already obtain some helpful
hints. In a single subgraph (e.g., only R-nodes with R-R edges, or
only L-nodes with L-L edges), the size and degree of nodes indi-
cate their importance or significance in the flow field. For instance,
if the degree of a R-node is high which means that this R-node has
connection to many other R-nodes in terms of streamlines passing
through them, it is likely that either this R-node is close to the center
of the volume or this R-node contains some critical points such as
a sink or source. If the size of a L-node is large, we know that this
L-node represents a large streamline cluster. The distance between
two nodes also indicates how close their relationship is or how tight
their connection is. To extract further information and knowledge
about the underlying flow field, we provide the following ways of
exploring the graph view and the streamline view.

5.1 Hierarchical Exploration

The FlowGraph organizes L-nodes and R-nodes hierarchically. The
user can select a node of interest and expand it to see its next level
of detail recursively. In a similar way, the user can further explore
each of the nodes at the higher level of detail and make connection
to the spatial streamline view. We provide the hierarchical explo-
ration in both the compound graph and a single subgraph. Keyboard
shortcuts are added to support convenient traversal through sibling
nodes as well as ancestor or descendent nodes.

To provide better context when exploring streamline clusters, we
give the option to show the two consecutive levels of streamline
clusters in two different colors: the child cluster in a bright color
and the rest in a low saturated color. Figure 3 shows such an ex-
ample. The constrained layout adjustment algorithm (Section 4)
guarantees smooth update of the FlowGraph layout when the user
explores nodes at various levels of the hierarchy. Similarly, we sup-
port the same strategy of hierarchical exploration in the streamline
view by allowing the user to visit streamline clusters or spatial re-
gions in various levels of detail.

5.2 Brushing and Linking

Brushing and linking are the standard technique to make connection
among multiple views. We dynamically connect the graph view

Figure 4: Filtering L-R edges by weight in the FlowGraph highlights
eleven R-nodes (shown in blue) that have strong connection with the
L-node of interest (shown in purple) in the hurricane data set.

and the streamline view together: when the user clicks a L-node
(R-node) in the graph view, its corresponding streamline cluster
(spatial region) is highlighted in the streamline view. Conversely,
the corresponding L-node (R-node) will be highlighted in the graph
view when the user selects a streamline cluster (spatial region) in
the streamline view.

To select a streamline cluster, we allow the user to first mouse
over the streamlines displayed and click on a streamline of interest.
The streamline cluster corresponding to the topmost level node in
the FlowGraph will be identified and highlighted. The user can
then use the keyboard shortcuts to move up (down) the streamline
hierarchy to select a parent (child) node accordingly.

To select a spatial region, we allow the user to first use sliders to
identify the ranges in the x, y and z directions, respectively. Mouse-
over selection is also enabled for convenience. The spatial region
corresponding to the leaf node in the FlowGraph will be identified
and highlighted. Moving up or down the space hierarchy is similar
to the streamline hierarchy.

As an option, when a streamline cluster is selected, the corre-
sponding spatial regions which the cluster traverses will be high-
lighted in the streamline view and at the same time, the correspond-
ing paths passing R-nodes will also be highlighted in the graph
view. Similarly, when a spatial region is selected, the correspond-
ing streamline clusters passing through the region will be displayed
in the streamline view, and at the same time, the corresponding
L-nodes will be highlighted in the graph view. Through brushing
and linking, especially combined with hierarchical exploration, the
users can quickly build up their mental connection between the intu-
itive streamline view and the abstract graph view. This will greatly
help further exploration which we introduce in the following.

5.3 Filtering and Querying

Given a large and complex 3D flow field, the resulting FlowGraph
will consist of a large number of nodes and edges of different kinds.
Filtering and querying the graph helps reduce the complexity of
both the graph view and the streamline view, allowing the user to
focus on the nodes and edges of interest for detail exploration. We
provide a set of queries, including node query (by degree or weight)
and edge query (by weight), to assist the visual exploration of the
FlowGraph.

For FlowGraph nodes, filtering L-nodes by L-L edge weight al-
lows querying streamline clusters based on their path similarity; fil-
tering L-nodes by L-R edge degree allows querying streamline clus-
ters by their spatial extents; filtering R-nodes by R-R edge weight
allows querying spatial regions based on their streamline density;
and filtering R-nodes by L-R edge degree allows querying spatial
regions by their spatial complexity.

For FlowGraph edges, filtering L-L edges by weight allows
querying the degree of similarity between streamline clusters in
terms of common regions traversed; filtering R-R edges by weight
allows querying the strength of connection between spatial regions
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Figure 5: (a) and (b) show path comparison for three streamline clusters shown in red, blue and purple, respectively of the two swirls data set.
Observe that the two swirls are well separated in the graph view as indicated by the green dashed lines. Three R-nodes shared by the blue and
purple L-nodes are highlighted with double boundaries. (c) and (d) show path comparison for two streamline clusters of the solar plume data set.

in terms of streamline connectivity; and filtering L-R edges by
weight allows querying the strength of interconnection between
streamline clusters and spatial regions.

Figure 4 shows such an example for filtering L-R edges. The
R-nodes that have strong connection with the L-node of interest are
highlighted. As we expect, these R-nodes are nearby the L-node
in the graph view since our force-directed layout algorithm assigns
larger attractive forces to node pairs with higher edge weights.

5.4 Path Comparison and Region Comparison

Due to the occlusion-free 2D display of the FlowGraph, we enable
the user to compare streamline clusters in terms of their paths go-
ing through different regions or compare spatial regions in terms of
streamline clusters passing through them in a clear manner.

For path comparison, the user clicks a L-node in the graph and
its corresponding paths passing through different R-nodes are high-
lighted. With hierarchical exploration, we allow comparing L-
nodes at different levels of detail. Besides showing the actual paths
the streamline cluster passing through, we also implement an algo-
rithm similar to the maximum spanning tree algorithm to capture
the main structure of the streamline cluster when the paths become
cluttered. In addition, we filter out R-R edges of small weights as
needed so that paths with very few streamlines passing through can
be omitted. We draw undirected edges between R-nodes where the
edge thickness indicates the strength of the path (i.e., the number of
streamlines passing through in both directions). Multiple L-nodes
can be selected simultaneously for path comparison. The paths are
highlighted in the graph view and displayed in the spatial streamline
view as well when the user mouses over the corresponding L-node.
Furthermore, the user can also expend a L-node and check detail
path information in a finer level. For this case, we do not perform
path comparison. Instead, we display the detail path information
using directed edges where we differentiate the flows coming in
and going out of each region. For both directed and undirected path
drawing, the user can always click one R-node along the path to
highlight the R-node in both views. This allows the user to focus
on particular regions of interest along the path.

For region comparison, the user clicks a R-node in the graph and
the L-nodes passing through it are highlighted. Again, in conjunc-
tion with hierarchical exploration, we allow comparing R-nodes at
different levels of detail. By selecting multiple R-nodes, the user
can visually compare the streamline clusters passing through them
in both the graph view and the streamline view.

Figure 5 (a) and (b) show path comparison with the two swirls
data set. We can see that the graph view is highly correlated with
the streamline view: the two swirls are well separated in the spatial
domain and the corresponding L-nodes and R-nodes form two dis-
tinct connected components. Furthermore, highly related L-nodes
and R-nodes are close to one another in the graph view. For exam-

Figure 6: The detail path of a child L-node (shown in purple) of the
tornado data set and the corresponding streamline cluster.

ple, the red streamline cluster is far away from the blue and purple
clusters in the streamline view while the blue and purple clusters are
neighbors. These relationships are well reflected in the graph view
as well for intuitive exploration. Another example of path compar-
ison with the solar plume data set is shown in Figure 5 (c) and (d).
Unlike the streamline clusters in the two swirls data set, the two
streamline clusters in the solar plume data set stretch a wide spa-
tial range and their paths passing over many R-nodes. Six R-nodes
shared in common by the two streamline clusters are highlighted in
both views. The shared paths are blended of red and blue colors.

5.5 Graph Transition and Path Illustration

We introduce two different animation schemes to facilitate the un-
derstanding of the FlowGraph. The first scheme is graph transition
where we show an animated transition from the compound graph to
a single subgraph and vice versa. The motivation is to allow obser-
vation of the streamline cluster or spatial region subgraph in a less
cluttered view. In addition, compared with the compound graph,
the single subgraph layout for L-nodes (R-nodes) forms a better
organization of node positions for observation of L-L edges (R-R
edges). We start from the compound graph layout as the initial lay-
out with either all L-nodes or R-nodes removed (the corresponding
edges are removed as well). We then apply the force-directed graph
layout algorithm to the remaining subgraph and generate a new lay-
out for the subgraph. Animated transition is realized through linear
interpolation of node positions over the duration of animation. The
inverse from a subgraph to the compound graph is also provided.

The second scheme is path illustration where we show the de-
tail path information for one streamline or a streamline cluster. For
instance, Figure 6 shows an example of detail path. The directed
black edges in the compound graph indicate the detail path infor-
mation of the streamline cluster selected. The user can play an an-
imation which indicates how the flow goes through the paths. If
there are more than one path, we choose some prominent (i.e., the



init. avg. # pts. minimum entropy GPU CPU graph

data set dimension # lines per line spatial region threshold entropy field L-nodes R-nodes all edges storage

car flow 368×234×600 600 185 11×7×18 0.2 0.109s 270.614s 0.010s 51.193s 25.5MB

computer room 417×345×60 800 173 13×10×1 0.9 0.136s 323.724s 0.035s 51.526s 36.2MB

five critical pts 51×51×51 500 112 1×1×1 1.0 0.069s 243.526s 0.020s 51.943s 37.1MB

hurricane 500×500×100 600 341 15×15×3 0.8 0.257s 230.816s 0.012s 51.435s 27.2MB

solar plume 126×126×512 600 100 3×3×16 1.1 0.130s 883.516s 0.030s 53.193s 30.1MB

supernova 100×100×100 500 184 3×3×3 0.8 0.079s 243.536s 0.020s 51.943s 23.8MB

tornado 64×64×64 500 295 2×2×2 1.0 0.070s 778.520s 0.029s 53.980s 23.8MB

two swirls 64×64×64 500 157 2×2×2 1.3 0.070s 324.975s 0.008s 50.986s 23.5MB

Table 1: The eight flow data sets experimented and their timing results for the FlowGraph construction. The entropy threshold is the entropy
value of a spatial region divided by the number of voxels within that region.

longest) paths and play their animations simultaneously. The an-
imation can be played in both the compound graph and a single
subgraph. For the single streamline path animation, we also pro-
vide the function to traverse a streamline using animation in the
streamline view. This streamline visualization is synchronized with
the corresponding path animation shown in the graph view. Such
an animation is very intuitive for the user to acquire a solid under-
standing of the relationships between the streamline or streamline
clusters and the corresponding flow regions.

6 RESULTS

We experimented our approach with eight flow data sets which are
listed in Table 1. The car flow data set is from a simulation of the air
flow around a car. The computer room data set is from a simulation
of air flows inside a computer room. The five critical points data
set [26] is a synthesized flow field consisting of two spirals, two
saddles and one source. The hurricane data set is from a simulation
of Hurricane Isabel, a strong hurricane in the west Atlantic region
in September 2003. The solar plume data set is from a simulation
of down-flowing solar plumes for studying the heat, momentum
and magnetic field of the sun. The supernova data set is from a
simulation of the explosion of stars. The tornado data set is from
a simulation of a tornado event. Finally, the two swirls data set is
from a simulation of swirls resulting from wake vortices.

We used a hybrid CPU-GPU solution in our computation with
the following hardware configuration: Intel Core i7 quad-core CPU
running at 3.20GHz, 24GB main memory and an nVidia GeForce
GTX 580 graphics card. The parameter setting and timing perfor-
mance are reported in Table 1. For all data sets, we randomly placed
the seeds to trace streamlines over the field. The entropy calculation
was performed in the GPU, while the FlowGraph construction was
performed in the CPU. As we can see, the bottleneck step of the
construction is to create the streamline hierarchy. The FlowGraph
construction took up to 15 minutes to complete and the required
storage for graph was quite affordable (less than 40MB). At run-
time, all tasks including graph drawing, layout adjustment and user
interaction in both views are interactive.

Selected FlowGraph results with individual exploration tasks
have been shown in Figures 2 to 6. In the following, we present
three case studies on three other data sets to demonstrate the ca-
pability of FlowGraph in assisting flow field exploration, path com-
parison and feature identification. To intuitively understand how the
FlowGraph works and best evaluate its effectiveness, we refer read-
ers to the accompanying video which shows the dual interaction on
both the graph view and the streamline view.

Case Study 1 — Five Critical Points Data Set. For the five crit-
ical points data set, we experience how we can use the FlowGraph
to easily identify these critical points from randomly traced stream-
lines that densely cover the field. In the first row of Figure 7, we
show our exploration results that highlight three spatial regions that
contain critical points. These spatial regions are important R-nodes
in terms of centrality in the graph view. Normally, these R-nodes

are close to the center of the graph and have strong connections to
other nodes. As we can see in the streamline visualization, these
three regions correspond to a spiral, a saddle and a source from
left to right, respectively. In the second row of Figure 7, we select
a R-node that has strong connection with its neighbor. Its corre-
sponding spatial region is close to the center of the volume. The
streamlines passing through this R-node are displayed. Since the
number of streamlines displayed is fairly large, we further explore
the child nodes of this R-node. Two child R-nodes and the stream-
lines passing through each of them are shown. It is clear that with
the level-of-detail exploration, it becomes convenient for the user
to explore the relationships between streamlines and spatial regions
in an adaptive manner. This capability is very necessary in order to
achieve flexible control when exploring large and complex 3D flow
fields where dense streamlines are commonly exhibited throughout
the entire volume.

Case Study 2 — Supernova Data Set. For the supernova data
set, we first compare the paths of two streamline clusters. As shown
in Figure 8 (a) and (b), these two streamline clusters both start from
the volume boundary and get more intertwined as they get closer
to the center. The compound graph view clearly shows the two
R-nodes these two streamline clusters share in common. The high-
lighted path results also match the spatial arrangement of these two
clusters. The paths start from the surrounding of the graph and ad-
vance to the center where the two clusters meet at the two spatial
regions highlighted. In Figure 8 (c) and (d), we switch to the spatial
region subgraph and show the path information of a single stream-
line. A R-node is further expanded to show the path information
in the next level of detail. The corresponding spatial regions are
highlighted in cyan. Observe how close the path drawn in the 2D
graph view “matches” the 3D streamline view. In general, we find
that drawing the subgraph which only consists of R-nodes and R-
R edges forms a better arrangement of node positions. This helps
the user build the connection between 2D paths and 3D streamlines
between the views.

Case Study 3 — Car Flow Data Set. For the car flow data set,
our goal is to identify spatial regions and streamline clusters that
capture the essential interesting flow pattern passing through the
car. In Figure 9, we can see that the FlowGraph exhibits an inter-
esting layout: many L-nodes and R-nodes are pushed to the bound-
ary of the drawing region. This is due to the fact that many of the
streamlines we trace over the volume only form the straight pattern,
i.e., they are simply passing by rather than passing through the car.
These streamlines and spatial regions surround the interesting flow
regions located around the center of the volume. These L-nodes and
R-nodes only have a few connections to their neighboring nodes. In
contrast, L-nodes and R-nodes around the center of the graph corre-
spond to streamline clusters and spatial regions in the center of the
volume. They have more connections to their neighboring nodes
and are important nodes for our visual exploration. In Figure 9 (a),
we select four R-nodes of interest. Eight L-nodes that have strong
connection to the selected R-nodes are highlighted. The stream-



Figure 7: Exploring the five critical points data set. First row: three R-nodes are selected (shown in blue, red and brown) which correspond to the
spatial regions each containing one critical point. Second row: filtering R-nodes based on the R-R edge weight identifies an important R-node.
The streamlines passing through the parent R-node (shown in black) and two child R-nodes (shown in blue and red) are displayed.

(a) (b) (c) (d)

Figure 8: Exploration of the supernova data set using the FlowGraph. (a) and (b) show the path comparison of two streamline clusters (shown in
black and magenta) in both views. Their shared spatial regions are also highlighted. (c) and (d) show the snapshot of path animation of a single
streamline over spatial regions with different levels of detail. Green, red and blue squares (graph view) and spheres (streamline view) indicate
the starting, ending and current animation points, respectively.

line view shown in (b) clearly indicates the correspondence of these
nodes to interesting flow regions. In (c) and (d), we further explore
three L-nodes and filter out streamline clusters at two different lev-
els of detail that well capture the flow pattern passing through the
car. With the visual guidance of the FlowGraph and dual interac-
tion with the streamline view, exploring the underlying flow field to
identify features of interest becomes more intuitive, convenient and
effective.

7 CONCLUSION AND FUTURE WORK

We have presented the FlowGraph, a new graph-based visual rep-
resentation that explicitly encodes the streamline clusters, spatial
regions and their hierarchical relationships to assist flow field ex-
ploration and interrogation. The main motivation to generate such a
representation is to address the intrinsic difficulty when visualizing
and understanding 3D streamlines. As we know, 3D streamlines
normally create dense distribution over the space, which is espe-
cially true for large and complex 3D flow fields. By transforming
the streamlines, spatial regions and their interconnection to a 2D
space, we allow occlusion-free observation, navigation and inter-
action with the graph view and make connection to the streamline

view for effective visual exploration. Our work falls into the cat-
egory of visual analytics for scientific visualization: extracting es-
sential information or relationships from scientific data sets to en-
able analytical reasoning facilitated by interactive visual interfaces.
Even though the FlowGraph is an abstract representation of the un-
derlying flow field, our results show strong evidence with multiple
data sets that it is easy to understand the graph and perform the
tasks accordingly through visual encoding such as node size, visual
hints such as node centrality, and interactive filtering such as edge
pruning. Our experience shows that through brushing and linking,
the user can quickly build the connections between the views. Once
such connections are built, the user will have a good understanding
on how to work with both views effectively to achieve different vi-
sual exploration goals.

We would like to extend our FlowGraph to time-varying flow
field visualization and exploration. For time-varying flow fields,
different kinds of field lines can be produced such as pathlines,
streaklines and timelines. Pathlines are the obvious choice to build
the FlowGraph for time-varying flow fields, while the introduction
of the time dimension may require us to develop a time-varying



(a) (b) (c) (d)

Figure 9: Exploring the interesting flow pattern in the car flow data set. (a) and (b) show four important R-nodes (shown in red, green, blue and
brown) and eight L-nodes that have strong connection to the R-nodes of interest. From these eight L-nodes, (c) and (d) show further selection
of three L-nodes (one at the next level of the hierarchy) to capture the main flow structure passing through the car.

graph for better capturing time-dependent flow features. This poses
new challenges in hierarchy construction and graph visualization,
as well as graph understanding and visual interpretation.
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