
FlowString: Partial Streamline Matching Using Shape Invariant Similarity

Measure for Exploratory Flow Visualization

Jun Tao∗ Chaoli Wang† Ching-Kuang Shene‡

Michigan Technological University

ABSTRACT

Measuring the similarity of integral curves is fundamental to many
important flow data analysis and visualization tasks such as feature
detection, pattern querying, streamline clustering and hierarchical
exploration. In this paper, we introduce FlowString, a novel ap-
proach that extracts shape invariant features from streamlines and
utilizes a string-based method for exploratory streamline analy-
sis and visualization. Our solution first resamples streamlines by
considering their local feature scales. We then classify resampled
points along streamlines based on the shape similarity around their
local neighborhoods. We encode each streamline into a string of
well-selected shape characters, from which we construct meaning-
ful words for querying and retrieval. A unique feature of our ap-
proach is that it captures intrinsic streamline similarity that is in-
variant under translation, rotation and scaling. Leveraging the suffix
tree, we enable efficient search of streamline patterns with arbitrary
lengths with the complexity linear to the size of the respective pat-
tern. We design an intuitive interface and user interactions to sup-
port flexible querying, allowing exact and approximate searches for
robust partial streamline similarity matching. Users can perform
queries at either the character level or the word level, and define
their own characters or words conveniently for customized search.
We demonstrate the effectiveness of FlowString with several flow
field data sets of different sizes and characteristics.

1 INTRODUCTION

In flow visualization, measuring the similarity between discrete
vectors or the similarity between integral curves is of vital impor-
tance for many tasks such as data partitioning, seed placement, field
line clustering and hierarchical exploration. This need has become
increasingly necessary and challenging as the size and complex-
ity of flow field data continue to grow dramatically over the years.
Early research in this direction focused on vector field similarity
and hierarchical classification [7, 18]. This focus has shifted to
similarity measurement of integral curves in recent years. Many
of the similarity measures designed were targeted on fiber bundle
clustering in diffusion tensor imaging (DTI). In this context, spatial
proximity is the major criterion for clustering these DTI fiber tracts.
Fiber bundles can be formed to characterize different bunches of
tracts that share similar trajectories.

In computational fluid dynamics (CFD), integral curves such as
streamlines or pathlines traced from flow field data are more com-
plex than DTI fiber tracts. Many CFD simulations produce flow
field data featuring regular or turbulent patterns at various locations,
orientations and sizes. Clearly, only considering the spatial prox-
imity alone is not able to capture intrinsic similarity among integral
curves traced over the field. As a matter of fact, pointwise distance

∗e-mail: junt@mtu.edu
†e-mail: chaoliw@mtu.edu
‡e-mail: shene@mtu.edu

calculation commonly used in proximity-based distance measures
is not invariant to translation, rotation and scaling. Although other
measures have also been presented that extract features from inte-
gral curves and consider feature distribution or transformation for a
more robust similarity evaluation, none of them is able to explicitly
capture intrinsic similarity that is invariant under translation, rota-
tion and scaling. Furthermore, most of the existing solutions for
streamline similarity measurement take each individual streamline
of its entirety as the input, measuring partial streamline similarity
is not naturally integrated.

In this paper, we present FlowString, a novel approach for
streamline similarity measurement using shape invariant features.
Given a flow field data set, we advocate a shape modeling ap-
proach to extract different feature characters from the input stream-
line pool. Each individual streamline is encoded into a string of
characters recording its shape features. This draws a clear distinc-
tion from existing solutions in that we are now able to perform
robust partial streamline matching where both exact and approxi-
mate searches are supported. Built on top of the underlying shape
analysis framework, we present a user interface that naturally in-
tegrates the concepts of characters and words for convenient low-
level and high-level streamline feature querying and matching. Our
FlowString explicitly categorizes shape features into characters and
extracts meaningful words for visual search, which offers a more
expressive power for exploratory-based streamline analysis and vi-
sualization. The effectiveness of our approach is demonstrated with
several flow data sets exhibiting different characteristics.

2 RELATED WORK

Many similarity measures have been presented for clustering DTI
fiber bundles and field lines. The spatial proximity between two in-
tegral curves is the foundation of many of them [5, 22, 4, 13, 2, 9].
While proximity-based measures are solely based on point loca-
tions, other measures extract features from the field or integral
curves for similarity analysis. Examples include shape and orien-
tation [3], and local and global geometric properties [16]. Feature
distributions of integral curves are less sensitive to noise in the data
and sharp turns or twists at certain locations [21, 11, 17, 10, 12].
Therefore, they are often used for more robust similarity measur-
ing. In other approaches, the similarity between integral curves are
measured in a transformed feature space [1, 20, 14].

Closely related to our work are the work of Schlemmer et al.
[15], Wei et al. [20], and Lu et al. [10]. Schlemmer et al. [15] lever-
aged moment invariants to detect 2D flow features which are invari-
ant under translation, scaling and rotation. However, their work is
restrictive to 2D flow fields and patterns are detected based on local
neighborhoods rather than integral curves. Wei et al. [20] extracted
features along reparameterized streamlines at equal arc length and
used the edit distance to measure streamline similarity. Features of
varying scales are only roughly captured by simply recording the
length of each resampled streamline. Lu et al. [10] computed statis-
tical distributions of measurements, such as curvature, curl and tor-
sion, along the trajectory to measure streamline similarity. Their ap-
proach is invariant to translation and rotation, but not scaling. Our
FlowString advocates a shape-based solution for streamline resam-
pling, feature characterization, and pattern search and recognition.

Figure 1: Resampling a streamline traced from the crayfish data set.
The red dots are resampled points.

It distinguishes from all previous solutions in that it is specifically
designed for robust and flexible partial streamline matching, invari-
ant under translation, rotation and scaling. We enable this through
the construction of character-level alphabet and word-level vocab-
ulary. Another distinction is that FlowString is nicely integrated
into a user interface to support intuitive and convenient user inter-
action and streamline exploration, expressing a more powerful way
to visual analytics of flow field data.

3 TERMS AND NOTATIONS

Before describing the overview of our algorithm, we first define the
following terms that will be frequently used in the paper:

• Character: A character is a unique local shape primitive ex-
tracted from streamlines which is invariant to its geometric
position and orientation. Characters are the low-level feature
descriptors for categorizing streamline shape features.

• Alphabet: The alphabet consists of a set of characters that de-
scribe various local shape features of streamlines traced from
a given flow data set.

• Word: A word is a sequence of characters encoding a stream-
line shape pattern. Words are the high-level feature descrip-
tors for differentiating regional streamline shape features.

• Vocabulary: The vocabulary consists of a set of words de-
scribe various regional shape features of streamlines traced
from a given flow data set.

• String/substring: A string is the mapping of a global stream-
line to a sequence of characters. A substring encodes a por-
tion of the corresponding streamline. A substring could match
with a word in the vocabulary.

The notations for string operation are mostly consistent with the
convention. However, some minor changes are also introduced to
adapt to this specific context, which are listed as follows:

• Character notation: The shape primitive represented by a
character is formed by a set of points in order. A character
is denoted as a single lowercase letter a (a’) if the sample
points on the streamline ordered along the flow direction is in
the same (reversed) order of the shape primitive. We use the
uppercase letter A to indicate that the sample points could be
in both directions.

• Multiple characters with common features: | This symbol
specifies multiple characters that share some common proper-
ties, e.g., (a1|a2| . . .|al) denotes a local shape represented
by any character appearing in the parenthesis.

• Word concatenation: | and & We use two symbols | (or)
and & (and) to concatenate two words with the square brack-
ets [] for distinguishing word boundaries. For example,
[aaa]|[bbb] returns the segments that match either aaa
or bbb. [aaa]&[bbb] finds the segments that contain both
aaa and bbb within some distance apart.

• Other symbols: +, ?, and * We allow the use of single char-
acter repetition +, and wildcard symbols ? and *. The use of
them is consistent with the convention.

4 OUR ALGORITHM

Our FlowString algorithm consists of two major components: al-
phabet generation and string operation. Alphabet generation is to
generate the alphabet that describes unique local shape features of
streamlines traced from a given flow data set. With this alphabet,
we can treat a streamline as a string with a sequence of characters
assigned to its sample points. String operation refers to the match-
ing and querying of the strings based on this alphabet. A suffix
tree is built to represent all the strings to enable efficient search and
pattern recognition. We automatically extract words from strings to
construct the vocabulary to support high-level feature querying.

4.1 Alphabet Generation

Streamline resampling We first resample the streamlines, so
that the number of sample points is similar for the local features
with the same shape but different scales. For each sample point, its
local shape is represented by a set of sample points in its neighbor-
hood with a size of r, i.e., the sample point itself and the (r−1)/2
nearest neighbors in both the forward and backward directions
along the streamline. Our streamline resampling should meet two
crucial requirements. First, a streamline segment between two sam-
ple points should be simple enough, so that no feature is ignored due
to under-sampling. Second, since we use a neighborhood of size r
to represent the local shape, the density of sample points should be
related to the local feature size. That is, for a meaningful compari-
son, the local features with the same shape should contain the same
number of sample points.

Let us consider a continuous 3D curve C and another curve C′

which results from uniformly scaling C by a factor s. Let p1 and p2

be two points on C, and p′1 and p′2 be two points on C′ which cor-
respond to p1 and p2, respectively. The curvature κ ′ of each point
on C′ is κ/s, where κ is the curvature of the corresponding point on
C. Since the arc length l′ between p′1 and p′2 is s× l, where l is the
arc length between p1 and p2, the accumulative curvature between
p′1 and p′2 is the same as that between p1 and p2. This implies that
keeping a constant accumulative curvature between two neighbor-
ing sample points will produce similar resampling for features with
the same shape but of different scales.

For a streamline which is often represented as a polyline, the cur-
vature is not immediately available. Thus, we compute the discrete
curvature κi at point pi by

κi = cos−1(−−−−→pi−1 pi ·
−−−−→pi pi+1), (1)

where pi−1, pi and pi+1 are three consecutive points along the
streamline. In other words, the discrete curvature at a point could
be approximated by the angle between its two neighboring line seg-
ment, and the accumulative curvature becomes the winding angle
of a streamline segment. Although the winding angle might be af-
fected by the density of points along a polyline, it is very stable if
the points traced along the streamline are dense enough.

Our resampling starts from selecting one end of a streamline as
the first sample point, and iterates over the other traced points along
the streamline. During the iterations, we accumulate the winding
angle from the last sample point to the current point. Once the
winding angle is larger than a given threshold α , the current point
is saved as a new sample point and the winding angle is reset to
zero. Note that the neighborhood size r is closely related to the
selection of α . That is, when α is smaller, r should be larger to
cover the same range of the streamlines in order to capture the shape
of local features. If the cumulative winding angle does not reach
the threshold for an entire streamline, i.e., mostly a straight line,
then we place r sample points evenly on that streamline. In our
experiments, we find that setting α = 1 (in radian) and r = 7 works
well for all our test cases. This is because when α = 1, the pattern
of a streamline segment between two neighboring sample points
is relatively simple, and seven consecutive points cover mostly the

a b c d

e f g h

i j k

(a) (b) (c)

Figure 2: Characters generated from a two-level bottom-up affinity propagation clustering of the crayfish data set. (a) shows the 11 high-level
cluster centers, which are assigned to characters a to k in order. (b) shows the 23 members in the cluster highlighted with a box in (a), which
are low-level cluster centers. (c) shows the 24 members in the cluster highlighted with a box in (b).

range of a circle, which is enough to describe a local shape and yet
not too complex. Figure 1 shows our resampling result. The three
highlighted regions are with three different local scales, which all
contain a similar number of sample points after resampling.

Dissimilarity measure We compute the dissimilarity between
the local shapes of two sample points as the Procrustes distance be-
tween their neighborhoods, where each neighborhood is a sample
point set of size r. This distance only considers the shape of ob-
jects and ignores their geometric positions and orientations. Before
shape comparison, the two point sets must first be superimposed
or registered to obtain the optimal translation, rotation and uniform
scaling. This registration is often referred to as the Procrustes su-
perimposition. After the superimposition, the two paired point sets
representing the same shape will exactly coincide and thus have
the distance of zero. The optimal translation T, rotation R, and uni-
form scaling s from one point set Pa = {pa1, pa2, . . . , par} to another
Pb = {pb1, pb2, . . . , pbr} are the ones that minimize the summation
of the pairwise point distances [8]

d =
r

∑
i=1

∣

∣pbi − p′ai

∣

∣

2
, where p′ai = sRpai +T. (2)

Note that the minimized d is the Procrustes distance between Pa and
Pb. However, in Equation 2, we assume that pai should be paired
with pbi, which might not always be the case for two streamline seg-
ments, since two segments with the same shape might be indexed
in the opposite directions. Therefore, instead of accepting d as their
dissimilarity between Pa and Pb immediately, we also compute the
distance d′ with points being paired in a reversed order, and use the
minimum of d and d′ as the final dissimilarity value.

Affinity propagation clustering Given the dissimilarity mea-
sure, we compute the pairwise dissimilarity among all sample
points and apply affinity propagation for clustering. The similar-
ity values are then obtained as the negative of the dissimilarity val-
ues, as suggested by Frey and Dueck [6]. Unlike k-means and k-
medoids clustering algorithms, affinity propagation simultaneously
considers all data points as potential exemplars and automatically
determines the best number of clusters, with the preference values
for each data point as the only parameters. The algorithm takes
these paired similarity values as input, and by simultaneously con-
sidering all the data points as the potential cluster centers, it ex-
changes real-value messages between data points until it converges
to a high-quality set of cluster centers. The preference value indi-
cates the probability of selecting the corresponding data point as a
cluster center. Using a uniform preference value indicates that all
the data points are considered with an equal chance to be cluster
centers, and a smaller preference value, i.e., a more negative value
in our case, produces a smaller number of clusters. In our scenario,
affinity propagation usually generates a fine level of clustering re-
sult (with hundreds of clusters). Therefore, we use the minimum
of the similarity values as the preference. Although affinity prop-
agation generates high-quality clusters for all the sample points, it
is unnecessary to keep the clusters at such a fine level. To support

(a) (b) (c)

Figure 3: Character concatenation. The blue and red lines indicate
the neighborhoods of blue and red sample points, respectively. (a)
characters are assigned to all sample points. r−1 sample points are
shared by the neighborhoods of blue and red sample points, which
produce a deterministic shape. (b) and (c) characters are assigned
to every r−1 sample points. Only one point is shared by the neigh-
borhoods, which produces different shapes.

pattern query and recognition at a coarser level, the cluster centers
at the first level are then clustered by applying affinity propagation
again to generate the second-level clusters. In our experiments, the
second-level cluster indices serve as the characters, and we find that
they already have enough discriminating power.

Figure 2 shows an example of the clustering results. As we can
see, the members in the same clusters are usually similar to each
other. For each sample point and its neighborhood, we select a
view that shows its overall shape most clearly by applying a sim-
ple heuristic. The camera is set to always look at the center c of
this neighborhood, which is calculated by averaging the geometric
positions of all points in the neighborhood. The viewing direction
is computed as the cross product of two vectors. One of the vec-
tors is −→v1 = −→pc, which points from the sample point p to the center
of the neighborhood c. The other vector is selected as −→v2 = −→pic,
where pi is another sample point in the neighborhood such that −→v2

is most perpendicular to −→v1 . Although some shapes in the higher
level cluster also appear to be similar under this viewing direction,
we find that they actually represent different shapes as judged from
the query results. For example, they might be portions of spirals
with different torsions, which are not revealed under this view.

Character concatenation In our work, a character corre-
sponding to a sample point determines the local shape of its neigh-
borhood of size r. If the characters are assigned to every sample
point, a concatenation of two characters represents the shape of a
neighborhood of size r +1. As shown in Figure 3 (a), this shape is
mostly determined by the two characters centering on the blue and
red sample points. However, if the characters are only assigned to
every r−1 points, even if the two characters are exactly the same,
the resulting shape of 2r−1 points could vary significantly. This is
because the relative orientation of the two local shapes is undeter-
mined, as shown in Figure 3 (b) and (c). Moreover, since these r
points in a neighborhood might not be evenly spaced, the overlap-
ping region of two neighborhoods also decides their relative scale.
Also notice that the order of points for each character might affect
the shape represented by a string. Certainly, if r is large, we might
not need to assign characters to every sample point to maintain the

(a) (b) (c) (d)

Figure 4: Matching results using the crayfish data set. A zoomed-in
view is used to show a partial volume for clearer observation. (a)
and (b) show respectively, exact match results for patterns EE and
FF, where E (F) is a spiral pattern with large (small) torsion (refer to
Figure 2 (a)). (c) and (d) show respectively, exact and approximate
(k = 15) match results for pattern (E|F)(E|F).

overlapping region of size r − 1. In practice, since we opt to use
a small value for r to avoid too complex local shapes, assigning a
character to every sample point seems to be necessary in order to
produce deterministic shapes for a string.

4.2 String Operation

Streamline suffix tree After we convert each streamline to a
string, we construct a suffix tree [19] in linear time and space to
enable efficient operations on these strings. A suffix tree is a spe-
cial kind of tree that presents all the suffixes of the given strings.
Each edge of the suffix tree is labeled with a substring in the given
strings. For a path starting from the root to any of the leaf nodes,
the concatenation of these substrings along this path is a suffix of
the given strings.

The problem of search for a string then becomes the search for
a node in the suffix tree. Considering that the size of the alphabet
is constant, the decision on which edge to visit could be made in
constant time, and the search of a string with length m can be per-
formed in O(m) time. Assuming the number of appearance of a
string to be searched is z, reporting all the positions of that string
takes O(z) time. As a result, with the suffix tree, an exact match
of a substring that appears in the given string multiple times only
takes O(m+ z) time.

Vocabulary construction Given a pool of traced streamlines,
one interesting yet challenging problem is to automatically identify
meaningful words in these streamlines to construct the vocabulary.
Since the words are depicted by a sequence of characters, we need
to not only select representative streamlines, but also extract impor-
tant segments from them for word identification. With our stream-
line suffix tree, this could be efficiently solved as we select the most
common patterns from the streamlines. In other words, streamline
segments that appear most frequently could be identified as words.

We implement our approach on the streamline suffix tree by a
simple tree traversal scheme. Since the shape of each streamline
segment is captured by a substring in our suffix tree, selecting the
common patterns of streamline segments could be considered as the
detection of the most frequently appeared substrings. Considering
that each potential substring is associated with a node in the suffix
tree, the number of appearance for a substring can be efficiently
counted with the following two cases:

• If the substring corresponds to a leaf node, its number of
appearance is the number of position labels attached to that
node;

• If the substring corresponds to an internal node, its number of
appearance is the summation of the counts for all the children
of that node.

This information could be gathered by a traversal of the tree in the
depth-first search manner. Then, all substrings with the length and

number of appearance larger than certain thresholds could be re-
ported by another tree traversal. Therefore, identifying words to
form the vocabulary can be performed in O(n) time, where n is the
total length of the original strings, since the number of nodes is
linear to n.

Exact vs. approximate search Since the string is used to rep-
resent the shape of streamline segments, exact string matching nor-
mally does not provide enough flexibility to capture streamline seg-
ments with similar shapes. First, the similarities among the shapes
represented by different characters are different, e.g., a portion of
spiral with large torsion is more similar to that with small torsion
than other shapes. But exact match only produces a binary result,
which is either the same or different. Second, with respect to hu-
man perception, different numbers of repetition of a certain shape
often seem to be similar. For instance, a spiral that contains three
circles and another one contains five circles are usually considered
to be similar. Assuming a shape similar to a circle is represented
by character a, then strings aaa and aaaaa should be matched in
our search. To enable these approximate searches, we first intro-
duce a straightforward dynamic programming approach to detect
k-approximate match on the suffix tree, where k is a threshold used
in the edit distance. Then, this approach is extended to support the
repetition of a single character.

In our scheme, computing the edit distance of two strings P =
P1P2 . . .Pnp

and T = T1T2 . . .Tnt
is the same as the traditional ap-

proach by filling a table DP of size np × nt , where DP[i, j] is the
edit distance for substrings P1 . . .Pi and T1 . . .Tj. Our straightfor-
ward k-approximate match on a suffix tree traverses the tree in the
depth-first search manner and expands the table column by column
using the following rule

DP[i, j] = min

DP[i−1, j]+ costd ,
DP[i, j−1]+ costi,
DP[i−1, j−1]+ costr(Pi,Tj)

 , (3)

where P is the query string to match, T is the string labeled on
the path from the root to the currently visited edge or node, costd
and costi are deletion and insertion costs which are set to the max-
imum dissimilarity value among characters, and costr(Pi,Tj) is the
replacing cost which is set to the dissimilarity between characters
Pi and Tj. Note that the replacing cost between the same characters
is zero, since they represent the same shape. During the traversal,
each time we expand the string T by one character along the edge
being visited and fill the column DP[. . . ,nt]. If DP[np,nt] is smaller
than k, then we find a match T whose edit distance to P is within
k. Note that we only need to traverse to a certain depth whose cor-
responding label string is shorter than np +k/costi, since otherwise
we would have an edit distance larger than k. The benefit of imple-
menting approximate search on the suffix tree is that we only need
to compute the edit distance once between P and all the appearances
of the same substring. Furthermore, if the traversal finishes explor-
ing a branch under a node u and starts to traverse another branch,
the columns in the table DP representing the edit distance between
P and the label string on the path from the root to u could also be
reused.

The special symbols for single character repetition + and multi-
ple characters with common features | are implemented by extend-
ing the traditional edit distance. For single character repetition, a
minimum number of repetition q is used to guarantee that the pat-
tern is significant enough for human perception. For example, if
q = 3, aaa is considered to be the same as aaaaa but not aa. This
is implemented by replacing any repetition of a with length larger
than three by aaa+. By considering a+ as another character, the
insertion cost of Tj = a when matching with character a+ should
be zero. This could be formulated as

costi(Pi,Tj) =

{

0, if Pi = Tj
+

c, otherwise
, (4)

sample # cluster max timing

data set dimension # lines # points points 1st level # char. dist. matrix CPU clustering GPU clustering setup

vessel 40×56×68 100 25606 1338 56 5 31.11 1.45 sec 0.60 min 2.0 sec 0.06 sec

electron 64×64×64 200 24191 1415 38 4 13.98 1.62 sec 0.77 min 3.3 sec 0.05 sec

tornado 64×64×64 200 200735 12363 141 6 29.80 126.06 sec 47.07 min 115.0 sec 1.77 sec

two swirls 64×64×64 200 209289 13508 156 6 36.05 150.39 sec 86.65 min 247.1 sec 2.07 sec

supernova 100×100×100 200 56210 8542 150 7 35.28 35.28 sec 28.85 min 139.0 sec 1.08 sec

crayfish 322×162×119 150 164605 7590 178 11 33.77 33.77 sec 21.22 min 89.6 sec 0.97 sec

solar plume 126×126×512 200 257087 12484 247 12 36.63 128.47 sec 71.22 min 221.6 sec 2.09 sec

computer room 417×345×60 400 361258 9772 262 11 35.91 78.94 sec 36.53 min 75.2 sec 1.43 sec

Table 1: The eight flow data sets and their parameter values. The timing for matrix is the running time for computing pairwise distance among the
neighborhoods of sample points. The timing for affinity propagation clustering includes both the first and second levels clustering. The column
“max dist.” shows the maximum dissimilarity between any two sample point in that data set.

where c is some constant. We use Equation 4 to replace the insertion
cost in Equation 3, and terminate a searching branch only if all
elements in a column DP[, j] are larger than k.

For multiple characters with common features, we expand the re-
placing cost to achieve this goal. That is, we create a new character
A with its replacing cost to other characters defined as

costr(Pi = A,Tj) =

0, if Tj ∈ (a1|a2| . . .|al)

min

costr(a1,Tj),
. . . ,
costr(al ,Tj)

 , otherwise
.

(5)
We use Equation 5 to replace the replacing cost in Equation 3. Fig-
ure 4 shows some search results using the crayfish data set, where
E is a character representing a spiral pattern with large torsion and
F represents a spiral pattern with small torsion. E and f correspond
to e and f as shown in Figure 2 (a) respectively. We can observe
from Figure 4 (a) that streamline segments matched with EE are
mostly spirals with large torsion, and those matched with FF in (b)
are mostly spirals with small torsion. In (c), streamline segments
include the results from both (a) and (b). If we enable approximate
search, more swirling streamline segments are detected, as shown
in (d).

4.3 User Interface and Interactions

To make our FlowString a useful tool to support exploratory flow
field analysis and visualization, we design a user interface for intu-
itive and convenient streamline feature querying and matching. Our
interface consists of four widgets that visualize respectively, the al-
phabet, vocabulary, query string, and streamline widgets. The al-
phabet widget visually displays all the characters, as shown in Fig-
ure 5 (a). Users can construct a query string from this widget by
clicking on the displayed characters or typing in an input box. The
query result will be updated on the fly. They can also select multiple
existing characters to create a new character, which can match with
either of the selected characters. The vocabulary widget visualizes
all the words automatically detected from the streamline suffix tree,
as shown in Figure 5 (b). Users can click on a word to retrieve
the corresponding pattern in the flow field. They can also select
multiple words in sequence to search streamline segments match-
ing with the concatenation of those words. The query string widget
displays the query in both textual and visual forms, as shown in Fig-
ure 5 (c). Several sliders are provided to adjust the parameter for
k-approximate search, and the thresholds of frequency and length
for word generation. The streamline widget shows all the input
streamlines and the query result as streamline segments, as shown
in Figure 5 (d). It allows users to select a streamline segment from
the streamline view and to search for similar segments.

5 RESULTS AND DISCUSSION

5.1 Performance and Parameters

Table 1 shows the configurations of eight data sets, the timing
for the first and second level affinity propagation clustering, and

(a) (b)

(c) (d)

Figure 5: Alphabet widget (a), vocabulary widget (b), and query
string widget (c) with the solar plume data set. Streamline widget
(d) with the computer room data set. (a) shows the alphabet visual-
ization where the last character is created by the user to match either
G, K or L. (b) shows the first page of the vocabulary widget. (c) shows
a query string in the forms of text and polyline. (d) shows the user-
selected query segment on the upper-left subwindow (where two red
spheres are used to delimitate the blue segment as the query pat-
tern), all streamlines on the lower-left subwindow, and the query re-
sult on the right subwindow.

launching the program. For each of the data sets, we randomly
placed seeds to trace the pool of streamlines. All the timing results
were collected on a PC with an Intel Core i7-960 CPU running at
3.2GHz, 24GB main memory, and an nVidia Geforce 670 graphics
card with 2GB graphics memory.

From the results shown in Table 1, it is obvious that affinity prop-
agation clustering dominates the timing when it is performed on the
CPU. We leveraged GPU CUDA to speed up this procedure. For
most of the data sets, we performed the clustering by affinity prop-
agation using the GPU. For the solar plume and two swirls data sets,
a GPU implementation of leveraged affinity propagation was used,
since the memory needed to perform affinity propagation exceeds
the limit of graphics memory. Unlike affinity propagation which
considers all the data points (and the similarities among them) at the
same time, leveraged affinity propagation samples from the full set
of potential similarities and performs several rounds of sparse affin-
ity propagation, iteratively refining the samples. Thus, the required
memory space is reduced with leveraged affinity propagation. The
performance of affinity propagation was greatly improved using the
GPU. For most of the data sets, the clustering step only took around
one minute. For the two swirls data set, which contains the most
number of sample points, it still could be completed in five min-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Case study for the crayfish data set. (a) to (d) show streamline segments matched by four automatically generated words. (e) to
(h) show query results of (A|I)+

(D|E|F|K)(D|E|F|K), (A|I)(A|I)+
(D|E|F|K)(D|E|F|K), (A|I)???(D|E|F|K)(D|E|F|K), and

(A|I)*(D|E|F|K)(D|E|F|K), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Case study for the plume data set. (a) to (d) show streamline segments matched by four automatically generated words. (e) to (h)
show query results when the previously generated alphabet is used for newly traced streamlines. (e) and (f) show streamline segments matched
by two words. (g) and (h) show the concatenation of the two words using | and &, respectively.

utes. We believe that the timing for clustering is acceptable, since
it only needs to run once given a pool of streamlines.

The dissimilarity matrix computation can be performed in rea-
sonable time using the GPU. For the two swirls data set, it took 150
seconds to complete, and the costs for other data sets were even
less. Other than these preprocessing steps, the other steps could be
finished on the fly. It only took seconds to setup the program for
a new run, which includes the time for resampling, computing the
dissimilarities between each sample point and each character, and
constructing the suffix tree.

Parameter setting is straightforward. The approximation thresh-
old k, minimum number of repetition q, and minimum length and
frequency for generating the vocabulary are four parameters that
users can configure. They could be easily adjusted to update the
query result in real time. The insertion and deletion costs are au-
tomatically decided for each data set. To avoid frequent insertion
and deletion, they are both assigned twice the value of maximum
dissimilarity between any two sample points in that data set. This
rule applies to all the following case studies.

5.2 Case Studies

Crayfish Figure 6 demonstrates query results of both automat-
ically generated words and user inputs using the crayfish data set.
In the first row of Figure 6, the four words are selected from a vo-

cabulary of seven words, which are generated with the minimum
number of appearance and length set to 100 and 3, respectively.
We can see that the word b’b’b’ mostly corresponds to stream-
line segments of “C”-shape. The word ch’h’ finds those turbu-
lent segments inside. The word d’d’d’ matches segments with
swirling patterns. Unlike those in Figure 4 (b), d’d’d’ is usually
an elliptical spiral instead of a circular one. Finally, the word iii
corresponds to streamline segments of “L”-shape on the outer layer
along the boundary. We find that most of words with clear patterns
are repetitions of a single character. A word with multiple char-
acters often indicates a streamline segment that connects multiple
patterns, which is less distinguishable by human observers.

In the second row of Figure 6, we demonstrate an example of
using user input to search for a combined pattern that contains a
straight segment followed by a spiral pattern. As shown in Figure
2, characters A and I represent shapes that start with straight line
segments and D, E, F and K are mostly swirling patterns. (e) shows

the query result for user input (A|I)+
(D|E|F|K)(D|E|F|K),

where + indicates that character A|I could repeat multiple times.
We then further refine the query result by repeating character A|I,
which ensures that the straight segment is obvious enough for
human perception. As shown in (f), the refined query matches
less streamline segments, but the straight segment can be bet-
ter observed in most of the matched segments. The query

(a) (b)

(c) (d)

Figure 8: Case study for the tornado data set. (a) shows all stream-
lines. (b) shows query results for a user-selected streamline seg-
ment with different settings. (c) and (d) show streamline segments
matched by two automatically generated words.

(A|I)???(D|E|F|K)(D|E|F|K) allows any pattern repre-
sented by less than three characters to be inserted between the
straight pattern and the swirling pattern, which makes the result-
ing segments in (g) contain more complex patterns. Finally, if we
allow any pattern with arbitrary length to be inserted by querying
(A|I)*(D|E|F|K)(D|E|F|K), almost all the input stream-
lines could be matched, since most of the streamlines contain a
straight portion on the outer layer and spirals inside the volume.

Solar plume Figure 7 shows query results using the solar
plume data set. In the first row of Figure 7, we select four words
from a vocabulary of 28 words, which are generated with the mini-
mum number of appearance and length set to 35 and 4, respectively.
We can observe that the word a’ala’ matches very elongated el-
lipses. The word f’f’f’f’ finds those segments containing a
“L”-turn which mostly reside in the head of solar plume. The word
i’i’i’i’ corresponds to the hook-like segments surrounding the
outer layer. We also find six small-scale spirals using the word
kkkk.

The second row of Figure 7 shows a query example using the
previously generated alphabet for a new set of streamlines. We
compute the dissimilarity value between each character and each
sample point by measuring their Procrustes distance. The charac-
ter with the minimum dissimilarity to a sample point is assigned to
that point. The vocabulary is extracted from the strings correspond-
ing to the new set of streamlines. In (e) and (f), the streamline
segments are found by two words bb’f and e’ee, respectively.
The word bb’f corresponds to segments with elongated “C”-shape
and e’ee matches the turbulent segments in the core region. (g)
demonstrates the query result for [bb’f]|[e’ee], which con-
tains all the segments matched by both bb’f and e’ee. We can
also search for a pattern of a “C”-shaped segment followed by a
turbulent one by applying the query [bb’f]&[e’ee], as shown
in (h). There are not many matched segments, since the length of
any substring between the two words is constrained.

Tornado In Figure 8 (b), the query result on the left is matched
by using the exact string a’bbba’a’bbba’a’a’b, which corre-
sponds to the user-selected segment. The query result on the right
is found by replacing each of the characters by a user-defined char-
acter (A|B|E), since these three characters are similar. The exact

(a) (b)

(c) (d)

Figure 9: Case study for the two swirls data set. (a) shows all stream-
lines. (b) shows the query result for a user-selected streamline seg-
ment with the minimum number of repetition q = 1. (c) and (d) show
query results for a user-selected streamline segment with q = 0 and
q = 1, respectively.

string matches only the segments that are almost the same as the
query segment, while the modified query matches more segments in
the core of the tornado. Figure 8 (c) and (d) show the segments cor-
responding to the words ccca and c’c’c’d, respectively. Char-
acters a and c are mostly circles, and character d matches the seg-
ments with “S”-shape on the outer layer of the tornado. We can ob-
serve that when c concatenates with a, it corresponds to the small-
scale circles. When c connects with d, it matches the large-scale
circles. This demonstrates that the scale of a character in a stream-
line depends on its context, which ensures that the shape for a string
is mostly determined.

Two swirls Figure 9 demonstrates query results of two user-
selected streamline segments. In (b), the query segment is one that
connects a small spiral pattern and a large swirling pattern. The cor-
responding query string is d’d’c’c’c’e’e’a’a’c’d’d’d’,
which matches only the query string itself. The reason is that the
query string is somewhat complicated, and even the very simi-
lar segments might vary for one or two characters, especially in
terms of the number of repetition. We then change the minimum
number of repetition q to one, and the query string is modified to
D+C+E+A+C+D+. Note that D+ at the beginning and the end al-
lows the spirals to be displayed in the query result. This query finds
two more similar patterns, as shown in (b). In (c) and (d), the query
segment is one that connects two large swirling patterns. The query
using the exact string d’c’c’a’aba’a’c’d’d’d’d’d on that
segment finds itself and another very similar one. For the same
reason as the previous example, we set q = 1. The query string
is changed to D+C+A+B+A+C+D+ accordingly. It matches more
segments with the same pattern. In (d), we manually change the
query string to DC+A+B+A+C+D, which ignores the swirling pat-
tern at the two ends for a clearer observation.

6 FUTURE WORK

We would like to improve our FlowString in the following ways:
First, our current solution that generates an alphabet for a set of
streamlines could be extended to create a universal alphabet to han-
dle many data sets. As shown in Figure 7 (e) to (h), once the alpha-
bet is generated, it could be applied to different sets of streamlines
traced from the same data set. Moreover, for different data sets,
most characters are still similar, except that some characters might

be absent due to the lack of corresponding features in a data set.
These facts imply that creating a universal alphabet across multiple
data sets is possible.

Second, we feel that string patterns and their meanings could be
better analyzed. Although our current implementation only deals
with the repetition of a single character, the repetition of a substring
should be handled similarly. For example, two streamline seg-
ments corresponding to abcabcabc and abcabcabcabc might
be very similar perceptually. A third streamline segment labeled
with abcadcadcabc could also be similar to the previous two,
if the shape represented by d is similar to that of b. Thus, the
detection of approximate substring repetition is important for un-
derstanding the pattern of a streamline. The detection of tandem
repeats has been studied extensively in the field of computational
biology, which could probably suggest a solution to our problem.
More sophisticated approaches in string pattern research should be
incorporated to better perceive the meaning of strings and further
understand the pattern of streamlines.

Third, our current approach should also be improved to query
across multiple resolutions. Although our resampling enables
scale-invariant query, it might over emphasize small-scale features
when users exam patterns at a larger scale, since the small-scale
features could contain the same number of characters. For instance,
if a circle is represented by aaaaaaa, then a circle with a small
bump on it might be labeled with aabbbaaaaa, where bbb cor-
responds to the small bump. In this case, the small bump introduces
considerable change to the string, but does not change the overall
shape of the circle, which can hardly be distinguished when we
observe it at a coarser level. Extending the string to encode stream-
lines in multiple resolutions is beneficial, so that such small bumps
could be ignored when we study the streamlines at a larger scale.

7 CONCLUSIONS

We have presented FlowString, a novel solution for partial stream-
line matching for exploratory flow visualization. The unique fea-
tures of our FlowString are the following: First, our approach sup-
ports robust partial matching of streamlines by capturing their in-
trinsic similarity that is invariant under translation, rotation and
scaling. Second, we extract basic shape characters from streamlines
to construct an alphabet, from which we detect meaningful shape
words to compose a vocabulary to enable both character-level and
word-level feature querying and pattern retrieval. Third, we lever-
age the suffix tree data structure to efficiently speed up both exact
and approximate searches, achieving an optimal search efficiency
when retrieving multiple occurrences of a single pattern from the
streamline pool. Fourth, our method nicely integrates a friendly
user interface for intuitive exploration, allowing users to define their
own shape characters and words for customized search. To the best
of our knowledge, our work is the first one that investigates shape-
based streamline similarity measure leveraging the metaphors of
characters/alphabet and words/vocabulary. By demonstrating re-
sults from different flow field data sets, we show that FlowString
represents a new way to flexible streamline matching and expres-
sive flow field exploration.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. National Science Foun-
dation through grants IIS-1017935, DUE-1105047, CNS-1229297,
and IIS-1319363. We would like to thank the anonymous reviewers
for their insightful comments.

REFERENCES

[1] A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin.

Clustering fiber traces using normalized cuts. In Proceedings of In-

ternational Conference on Medical Image Computing and Computer

Assisted Intervention, pages 368–375, 2004.

[2] W. Chen, S. Zhang, S. Correia, and D. S. Ebert. Abstractive represen-

tation and exploration of hierarchically clustered diffusion tensor fiber

tracts. Computer Graphics Forum, 27(3):1071–1078, 2008.

[3] Y. Chen, J. D. Cohen, and J. H. Krolik. Similarity-guided streamline

placement with error evaluation. IEEE Transactions on Visualization

and Computer Graphics, 13(6):1448–1455, 2007.

[4] I. Corouge, S. Gouttard, and G. Gerig. Towards a shape model of

white matter fiber bundles using diffusion tensor MRI. In Proceedings

of International Symposium on Biomedical Imaging, pages 344–347,

2004.

[5] Z. Ding, J. C. Gore, and A. W. Anderson. Classification and quantifi-

cation of neuronal fiber pathways using diffusion tensor MRI. Mag-

netic Resonance in Medicine, 49(4):716–721, 2003.

[6] B. J. Frey and D. Dueck. Clustering by passing messages between

data points. Science, 315:972–976, 2007.

[7] B. Heckel, G. H. Weber, B. Hamann, and K. I. Joy. Construction of

vector field hierarchies. In Proceedings of IEEE Visualization Confer-

ence, pages 19–25, 1999.

[8] B. K. Horn. Closed-form solution of absolute orientation using unit

quaternions. Journal of the Optical Society of America A, 4(4):629–

642, 1987.

[9] R. Jianu, Ç. Demiralp, and D. H. Laidlaw. Exploring 3D DTI fiber

tracts with linked 2D representations. IEEE Transactions on Visual-

ization and Computer Graphics, 15(6):1449–1456, 2009.

[10] K. Lu, A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and P. C. Wong. Explor-

ing vector fields with distribution-based streamline analysis. In Pro-

ceedings of IEEE Pacific Visualization Symposium, pages 257–264,

2013.

[11] S. Marchesin, C.-K. Chen, C. Ho, and K.-L. Ma. View-dependent

streamlines for 3D vector fields. IEEE Transactions on Visualization

and Computer Graphics, 16(6):1578–1586, 2010.

[12] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters,

and C. D. Hansen. Similarity measures for enhancing interactive

streamline seeding. IEEE Transactions on Visualization and Com-

puter Graphics.

[13] B. Moberts, A. Vilanova, and J. J. van Wijk. Evaluation of fiber clus-

tering methods for diffusion tensor imaging. In Proceedings of IEEE

Visualization Conference, pages 65–72, 2005.

[14] C. Rössl and H. Theisel. Streamline embedding for 3D vector field ex-

ploration. IEEE Transactions on Visualization and Computer Graph-

ics, 18(3):407–420, 2012.

[15] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M.-H. Bertram,

C. Garth, W. Kollmann, B. Hamann, and H. Hagen. Moment invari-

ants for the analysis of 2D flow fields. IEEE Transactions on Visual-

ization and Computer Graphics, 13(6):1743–1750, 2007.

[16] K. Shi, H. Theisel, H.-C. Hege, and H.-P. Seidel. Path line attributes

- an information visualization approach to analyzing the dynamic be-

havior of 3D time-dependent flow fields. In Proceedings of Topology-

Based Methods in Visualization, 2007.

[17] J. Tao, J. Ma, C. Wang, and C.-K. Shene. A unified approach to

streamline selection and viewpoint selection for 3D flow visualiza-

tion. IEEE Transactions on Visualization and Computer Graphics,

19(3):393–406, 2013.

[18] A. Telea and J. J. van Wijk. Simplified representation of vector fields.

In Proceedings of IEEE Visualization Conference, pages 35–42, 1999.

[19] E. Ukkonen. On-line construction of suffix trees. Algorithmica,

14(3):249–260, 1995.

[20] J. Wei, C. Wang, H. Yu, and K.-L. Ma. A sketch-based interface for

classifying and visualizing vector fields. In Proceedings of IEEE Pa-

cific Visualization Symposium, pages 129–136, 2010.

[21] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic frame-

work for flow visualization. IEEE Transactions on Visualization and

Computer Graphics, 16(6):1216–1224, 2010.

[22] S. Zhang, Ç. Demiralp, and D. H. Laidlaw. Visualizing diffusion ten-

sor MR images using streamtubes and streamsurfaces. IEEE Transac-

tions on Visualization and Computer Graphics, 9(4):454–462, 2003.

