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Abstract

This note is an extension of a previous one [9]. Starting with the original proofs of the
Law of Cosine in Euclid’s The Elements, this note shows several proofs of the Pythagorean
Identity. More precisely, we showed that the original proofs in Euclid’s The Elements are
already in the forms of trigonometry; however, trigonometry was not available in Euclid’s
era. Then, we showed that the angle difference, angle sum, double angle, sum-to-product
and product-to-sum identities are all independent of the Pythagorean Identity. As a result, the
Pythagorean Identity can be proved easily with these identities. Additionally, we discussed
proofs of the Pythagorean Identity in a 1899 textbook [8] and in a 1914 collection of proofs of
the Pythagorean Theorem [12]. We also presented an almost trivial proof of the Pythagorean
Identity. With the help of calculus, we are able to offer four more calculus based proofs!

Materials in this note are taken from an earlier one [9]. The main reason is because
the original note has become too long and too difficult to be reorganized. The original
note will be divided into a number of shorter and more uniform notes whose content
will focus on a single topic rather than putting too many topics together. Each of these
new notes will not only contain the original materials but also include new materials.
This note is essentially an appendix of the original.

1 Introduction

A proof of the Pythagorean Theorem using trigonometry was presented at the AMS Spring South-
eastern Sectional Meeting on March 18, 2023 by Ne’Kiya D. Jackson and Calcea Rujean John-
son [5]. The title of this presentation is An Impossible Proof of Pythagoras, in which the word
“impossible” is referred to a claim in a well-known book by Elisha Scott Loomis (Figure 2(a)),
The Pythagorean Proposition first published in 1907 [6]. On pages 244–245 of the second edition,
Loomis stated the following (Figure 2(b)):

Facing forward the thoughtful reader may raise the question: Are there any proofs
based upon the science of trigonometry or analytical geometry?

There are no trigonometric proofs, because all the fundamental formulae of trigonom-
etry are themselves based upon the truth of the Pythagorean Theorem; because of this
theorem we say sin2 A+ cos2 A = 1, etc. Trigonometry is because the Pythagorean
Theorem is [6, p.244] (Figure 1).
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Figure 1: Loomis [6, p. 244]

Loomis believed that all the fundamental formulae of trigonometry are the results of the Pythagorean
Theorem, and because of the Pythagorean Theorem, we have the Pythagorean Identity: sin2(x)+
cos2(x) = 1. This “impossibility” has been believed by many people, mathematicians included.
Some people argued that Loomis’ claim may only imply that all the fundamental formulae of
trigonometry can be derived from the Pythagorean Theorem and he did not say that these formulae
can only be proved using the Pythagorean Theorem. There is a subtle difference between the can
and the can only interpretations. If it is the “can” option, it means that all the fundamental for-
mulae may be proved using the Pythagorean Theorem or Pythagorean Identity; however, this does
not rule out to have other ways to derive these formulae. On the other hand, the “can only” option
implies that there is no way to prove these formulae without using the Pythagorean Theorem or
Pythagorean Identity. Which way was Loomis’ original intention is not known to the author of this
note. So, it is your choice!

On the other hand, Loomis’ claim or belief was popular. For example, after the Jackson-
Johnson’s 2023 proof, Bogomilny [1] stated the following on a page at his popular site:

Elisha Loomis, myself and no doubt many others believed and still believe that no
trigonometric proof of the Pythagorean theorem is possible. . . . I happily admit to
being in the wrong.

This proof was also reported widely by the media such as Guardian [11], Popular Mechan-
ics [7], Scientific American [10], TV programs, etc. Unfortunately, many reports kept suggesting
that a trigonometric proof is “impossible.” For example, the Popular Mechanics article [7] has a
subtitle “Two high schoolers just did what mathematicians have never been able to do” and the
Guardian article [11] indicated the following:

And since that particular field of study was discovered, mathematicians have main-
tained that any alleged proof of the Pythagorean theorem which uses trigonometry
constitutes a logical fallacy known as circular reasoning, a term used when someone
tries to validate an idea with the idea itself.
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(a) The 1940 Second Edition Published by The
National Council of Teachers of Mathematics

(b) Elisha Scott Loomis (Photograph Taken 1935)

Figure 2

The Scientific American [10] article took a more balanced approach and avoided the issue of “im-
possibility” by mentioning Zimba [13]. However, trigonometric proofs of the Pythagorean Identity
and hence the Pythagorean Theorem appeared long before Zimba’s paper. For example, Schur [8]
(1899) offered a proof exactly the same as that of Zimba, and Versluys [12] (1914) included a proof
using the angle sum identities. Basically, the recent reports seem to emphasize the “impossibility”
side rather than provide a properly constructed history of the whole incident.

Before starting our quest for trigonometric proofs of the Pythagorean Identity, we need to do
one more step to clear things up. One may suggest that the Pythagorean Theorem deals with
a right triangle in which all angles are no more than 90◦ while the Pythagorean Identity is for
an arbitrary angle, and hence the Pythagorean Theorem and the Pythagorean Identity are not the
same. However, the periodicity of sin() and cos() permits the reduction of any angle to the range
of [0,2π]. Then, the angle can further be reduced to [0,π/2] due to symmetry and the Pythagorean
Theorem and Pythagorean Identity become the same. Because the Pythagorean Theorem and the
Pythagorean Identity are equivalent, meaning each one implies the other, we shall only use the
Pythagorean Identity in this note.

Now we have set the tone and what we need to do is finishing the remaining work. The main
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theme of this note is proving the Pythagorean Identity without using the Pythagorean Theorem or
Pythagorean Identity. In other words, we shall build up some tools, each of which is independent
of the Pythagorean Identity and the Pythagorean Theorem. As a result, proofs only using these
tools are independent of the Pythagorean Identity and the Pythagorean Theorem.

The first step is reminding you that the form of the Law of Cosine stated in Euclid’s The Ele-
ments used lengths and areas because trigonometry was not available in Euclid’s era. However, it is
extremely easy to convert the original form to using cos(), a form we are used to today (Section 2).
Therefore, Euclid could be the first person to prove the Pythagorean Theorem using trigonome-
try. Next, we shall prove that the angle difference and angle sum identities are independent of the
Pythagorean Identity and the Pythagorean Identity (Section 3 and Section 4). An almost trivial
trigonometric proof is shown in Section 3. From the angle difference identities, the first trigono-
metric proof of this note is shown. This proof appeared in a 1899 book by Schur [8]. From the
angle sum identities, we have another trigonometric proof, which appeared in a 1914 book by
Versluys [12]. Therefore, trigonometric proofs appeared more than 100 years earlier than Jackson-
Johnson’s proof in 2023! Schur’s work is worth mentioning. If you remember coordinate rotation
in analytic geometry or calculus, then Schur simply correlated coordinate rotation formulation with
the angle sum and angle difference identities (Section 5). Because the angle sum identities are in-
dependent of the Pythagorean Identity, so do the double angle identities (Section 6).

The next few sections will employ calculus. First, Section 7 shows that the sum-to-product
and product-to-sum identities are independent of the Pythagorean Identity and the Pythagorean
Theorem, from which we are able to prove that cos() and sin() are continuous (Section 8) and the
limit of sin(x)/x is 1 as x approaches 0 (Section 9). We finally prove that computing the derivatives
of sin() and cos() is independent of Pythagorean Theorem and the Pythagorean Identity.

This note offers four more trigonometric proofs of the Pythagorean Identity. This author does
not claim the originality of these proofs because similar ideas have been floating around on the
web and elsewhere. However, these proofs used mechanisms that may require some form of the
Pythagorean Identity or Pythagorean Theorem, which means it could lead to circular reasoning.
Because we have carefully established that the needed tools are all independent of the Pythagorean
Identity and the Pythagorean Theorem, we just make the proofs correct. Four sections are dedicated
to this purpose: (1) L’Hôpital’s Rule is used to prove the Pythagorean Identity (Section 11); (2)
the function f (x) = sin2(x)+ cos2(x) is a constant function because its derivate is 0 everywhere
(Section 12); (3) find the power series of sin2(x) and cos2(x) and add them together (Section 13);
and (4) use the Euler’s formula (Section 14). Please note that the power series approach uses
Taylor series, which in turn requires the derivatives of sin(x) and cos(x). Note also that indefinite
integration is independent of the Pythagorean Identity and the Pythagorean Theorem. Therefore,
computing the series of sin2(x) and cos2(x) is also independent of the Pythagorean Identity and the
Pythagorean Theorem. To use Euler’s formula, we have to show that the complex functions sin(z),
cos(z) and exp(z) are independent of the Pythagorean Identity and the Pythagorean Theorem.

There are multiple ways of defining exp(z) on the complex plane, ranging from the solution to
a differential equation, power series, the limit of a sequence, etc. We also need the definitions of
complex sin(z) and cos(z) and show that they agree with their real counterparts, and are indepen-
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dent of the Pythagorean Theorem and the Pythagorean Theorem. One can find answers to these
questions in a good complex analysis book. Although Euler’s formula offers a simple way to prove
the Pythagorean Identity, it is a long way to go from the beginning to this point. Check a good
complex analysis textbook book for the details. Finally, Section 15 has our conclusions.

2 Who First Proved the Pythagorean Theorem Using Trigonometry?

Euclid’s The Elements (circa. 300 BC) includes a form of the Law of Cosines; however, due to
the fact that trigonometry was not available to Euclid, The Elements uses the areas of rectangles
instead of cos(). Euclid and his contemporaries expressed measures using lengths and areas. In
Heath’s translation [2, pp. 48–49] or [3, pp. 403–406] we find two propositions, Proposition 12
and Proposition 13. Proposition 12 is for obtuse triangles:

In obtuse-angled triangles the square on the side subtending the obtuse angle is greater
than the squares on the sides containing the obtuse angle by twice the rectangle con-
tained by one of the sides about the obtuse angle, namely that on which the perpendic-
ular falls, and the straight line cut off outside by the perpendicular towards the obtuse
angle [3, pp. 403–404].

Proposition 13 is for acute triangles:

In acute-angled triangles the square on the side subtending the acute angle is less than
the squares on the sides containing the acute angle by twice the rectangle contained by
one of the sides about the acute angle, namely that on which the perpendicular falls,
and the straight line cut off outside by the perpendicular towards the acute angle [3,
p. 406].

The main difference between the two cases is the greater than in the former and the less than
in the latter. Figure 3 illustrates what these two propositions state. From each vertex drop a per-
pendicular to its opposite side (i.e., altitude). This line cuts the square on the opposite side into two
rectangles. If all angles are acute, each of the three squares are divided into two smaller rectangles
both being subsets of the containing one (Figure 3(a)). Furthermore, the two rectangles sharing a
common (triangle) vertex have the same area. If the triangle has an obtuse angle (Figure 3(b)), the
situation is different. In this case, the perpendicular from a vertex whose angle is not obtuse to its
opposite side is outside of the triangle, and the division of the square on the opposite side is also
outside of the square. The rectangles sharing a common vertex still have the same area. Each of
these two rectangles has one side the same as the square and the opposite vertex of this rectangle
is the perpendicular foot from a triangle vertex to the far side of the rectangle.

Consider the acute angle 6 A case first. From each vertex drop a perpendicular to its opposite
side. Each perpendicular meets the opposite side of the vertex and the far side of the square (Fig-
ure 4). For example, the perpendicular from A to its opposite side

←→
BC meets it at D and the opposite

side of the square on BC at DA. Do the same for B and C.
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(a) The Acute Angle Case (b) The Obtuse Angle Case

Figure 3: Proposition 12 and Proposition 13 in Euclid’s The Elements

(a) (b) (c)

Figure 4: Acute Angle: Three Pairs of Scissors

Each vertex has a pair of scissors of triangles. These two triangles share the same vertex of the
triangle and have one edge from each of its two adjacent squares. The two triangles in each pair are
congruent with each other. For example, for the scissors at B (Figure 4(a)), 6 CBBC of4CBBC and
6 BABA of 4BABA is the sum of 6 B and 90◦. Because we have 6 CBBC = 6 BABA, BBC = AB = c
and BC = BBA = a,4BBC and4ABBA are congruent and have the same area.

Because triangles 4ABBA and 4DBBA have the same base a and the same altitude BD, they
have the same area, and Area(4ABBA) =

1
2 Area(DBBADA). Similarly, we have Area(4CBBC) =

1
2 Area(FBBCFC). Hence, we have Area(DBBADA) = Area(FBBCFC). Applying the same tech-
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nique to vertex C (Figure 4(b)) and to vertex A (Figure 4(c)) yields the following:

Area(DBBADA) = Area(FBBCFC)

Area(CDDACA) = Area(CEEBCB)

Area(AFFCAC) = Area(AEEBAB)

Then, the desired result is almost there:

a2 = Area(BCCABA)

= Area(DBBADA)+Area(CDDACA)

= Area(FBBCFC)+Area(CEEBFB)

=
(
c2−Area(AFFCAC)

)
+
(
b2−Area(AEEBAB)

)
= b2 + c2− (Area(AFFCAC)+Area(AEEBAB))

= b2 + c2−2 ·Area(AFFCAC)

or b2 + c2−2 ·Area(AEEBAB) (1)

This is what Proposition 13 states.
We next turn to the obtuse case (i.e., Proposition 12) (Figure 5). There is a pair of scissors at

each vertex and the angles are the sum of the angle at that vertex and 90◦. Hence, we still have

a2 = Area(BCCABA)

= Area(BDDABA)+Area(CDDACA)

= Area(FBBCFC)+Area(CEEBCB)

=
(
c2 +Area(AFFCAC)

)
+
(
b2 +Area(AEEBAB)

)
= b2 + c2 +(Area(AFFCAC)+Area(AEEBAB))

= b2 + c2 +2 ·Area(AFFCAC)

or b2 + c2 +2 ·Area(AEEBAB) (2)

This proves the obtuse angle case (Proposition 12).
Let us introduce trigonometry into these two identities. In Figure 4(a), we have AE = c ·cos(A)

and AF = b · cos(A) and the following holds:

Area(AFFCAC) = AAC ·AF

= c ·AF

= b · c · cos(A)

Area(AEEBAB) = AAB ·AE

= b ·AE

= b · c · cos(A)
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(a) (b) (c)

Figure 5: Obtuse Angle: Three Pairs of Scissors

Hence, from Eqn (1) we have

a2 = b2 + c2−2 ·Area(AEEBAB) = b2 + c2−2b · c · cos(A)

Again, this is the Law of Cosinese. The same holds for the obtuse angle case; however, the involved
angle is 180◦− 6 A and cos(A) =−cos(180◦−A). For example, in rectangle AFFCAC we have

Area(AFFCAC) = AAC ·AF = c ·AF

From4AFC, we have

AF = b · cos(6 CAF) = b · cos(180◦−A) =−b · cos(A)

Similarly, from4AEB we have AE =−c · cos(A). As a result, the folllowing holds:

Area(AFFCAC) = −b · c · cos(A)

Area(AEEBAB) = −b · c · cos(A)

Plugging these two into Eqn (2) gives us the Law of Cosines. In this way, we proved that Euclid’s
Proposition 12 and Proposition 13 are actually equivalent to the Law of Cosines.

It is obvious that if 6 A = 90◦ we have the Pythagorean Theorem. As a matter of fact, in the Ele-
ments Euclid proved the Pythagorean Theorem with the same mechanism, because if 6 A = 90◦ we
have Area(AFFCAC) = Area(AEEBAB) = 0! Because Euclid’s proof does not use the Pythagorean
Theorem nor the Pythagorean Identity, and we only use the definition of cos() to establish the
Pythagorean Theorem, this is actually the first trigonometric proof of the Pythagorean Theo-
rem. Therefore, Loomis’ claim that the Pythagorean Theorem has no trigonometric proof is false
(Loomis [6, pp. 244-245]).
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3 The Angle Difference Identities

Without loss of generality, we assume 0 < β≤ α < 90◦ in this section because the main focus is a
right triangle. Consider Figure 6. Line

←→
OQ makes an angle of α−β with the x-axis, where OQ = 1.

Let line
←→
OP make an angle of β with

←→
OQ, where P is the perpendicular foot from Q to

←→
OP. Thus,←→

OP makes an angle of α with the x-axis. From P and Q drop perpendiculars to the x-axis meeting
it at S and T . Therefore, we have QT = sin(α−β) and OT = cos(α−β). From 4OPQ we have
PQ = sin(β) and OP = cos(β).

Figure 6: Proof of the Angle Difference Identities

In 4OPS, because sin(α) = PS/PO = PS/cos(β) we have PS = sin(α)cos(β). Similarly, we
have OS = cos(α)cos(β). From Q drop a perpendicular to

←→
PS meeting it at R. Note that 6 P of

4PQR is α. In 4PQR, because sin(α) = QR/QP = QR/sin(β) we have QR = sin(α)sin(β).
Similarly, we have PR = cos(α)sin(β). Consequently, the desired results are as follows:

sin(α−β) = QT = PS−PR = sin(α)cos(β)− cos(α)sin(β)

cos(α−β) = OS+ST = OS+RQ = cos(α)cos(β)+ sin(α)sin(β)

If α = β, we have the following:

1 = cos(0) = cos(α−α) = cos2(α)+ sin2(α)

The Pythagorean Identity can also be proved directly as shown in Figure 7. Construct a right
triangle4ABC with 6 A = α, 6 C = 90◦ and AB = 1. Let the perpendicular foot from C to

←→
AB be D.

Then, it is easy to see AC = cos(α) and BC = sin(α). In the right triangle 4ADC we have AD =
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AC ·cos(α) = cos2(α). Similarly, in the right triangle4CDB we have BD = BC · sin(α) = sin2(α).
Because 1 = AB = AD+BD, we have the Pythagorean Identity sin2(α)+ cos2(α) = 1.

Figure 7: Prove the Pythagorean Identity Directly

4 The Angle Sum Identities

We shall prove the angle sum identities for sin() and cos() based on Zimba’s approach. From O
construct a line

←→
OP that makes an angle of α+ β with the x-axis and OP = 1 (Figure 8). From

O construct a line
←→
OQ that makes an angle α with the x-axis such that Q is the perpendicular foot

from P to
←→
OQ. In this way, the angle between

←→
OP and

←→
OQ is β. Let the perpendicular feet from P

and Q to the x-axis be S and T . From Q construct a perpendicular to
←→
PS meeting it at R. Hence, we

have sin(α+β) = PS, cos(α+β) = OS, sin(β) = PQ and cos(β) = OQ.
From 4OQT , because sin(α) = QT/QO = QT/cos(β) we have QT = sin(α)cos(β). Simi-

larly, we have OT = cos(α)cos(β). From4PQR, because sin(α) = QR/QP = QR/sin(β) we have
QR = sin(α)sin(β). Similarly, we have PR = cos(α)sin(β). Therefore, we have:

sin(α+β) = PR+RS = sin(α)cos(β)+ cos(α)sin(β)

cos(α+β) = OT −ST = cos(α)cos(β)− sin(α)sin(β)

Consequently, the angle sum identities for sin() and cos() are independent of the Pythagorean
Theorem and the Pythagorean Identity.

Versluys [12, p. 98] (1914) (Figure 9) in his collection of 96 proofs of the Pythagorean Theorem
indicated that Schur [8, p. 21–22] (1899) included a proof using the angle sum identity. Let
0 < α < 90◦ be an angle of a right triangle. Then, from the angle sum identity we have

1 = sin(90◦) = sin(α+(90◦−α))

= sin(α)cos(90◦−α)+ cos(α)sin(90◦−α)

= sin2(α)+ cos2(α)
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Figure 8: Proof of the Angle Sum Identities

Thus, we have a trigonometry proof of the Pythagorean Identity and the Pythagorean Theorem.
Note that β = 90◦−α in Figure 8. In this case, S = O and P lies on the line perpendicular to

←→
OT at

O. The resulting configuration is similar to Figure 7 and a similar argument proves the Pythagorean
Identity directly.

5 Schur’s 1899 Proof and Coordinate Rotation

As mentioned in the last section, Schur [8, p. 22] offered a proof of the Pythagorean Identity. His
proof uses the concept of coordinate rotation.

Figure 10 is a modified Figure 8. Let the x- and y- axes of the given coordinate system be
−→
OT

and the line through O and perpendicular to
−→
OT , respectively. Let P be any point whose coordinates

in the given system be (x,y) and OP = r > 0. We have x = OS and y = PS. Suppose this system is
rotated an angle of α so that the new x-axis is

−→
OQ. Let the coordinates of P in the new system be

(x′,y′). Then, x′ = OQ and y′ = PQ. Let the angle between
−→
OP and

−→
OQ be β.

It is easy to find the relation from (x′,y′) to (x,y) as follows:

x = OS = OT −ST = OT −QR = x′ cos(α)− y′ sin(α)

y = PS = PR+RS = PR+QT = y′ cos(α)+ x′ sin(α)

Note that the coordinate rotation expressions going from (x′,y′) to (x,y) is actually the angle sum
identities for cos(α+ β) and sin(α+ β). We just set r to 1 and replace x′ and y′ by cos(β) and
sin(β), respectively, and the angle sum identities follow immediately.
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(a) Cover (b) p. 98

Figure 9: Versluys’ 1914 Book

Going from (x,y) to (x′,y′) requires the use the angle sum identity:

x′ = r cos(β) = r cos((α+β)−α)

= r [cos(α+β)cos(α)+ sin(α+β)sin(α)]

= [r cos(α+β)]cos(α)+ [r sin(α+β)]sin(α)

= xcos(α)+ ysin(α)

y′ = r sin(β) = r sin((α+β)−α)

= r [sin(α+β)cos(α)− cos(α+β)sin(α)]

= [r sin(α+β)]cos(α)− [r cos(α+β)]sin(α)

= ycos(α)− xsin(α)

Because the angle sum identities are independent of the Pythagorean Identity, the coordinate
rotation relations are also independent of the Pythagorean Identity. Schur’s proof uses β = −α in
the angle sum identity of cos() which is essentially the angle difference identity of cos() and is the
same as the one discussed in Zimba [13], while Versluys’ proof [12] uses the angle sum identity of
sin() as discussed in previous section.
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Figure 10: Coordinate Rotation

In summary, there were trigonometric proof of the Pythagorean Identity by Schur [8] (1899)
and Versluys [12] (1914) long time ago before Zimba [13]. It is interesting to point out that
Loomis [6, p. 273] and Zimba [13] both cited Versluys’ book [12], but both missed Versluys’
simple proof and Schur’s book [8] which is cited in Versluys’ book.

6 The Double Angle Identities and the Pythagorean Identity

We now prove sin2(x)+ cos2(x) = 1 using the double angle identities:

sin(2α) = 2sin(α)cos(α)

cos(2α) = cos2(α)− sin2(α)

Because of the following:

sin(x) = 2sin
( x

2

)
cos
( x

2

)
cos(x) = cos2

( x
2

)
− sin2

( x
2

)
we have

sin2(x)+ cos2(x) =
(

sin2
( x

2

)
+ cos2

( x
2

))2
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(a) Cover (b) p. 22

Figure 11: Schur’s 1912 Book

With the same technique, we have:

sin2(x)+ cos2(x) =
(

sin2
( x

2

)
+ cos2

( x
2

))2

=

((
sin2

( x
4

)
+ cos2

( x
4

))2
)2

=
(

sin2
( x

22

)
+ cos2

( x
22

))22

...

=
(

sin2
( x

2n

)
+ cos2

( x
2n

))2n

(3)
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We shall prove the following in Section 11 using L’Hôpital’s Rule:

sin2(x)+ cos2(x) = lim
n→∞

(
sin2

( x
2n

)
+ cos2

( x
2n

))2n

= 1

7 The Sum-to-Product and Product-to-Sum Identities

This section will derives the Sum-to-Product and Product-to-Sum identities to be used later. The
Sum-to-Products are:

sin(α)+ sin(β) = 2sin
(

α+β

2

)
cos
(

α−β

2

)
sin(α)− sin(β) = 2sin

(
α−β

2

)
cos
(

α+β

2

)
cos(α)+ cos(β) = 2sin

(
α+β

2

)
sin
(

α−β

2

)
cos(α)− cos(β) = −2sin

(
α+β

2

)
sin
(

α−β

2

)
The Product-to-Sum identities are:

cos(α)cos(β) =
1
2
[cos(α−β)+ cos(α+β)]

sin(α)cos(β) =
1
2
[sin(α+β)+ sin(α−β)]

sin(α)sin(β) =
1
2
[cos(α−β)− cos(α+β)]

cos(α)sin(β) =
1
2
[sin(α+β)− sin(α−β)]

The angle sum and angle difference identities give the following:

sin(α+β) = sin(α)cos(β)+ cos(α)sin(β)

sin(α−β) = sin(α)cos(β)− cos(α)sin(β)

Subtracting the second from the first yields

sin(α+β)− sin(α−β) = 2cos(α)sin(β)

Therefore, we have one of the Product-to-Sum identities:

cos(α)sin(β) =
1
2
[sin(α+β)− sin(α−β)]
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Let p = α+β and q = α−β. Then, α = (p+q)/2 and β = (p−q)/2. Plugging p and q into
the above identity gives one of the Sum-to-Product identities:

sin(p)− sin(q) = 2cos
(

p+q
2

)
sin
(

p−q
2

)
Other identities can be obtained easily and similarly and the details are omitted.

8 Function cos(x) Is Continuous

Now we shall prove that function cos(x) is continuous and hence limx→0 cos(x) = cos(0) = 1. A
simple result is needed to prove cos(x) being continuous: sin(x) < x. Actually, what we need is
|sin(x)|< |x|. Without loss of generality, we may only assume x > 0 (Figure 12).

Let O be the center of a unit circle and
−→
OA make an angle of x. Let

−→
OA meet the unit circle at

A from which drop a perpendicular to the axis
−→
OC meeting it at B. Then, we have OA = OC = 1,

AB = sin(x) and OB = cos(x). Because AC is the hypotenuse of the right triangle 4ABC with
6 ABC = 90◦, AC > AB = sin(x). However, the arc length between A and C, x =

_
AC is greater than

the chord AC. As a result, x =
_
AC > AC > sin(x) holds.

Figure 12: Proving sin(x)< x and limx→0 sin(x)/x = 1

Then, we shall prove that cos(x) isa continuous function using the ε− δ notation. Given any
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ε > 0, let δ = ε. For a real number a, if |x−a|< δ, then

|cos(x)− cos(a)| =

∣∣∣∣−2sin
(

x+a
2

)
sin
(

x−a
2

)∣∣∣∣= 2 ·1 ·
∣∣∣∣sin

(
x−a

2

)∣∣∣∣
< 2

∣∣∣∣x−a
2

∣∣∣∣= |x−a|< δ = ε

Note that in the above we used the sum-to-product identity of cos(x)−cos(a) and sin((x+a)/2)≤
1. Thus, cos(x) is continuous at x, and limx→a cos(x) = cos(a). Hence, we have limx→0 cos(x) =
cos(0) = 1. By the same line of reasoning, sin(x) is continuous.

9 The Limit of sin(x)
x as x Approaches 0

limx→0 sin(x)/x= 1 can also be proved easily. Consider Figure 12 again. Extend
−→
OA so that it meets

the line through C and perpendicular to
−→
OC at D. In this way, from 4ODC, we have CD = tan(x)

and the area of4ODC is tan(x)/2. The area of4OAB is 1
2 sin(x)cos(x). Furthermore, the area of

the unit circle bounded by O and the arc
_
AC is r2π

( x
2π

)
= x

2 . Hence, we have

1
2

tan(x) =
1
2

sin(x)
cos(x)

>
x
2
>

1
2

sin(x)cos(x)

Dividing all terms by sin(x) yields

1
cos(x)

>
x

sin(x)
> cos(x)

and hence

cos(x)<
sin(x)

x
<

1
cos(x)

Because cos(x) is continuous, limx→0 cos(x) = limx→0
1

cos(x) = 1 holds and limx→0
sin(x)

x = 1 by the
Squeeze Theorem.

10 d sin(x)
dx and d sin(x)

dx Are Independent of the Pythagorean Theorem

The derivative of sin() is computed as follows:

d sin(x)
dx

= lim
h→0

sin(x+h)− sin(x)
h

= lim
h→0

2cos
(2x+h

2

)
sin
(h

2

)
h

=

[
lim
h→0

cos
(

2x+h
2

)]
·
[

lim
h→0

sin(h/2)
h/2

]
= cos(x)

17



As h→ 0, the first term approaches cos(x) while the second approaches 1. Because cos(x) =
sin(π/2−x), by the Chain Rule we have d cos(x)

dx = d sin(π/2−x)
dx = cos(π/2−x)d(π/2−x)

dx =−cos(π/2−
x) =−sin(x) and computing d sin(x)

dx and d sin(x)
dx is independent of the Pythagorean Theorem and the

Pythagorean Identity.

11 Prove the Pythagorean Identity Using L’Hôpital’s Rule

From Eqn (3), we shall prove the following :

lim
n→∞

[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= 1

The left-hand side of the above can be rewritten as[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= exp
(

2n ln
(

sin2
( x

2n

)
+ cos2

( x
2n

)))
= exp

(
ln
(
sin2 ( x

2n

)
+ cos2

( x
2n

))
1
2n

)

For convenience, let h = 1/2n. Therefore, as n→ ∞, h→ 0 and the above becomes[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= exp
(

ln(sin2(xh)+ cos2(xh))
h

)
As h→ 0, the numerator approaches ln(sin2(0)+ cos2(0)) = ln(1) = 0 and the denominator ap-
proaches 0. As a result, we have an indefinite form of 0/0 and L’Hôpital’s Rule is needed to
compute the limit. The derivative of ln(sin2(xh)+ cos2(xh)) with respect to h is

d(ln(sin2(xh)+ cos2(xh)))
dh

=
1

sin2(xh)+ cos2(xh)
d(sin2(xh)+ cos2(xh))

dh

=
1

sin2(xh)+ cos2(xh)
(2sin(xh)cos(xh)x+2cos(xh)(−sin(xh))x)

= 0

The derivative of the denominator is 1. As a result, we have

lim
n→∞

[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= exp(0) = 1

Consequently, sin2(x)+ cos2(x) = 1 holds.
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12 f (x) = sin2(x)+ cos2(x) Is a Constant Function

Let function f (x) be defined as follows:

f (x) = sin2(x)+ cos2(x)

Differentiating this function yields:

d f (x)
dx

=
d(sin2(x)+ cos2(x))

dx
= 2sin(x)cos(x)+2cos(x)(−sin(x)) = 0

Therefore, f (x) is a constant function for some c:

f (x) = sin2(x)+ cos2(x) = c

Because sin(0) = 0 and cos(0) = 1, we have

f (x) = sin2(x)+ cos2(x) = 1

This proves the Pythagorean Identity.

13 Integration and Products of Power Series

We saw in the last section:

d sin2(x)
dx

= 2sin(x)cos(x) and
d cos2(x)

dx
=−2sin(x)cos(x)

The following holds, where C1 and C2 are constants and g(x) is a function to be determined later:

sin2(x) =
∫

2sin(x)cos(x)dx =
∫

sin(2x)dx = g(x)+C1

cos2(x) = −
∫

2sin(x)cos(x)dx =−g(x)+C2

Adding these two together, we have

sin2(x)+ cos2(x) =C

where C is a new constant. Because sin(0) = 0 and cos(0) = 1, C = 1 and the Pythagorean Identity
is proved. This is a way of working the constant function approach discussed in the previous section
backward. Bogomolny [1] shows a similar proof like this one; however, the proof presented here
is for finding the power series of sin2() and cos2().
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What is the function g(x)? More precisely, what are sin2(x) and cos2(x)? We know the sin()
and cos() functions have power series representations as follows:

sin(x) =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
and cos(x) =

∞

∑
n=0

(−1)nx2n

(2n)!

Note that Taylor series expansion does not depend on the Pythagorean Identity and the Pythagorean
Theorem. Therefore, computing sin2(x) and cos2(x) using power series product and adding the
results together should provide another proof of the Pythagorean Identity, even though this can be
rather tedious. Fortunately, using integration we are able to bypass this tedious computation. From
sin2(x) obtained earlier, we have

sin2(x) =
∫

sin(2x)dx =
∫ ∞

∑
n=0

(
(−1)n(2x)2n+1

(2n+1)!

)
dx

=
∞

∑
n=0

(−1)n

(2n+1)!

∫
(2x)2n+1dx =

∞

∑
n=0

(−1)n22n+1

(2n+1)!
· 1
(2n+1)+1

x2(n+1)+1 +C1

=
∞

∑
n=0

(−1)n22n+1

(2n+1)!2(n+1)
x2(n+1)+C1

Because sin(0) = 0, C1 = 0. Similarly, we have cos2(x) as follows:

cos2(x) =−
∞

∑
n=0

(−1)n22n+1

(2n+1)!(2(n+1))
x2(n+1)+C2

Because cos(0) = 1, C2 = 1! Adding sin2(x) and cos2(x) together yields the Pythagorean Identity.

14 Using Euler’s Formula

Euler’s formula is an important topic in a complex analysis course (Howie [4, p. 68]). There are
many ways to derive Euler’s formula. For example, by summing the power series of cos() and
isin(), where i =

√
−1 and z is a complex number, and rearranging terms we have

eiz = cos(z)+ isin(z)

Replacing z by −z in the above yields

e−iz = cos(z)− isin(z)

Then, we have eize−iz = eiz+(−iz) = e0 = 1 and the Pythagorean Identity.
There are multiple ways of defining the complex exp() function, namely: as a power series

expansion, by real functions, as a limit of a sequence, and as the solution of a differential equation.
Moreover, some even define exp() as

ex+iy = ex(cos(y)+ isin(y))
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where x and y are real numbers. To ensure the validity of Euler’s formula in the context of
Pythagorean Identity and Pythagorean Theorem independence, we choose carefully the definitions
of exp(), sin() and cos() and prove the needed results. One may find all the needed answers in a
good complex analysis book. Consequently, just citing Euler’s formula to prove the Pythagorean
Identity requires more work than one may expect and it is a long way to go from the beginning.

Let us look at an example. Given two power series ∑
∞
n=0 cnxn and ∑

∞
n=0 dnxn, their product is(

∞

∑
n=0

cnxn

)
·

(
∞

∑
n=0

dnxn

)
=

∞

∑
n=0

(
n

∑
i=0

ci ·dn−i

)
xn

Define the complex functions exp(), sin() and cos() as usual, where z is a complex number:

ez =
∞

∑
n=0

zn

n!

sin(z) =
∞

∑
n=0

(−1)nz2n+1

(2n+1)!

cos(z) =
∞

∑
n=0

(−1)nz2n

(2n)!

Obviously, they agree with their real counterparts and they are entire functions on the complex
plane. So far, we did not use Pythagorean Identity or Pythagorean Theorem..

Now, we need to prove ez1+z2 = ez1 · ez2 . It is not difficult to do:

ez1 · ez2 =

(
∞

∑
n=0

zn
1

n!

)
·

(
∞

∑
n=0

zn
2

n!

)
=

∞

∑
n=0

(
n

∑
i=0

zi
1

i!
·

zn−i
2

(n− i)!

)

=
∞

∑
i=0

(
n

∑
i=0

1
i!(n− i)!

zi
1zn−i

2

)
=

∞

∑
i=0

1
n!

(
n

∑
i=0

n!
i!(n− i)!

zi
1zn−i

2

)

=
∞

∑
n=0

(z1 + z2)
n

n!
= ez1+z2

Now, Euler’s formula follows easily:

eiz =
∞

∑
n=0

(iz)n

n!

= 1+
iz
1!

+
(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+

(iz)6

6!
+

(iz)7

7!
+

(iz)8

8!
+ · · ·

= 1+ iz− z2

2!
− i

z3

3!
+

z4

4!
+ i

z5

5!
− z6

6!
− i

z7

7!
+

z8

8!
+ · · ·

=

(
1− z2

2!
+

z4

4!
− z6

6!
+

z8

8!
+ · · ·

)
+ i
(

z− z3

3!
+

z5

5!
− z7

7!
+ · · ·

)
= cos(z)+ isin(z)
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Some textbooks may define the complex exp() as

ex+iy = ex(cos(y)+ isin(y))

where x and y are real numbers. It is easy to see the following:

ex+iy = ex · eiy = ex(cos(y)+ isin(y))

Please note that for simplicity, the convergence properties of the power series definitions of
exp(), sin() and cos() are not discussed; however, one can easily find proofs in almost any complex
analysis textbooks. Because the above never refers to the Pythagorean Identity and Pythagorean
Theorem, Euler’s formular is independent of the Pythagorean Identity and Pythagorean Theorem.

15 Conclusions

In this note we have carefully and successfully developed all the needed tools for proving the
Pythagorean Identity without using the Pythagorean Identity and Pythagorean Theorem. We started
with a reminder: Pythagoras could be the first person who proved the Pythagorean Theorem using
trigonometry. He did not because trigonometry was not available to him. However, the statements
and proofs of the Law of Cosine in The Elements are stated using lengths and areas, and the area
of a rectangle can easily be represented with cos().

Then, we proved that the angle difference, angle sum, double angle, sum-to-product and product-
to-sum identities are all independent of the Pythagorean Theorem and the Pythagorean Identity.
These results allow us to prove the Pythagorean Identity without using the Pythagorean Theorem
and the Pythagorean Identity. Along the way, we showed the proofs of Schur [8] (1899) and Ver-
sluys [12] (1914), and an almost trivial proof of the Pythagorean Identity. Moreover, the correlation
between coordinate rotation and the angle difference and angle sum identities is also discussed.

We also showed that functions sin() and cos() being continuous, the limit of sin(x)/x ap-
proching 1 as x approaching 0, and computing the derivatives of sin(x) and cos(x) are all indepen-
dent of the Pythagorean Theorem and Pythagorean Theorem. With the help of calculus, we are
able to offer more proofs for the Pythagorean Identity. They used L’Hôpital’s Rule, the fact that
a continuous function is a constant if its derivative is 0 everywhere, finding the power series of
sin2(x) and cos2(x) and adding them together, and Euler’s formula.

We try to make this note as self-contained and comprehensive enough. Hope this can help clear
up some confusions of proving the Pythagorean Identity without using the Pythagorean Theorem.

Updating History

1. First Complete Draft (April 10, 2025):

• The basic structure is taken from an appendix of [9], which will not be updated and
will be divided into a couple of more uniform notes.
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• Some of the materials here and hence in [9] have been submitted for publication and
are under review.

• To make this note complete, we showed that proving sin(x) and cos(x) being con-
tinuous, the limit of sin(x)/x approaching 1 as x approaching 0 and computing the
derivatives of sin(x) and cos(x) are all independent of the Pythagorean Identity and
Pythagorean Theorem.

• We discussed two proofs of the Pythagorean Identity published in 1899 (Schur [8])
and 1914 (Versluys [12]), both appeared more than 100 years earlier than Jackson-
Johnson’s 2023 proof. These old proofs are simpler and easier to understand.
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