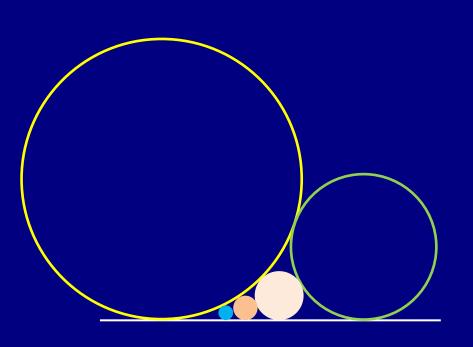
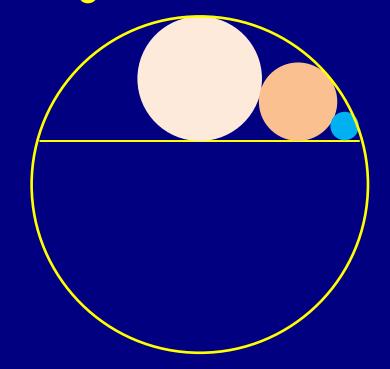
## Seven Japanese Temple Geometry Problems





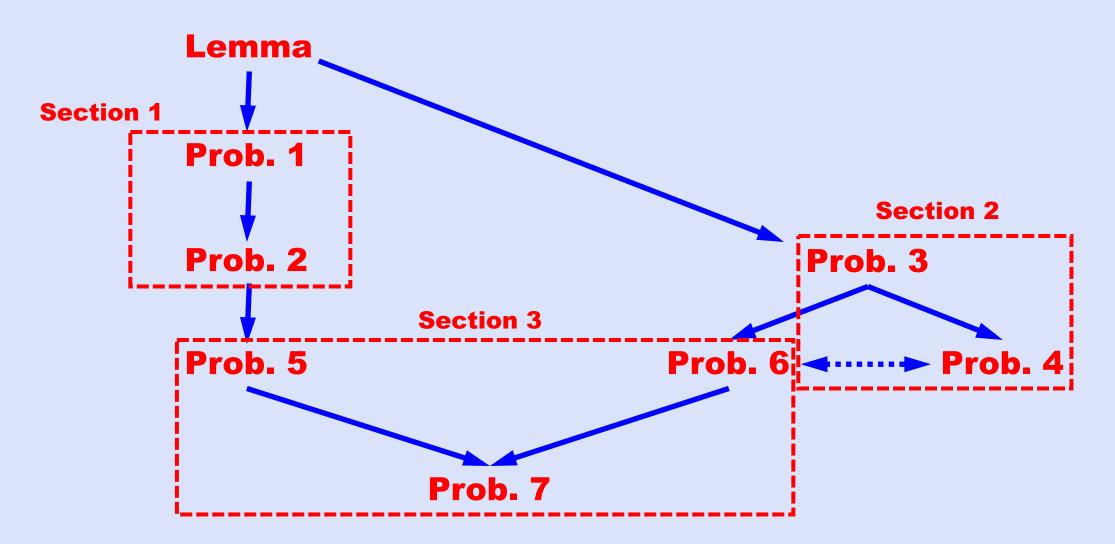
Feeding your children without education, it is the fault of the father;

Teaching your students without rigor, it is the laziness of the teacher.

#### What Will Be Discussed?

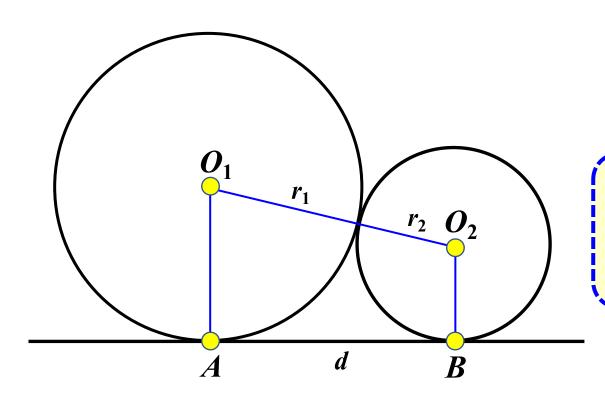
- 1. Seven related *Japanese Temple Geometry* problems will be discussed.
- 2. These problems are divided into three sections.
- 3. Section 1 covers a Lemma and Problem 1 and Problem 2.
- 4. Section 2 covers Problem 3 and Problem 4.
- Section 3, the longest section, discusses Problem
   Problem 6 and Problem 7.
- 6. Except for Problems 5, 6 and Problem 7, all other problems are easy. Problem 5 to Problem 7 require the basic knowledge of parabolas.

#### Dependence Among Problems



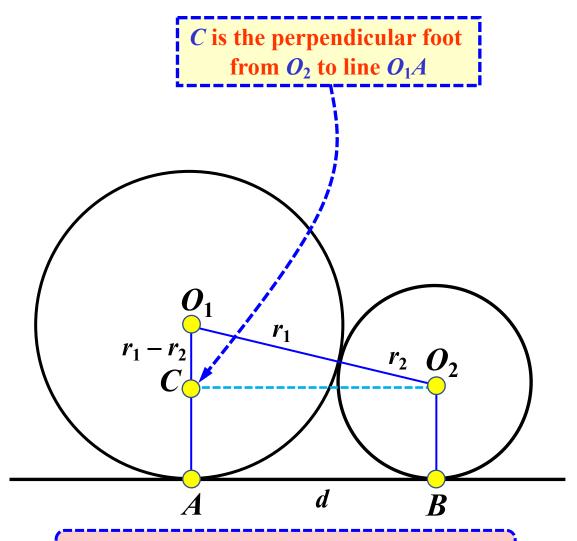
## **Section 1**Lemma and Problems 1 and 2

#### **A Lemma**



Suppose two circles, with centers  $O_1$  and  $O_2$  and radii  $r_1$  and  $r_2$ , are tangent to a line at A and B as shown.

Then, these two circles are **tangent** to each other if and only if the length of segment AB is  $d = 2\sqrt{r_1 \cdot r_2}$ .



C is the perpendicular foot on  $O_1A$  from  $O_2$ 

#### **Proof**

( $\Rightarrow$ ) Suppose the circles are tangent to each other. Then, the length of segment  $O_1O_2$  is  $r_1+r_2$ .

Because of  $\triangle O_1O_2C$  is a right triangle, we have the following:

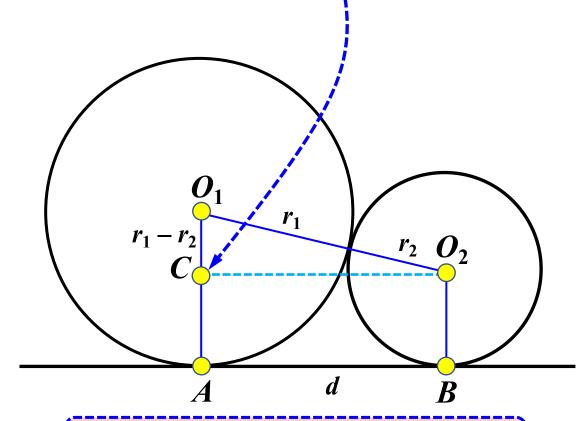
$$d^{2} = (r_{1} + r_{2})^{2} - (r_{1} - r_{2})^{2}$$

$$= ((r_{1} + r_{2}) - (r_{1} - r_{2})) \times ((r_{1} + r_{2}) + (r_{1} - r_{2}))$$

$$= (2r_{2})(2r_{1})$$

$$= 4r_{1}r_{2}$$

#### C is the perpendicular foot from $O_2$ to line $O_1A$



C is the perpendicular foot on  $O_1A$  from  $O_2$ 

#### **Proof**

Conversely, if  $d = 2\sqrt{r_1r_2}$ , we have:

$$(O_1 O_2)^2 = (O_1 C)^2 + d^2$$

$$= (r_1 - r_2)^2 + (2\sqrt{r_1 r_2})^2$$

$$= (r_1^2 - 2r_1 r_2 + r_2^2) + 4r_1 r_2$$

$$= r_1^2 + 2r_1 r_2 + r_2^2$$

$$= (r_1 + r_2)^2$$

Therefore, the two circles are tangent to each other.

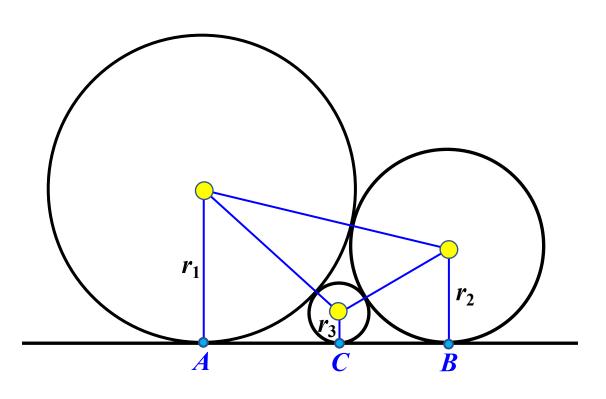
#### Problem 1

# $r_1$ $r_2$

#### Problem 1

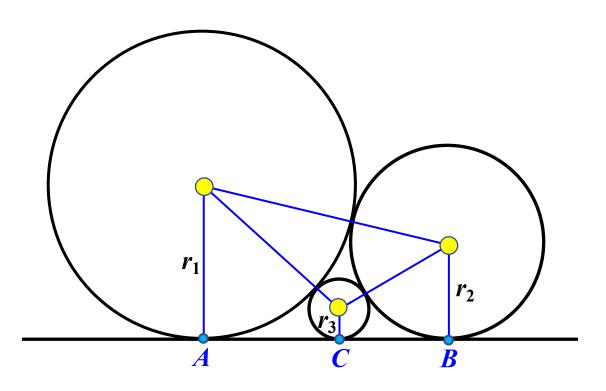
Given three circles of radii  $r_1$ ,  $r_2$  and  $r_3$  as shown on the left, find  $r_3$  in terms of  $r_1$  and  $r_2$ .

## Solution



- Let the tangent points on the common tangent line be A, B and C as shown.
- Because the circles of radius  $r_1$  and  $r_3$  are tangent to each other, the Lemma gives  $\overline{AC} = 2\sqrt{r_1r_3}$ .
- Because the circles of radius  $r_2$  and  $r_3$  are tangent to each other, the Lemma gives  $\overline{BC} = 2\sqrt{r_2r_3}$ .
- Because the circles of radius  $r_1$  and  $r_2$  are tangent to each other, the Lemma gives  $\overline{AB} = 2\sqrt{r_1r_2}$ .

## Solution



- Because  $\overline{AB} = \overline{AC} + \overline{CB}$ , we have  $2\sqrt{r_1r_2} = 2\sqrt{r_1r_3} + 2\sqrt{r_2r_3}$
- Dividing both sides by  $2\sqrt{r_1r_2r_3}$ , we have the desired result:

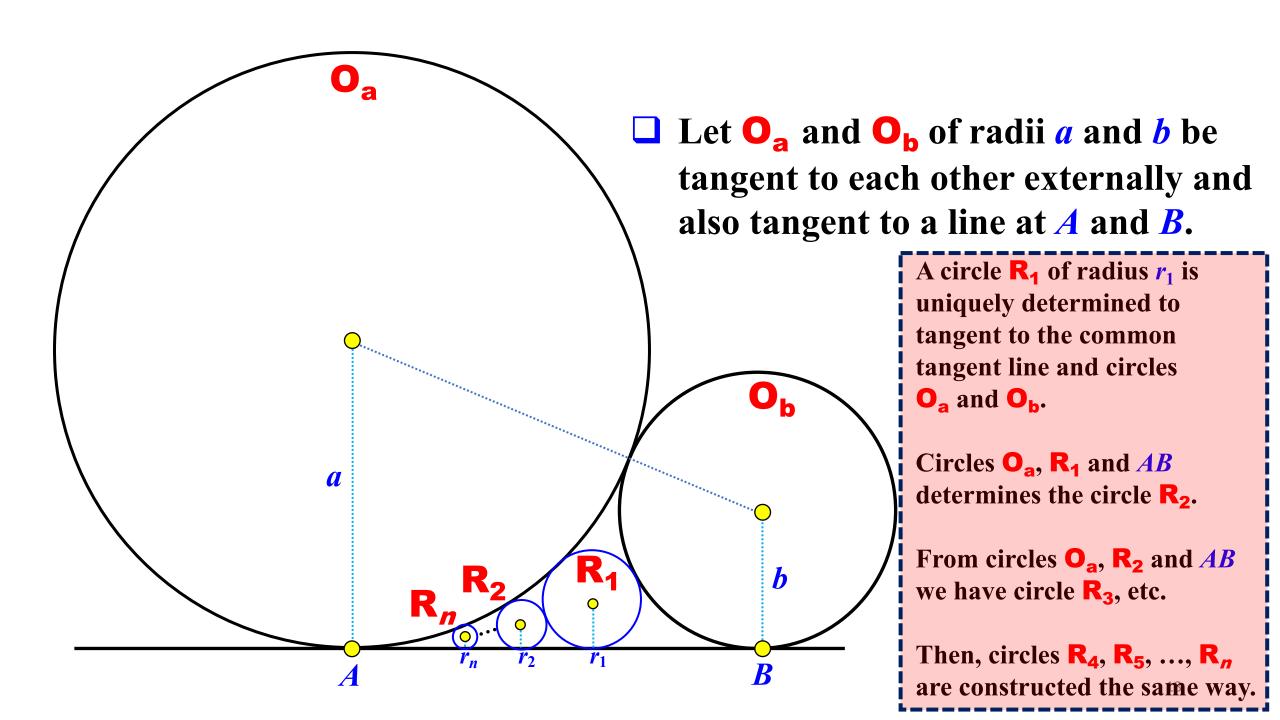
$$\frac{1}{\sqrt{r_3}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}}$$

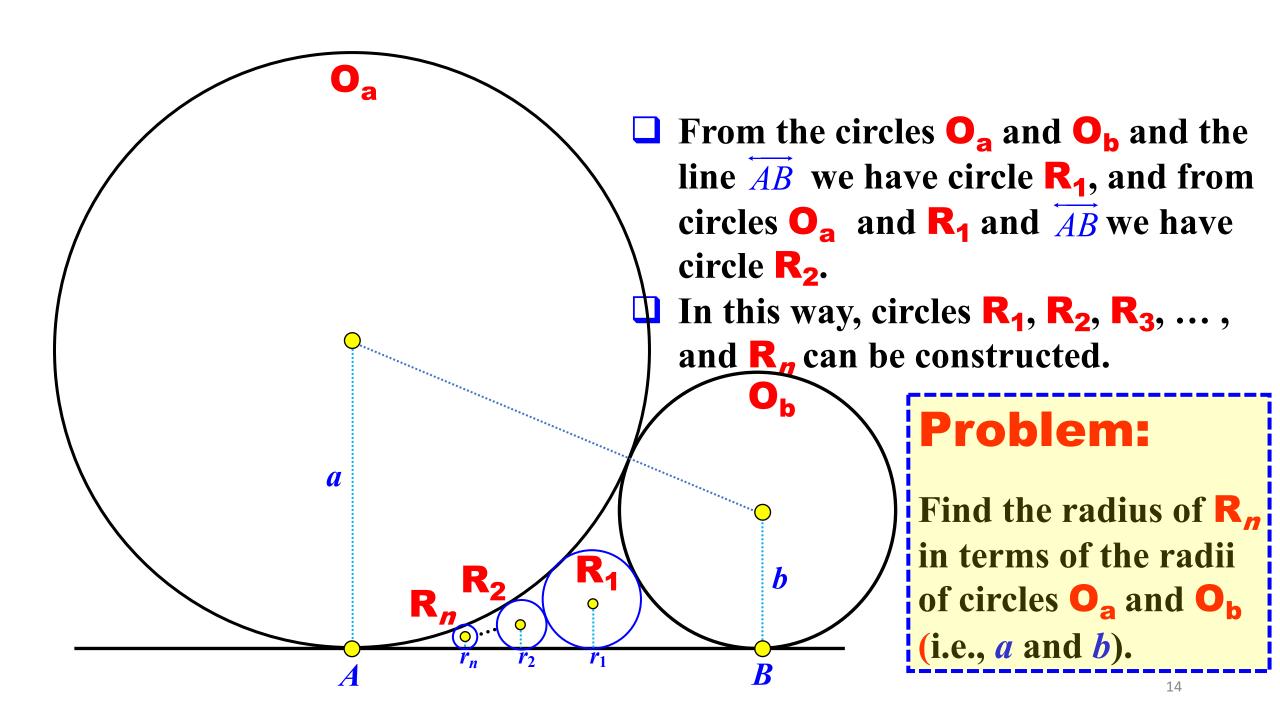
 $\square$  Hence, the radius  $r_3$  of the smallest circle is:

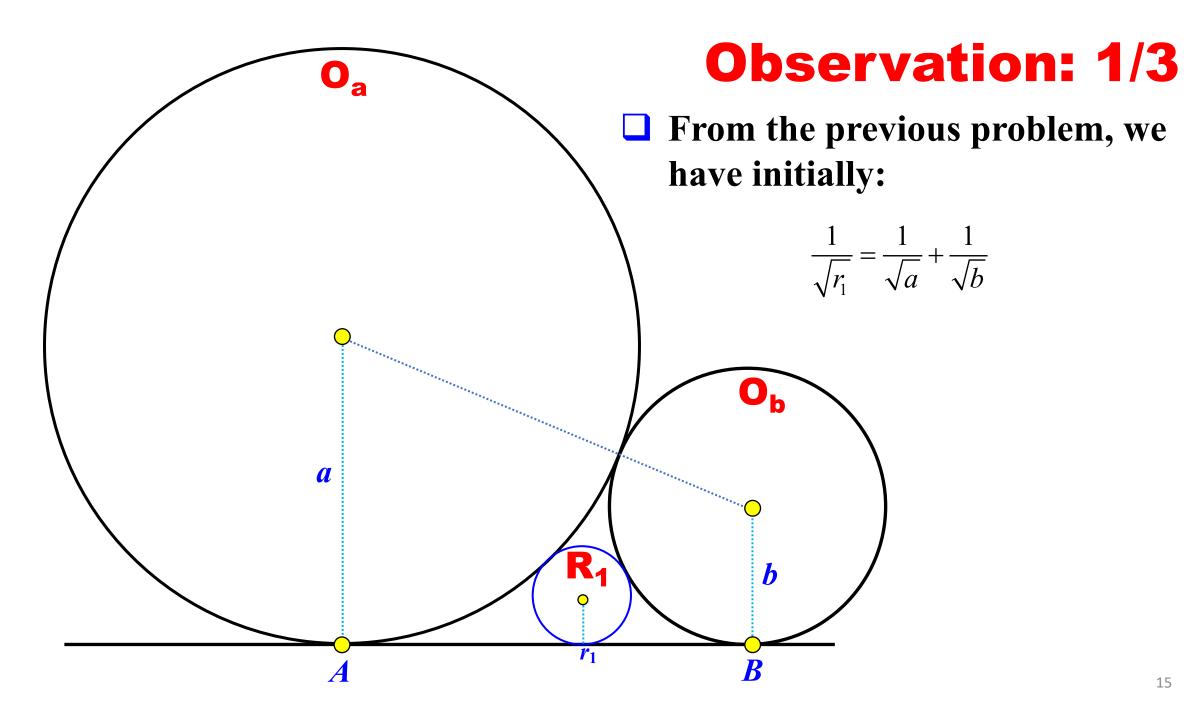
$$\sqrt{r_3} = \frac{\sqrt{r_1 r_2}}{\sqrt{r_1} + \sqrt{r_2}}$$

$$r_3 = \frac{r_1 r_2}{\left(\sqrt{r_1} + \sqrt{r_2}\right)^2}$$

## Problem 2 Extension to Problem 1







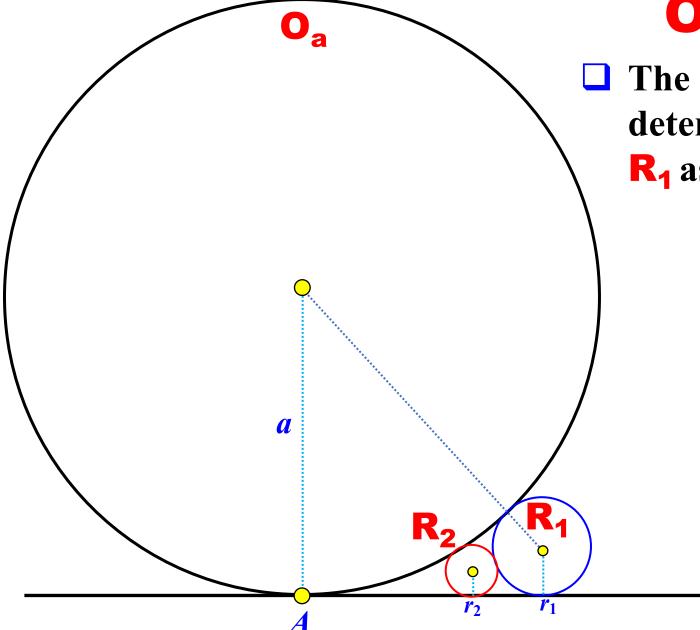
#### **Observation: 2/3**

The second circle  $R_2$  of radius  $r_2$  is determined by circle  $O_a$  and circle  $R_1$  as follows:

$$\frac{1}{\sqrt{r_2}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{r_1}}$$

$$= \frac{1}{\sqrt{a}} + \left(\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}\right)$$

$$= \frac{2}{\sqrt{a}} + \frac{1}{\sqrt{b}}$$



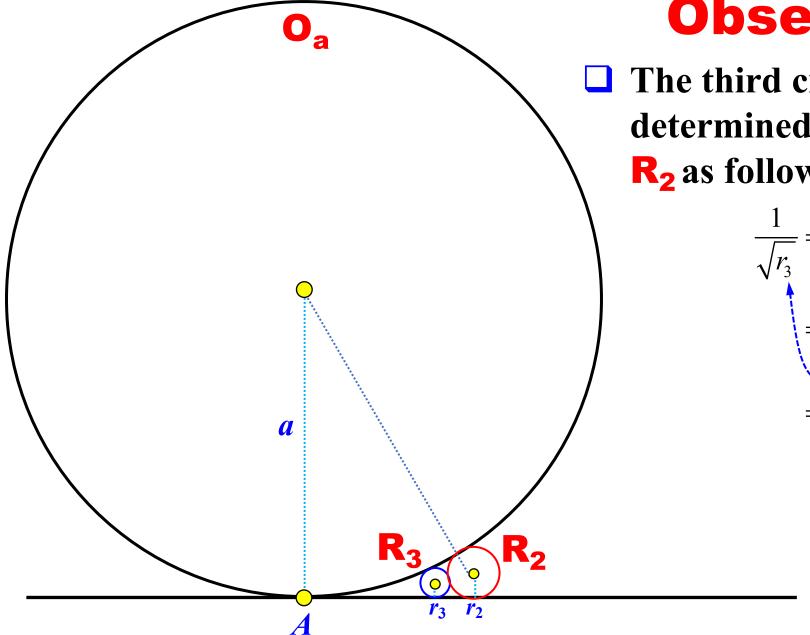
#### **Observation: 3/3**

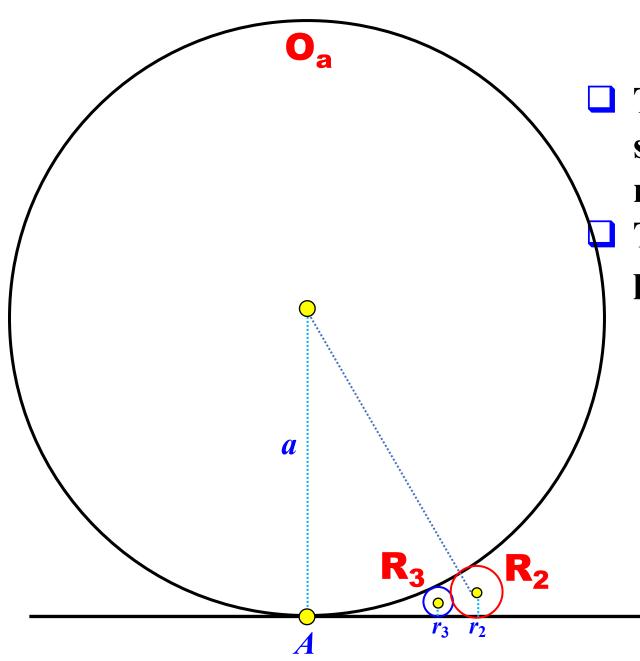
□ The third circle R<sub>3</sub> of radius r<sub>3</sub> is determined by circle O<sub>a</sub> and circle R<sub>2</sub> as follows:

$$\frac{1}{\sqrt{r_3}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{r_2}}$$

$$= \frac{1}{\sqrt{a}} + \left(\frac{2}{\sqrt{a}} + \frac{1}{\sqrt{b}}\right)$$

$$= \frac{3}{\sqrt{a}} + \frac{1}{\sqrt{b}}$$





#### **Proposition**

This observation suggests that the subscript in  $r_n$  is the same as the numerator in the term of  $\sqrt{a}$ .

Therefore, we have the following proposition:

The radius  $r_n$  of circle  $R_n$  is

$$\frac{1}{\sqrt{r_n}} = \frac{n}{\sqrt{a}} + \frac{1}{\sqrt{b}}$$

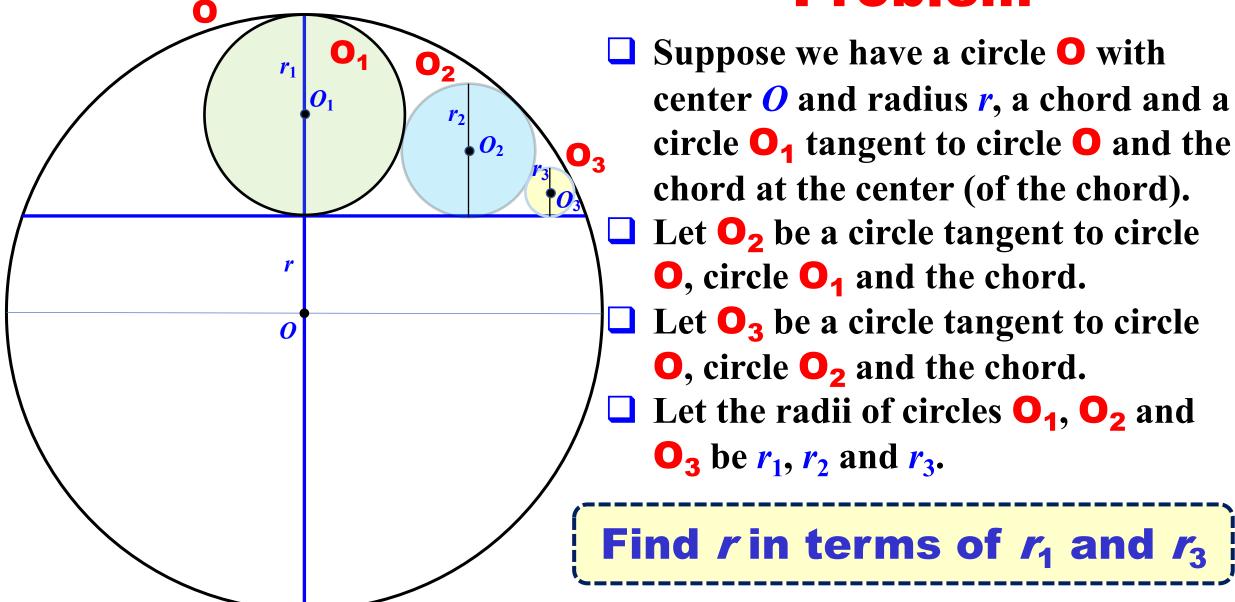
#### **Mathematical Induction** Oa **■** We shall prove this proposition with mathematical induction. ✓ BASE CASE, n = 1: $\frac{1}{\sqrt{r_1}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}$ ✓ Assume that it is true for n: $\frac{1}{\sqrt{r_n}} = \frac{n}{\sqrt{a}} + \frac{1}{\sqrt{b}}$ The radius of $\mathbf{R}_{n+1}$ is $\frac{1}{\sqrt{r_{n+1}}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{r_n}} = \frac{1}{\sqrt{a}} + \left(\frac{n}{\sqrt{a}} + \frac{1}{\sqrt{b}}\right)$

19

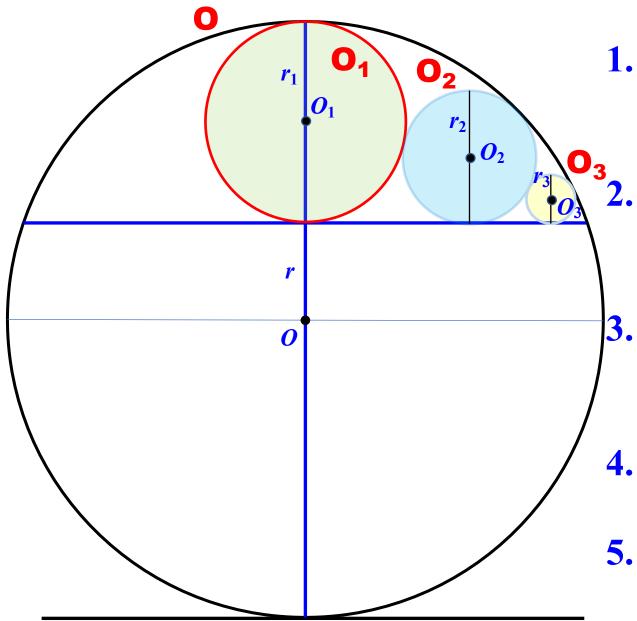
## Section 2 Problem 3 and Problem 4

#### Problem 3

#### **Problem**

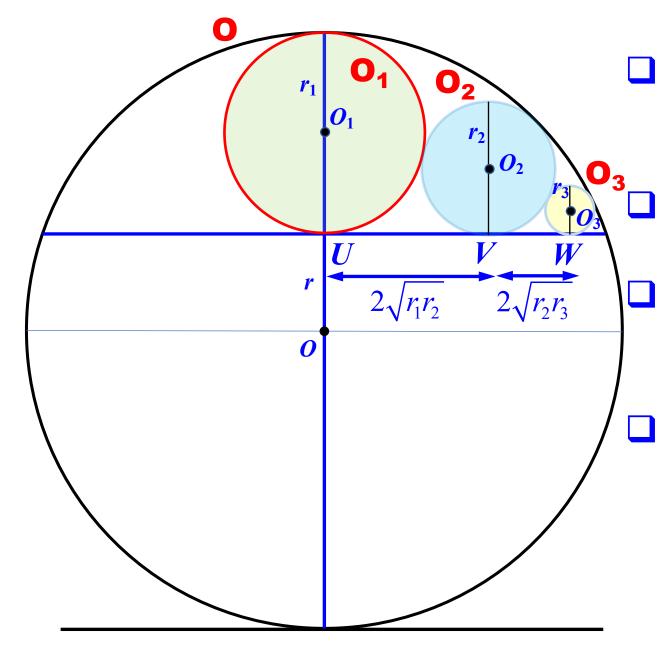


#### **Discussion**



- 1. Circle  $O_1$  and its radius  $r_1$  are uniquely determined by circle  $O_1$  and the given chord.
  - Circle  $O_2$  and its radius  $r_2$  are uniquely determined by circle  $O_4$ , circle  $O_4$  and the given chord.
  - Similarly, circle O<sub>3</sub> and its radius r<sub>3</sub> are uniquely determined by circles O, O<sub>1</sub>, O<sub>2</sub> and the given chord.
- 4. Therefore, circles  $O_1$ ,  $O_2$  and  $O_3$  are closely related.
- 5. As a result, knowing  $O_1$  and  $O_3$  should give  $O_2$ .

#### **Observation**



From each center drop a perpendicular to the given chord meeting the chord at U, V and W.

From the Lemma, the lengths of  $\overline{UV}$  and  $\overline{VW}$  are  $\overline{UV} = 2\sqrt{r_1r_2}$  and  $\overline{VW} = 2\sqrt{r_2r_3}$ 

- Because  $r_1$ ,  $r_2$  and  $r_3$  are functions of r,  $r_2$  could be eliminated from this 4-parameter relationship.
  - In other words, we find the relation among r,  $r_1$  and  $r_2$  and the relation among r,  $r_1$ ,  $r_2$  and  $r_3$ , and then eliminating  $r_2$  yields the result.

## $r-2r_1+r_2$ $r-2r_1$

#### **Part I: 1/2**

- $\square$  Find  $r_2$  in terms of r and  $r_1$ .
  - ✓ Drop a perpendicular from  $O_2$  to the line  $\overline{O_1O}$  meeting it at A.
  - **✓** We have the following:

$$\overline{OA} = (r - 2r_1) + r_2$$

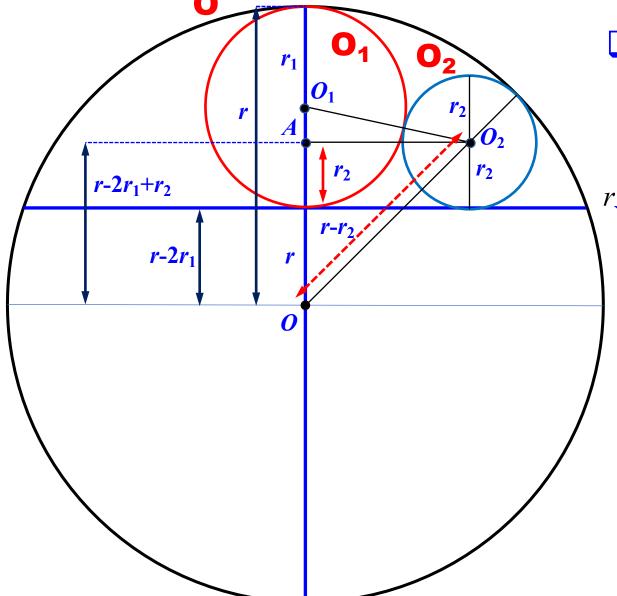
$$\overline{AO_2} = 2\sqrt{r_1r_2}$$

$$\overline{OO_2} = r - r_2$$

✓ Because  $\triangle OAO_2$  is a right triangle, we have the following:

$$\overline{OO_2}^2 = \overline{OA}^2 + \overline{AO_2}^2$$
$$(r - r_2)^2 = (r - 2r_1 + r_2)^2 + (2\sqrt{r_1 r_2})^2$$

#### **Part I: 2/2**



#### $\square$ Find $r_2$ in terms of r and $r_1$ .

**✓** After some calculations, we have:

$$(r-r_2)^2 = (r-2r_1+r_2)^2 + (2\sqrt{r_1r_2})^2$$

$$r^{2} - 2rr_{2} + r_{2}^{2} = \left(r^{2} + 4r_{1}^{2} + r_{2}^{2} - 4rr_{1} + 2rr_{2} - 4r_{1}r_{2}\right) + 4r_{1}r_{2}$$

$$-2rr_2 = 4r_1^2 - 4rr_1 + 2rr_2$$

$$4rr_2 = 4rr_1 - 4r_1^2$$

$$rr_2 = rr_1 - r_1^2$$

$$r_2 = \frac{r_1(r - r_1)}{r}$$

will be used in Problem 4

## r-2 $r_1$ $r-2r_1+r_3$ $2\sqrt{r_1r_2} + 2\sqrt{r_2r_3} = 2\sqrt{r_2}\left(\sqrt{r_1} + \sqrt{r_3}\right)$

#### **Part II: 1/2**

- $\square$  Find  $r_2$  in terms of r,  $r_1$  and  $r_3$ .
  - ✓ The idea is the same as that used in Part I.
  - ✓ Drop a perpendicular from  $O_3$  to the line  $\overline{OO_1}$  meeting it at B.
  - **✓** We have the following:

$$\overline{OB} = (r - 2r_1) + r_3$$

$$\overline{BO_3} = 2\sqrt{r_2} \left(\sqrt{r_1} + \sqrt{r_3}\right)$$

$$\overline{OO_3} = r - r_3$$

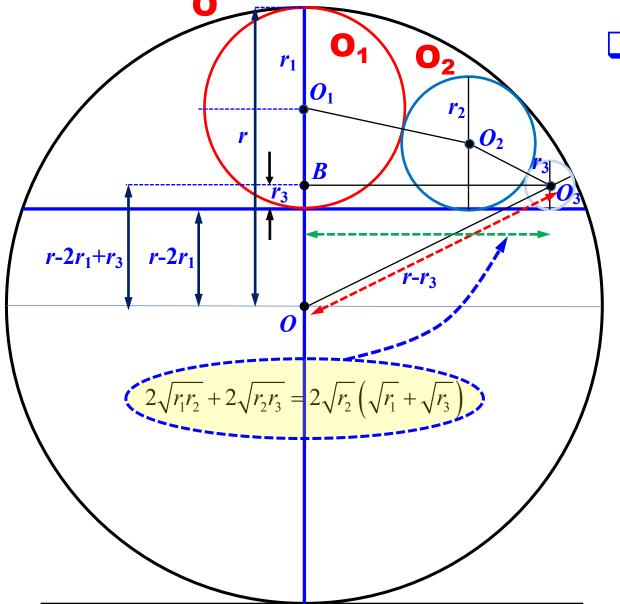
✓ Because  $\triangle OBO_3$  is a right triangle, we have:

$$\overline{OO_3}^2 = \overline{OB}^2 + \overline{BO_3}^2$$

$$(r-r_3)^2 = (r-2r_1+r_3)^2 + \left(2\sqrt{r_2}\left(\sqrt{r_1}+\sqrt{r_3}\right)\right)^2$$

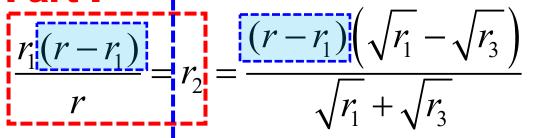
#### **Part II: 2/2**

#### **Part III**



#### $\Box$ Eliminate $r_2$ .

#### Part I



$$\frac{r_1}{r} = \frac{\sqrt{r_1} - \sqrt{r_3}}{\sqrt{r_1} + \sqrt{r_3}}$$

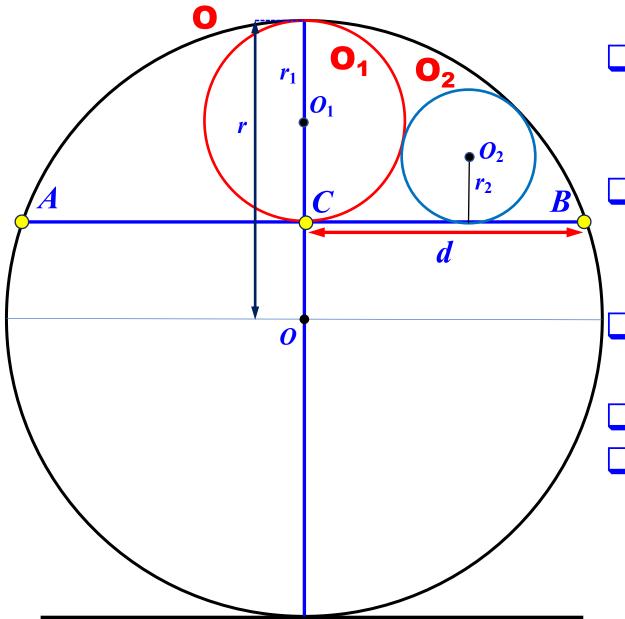
$$r = r_1 \cdot \frac{\sqrt{r_1} + \sqrt{r_3}}{\sqrt{r_1} - \sqrt{r_3}}$$

The final answer

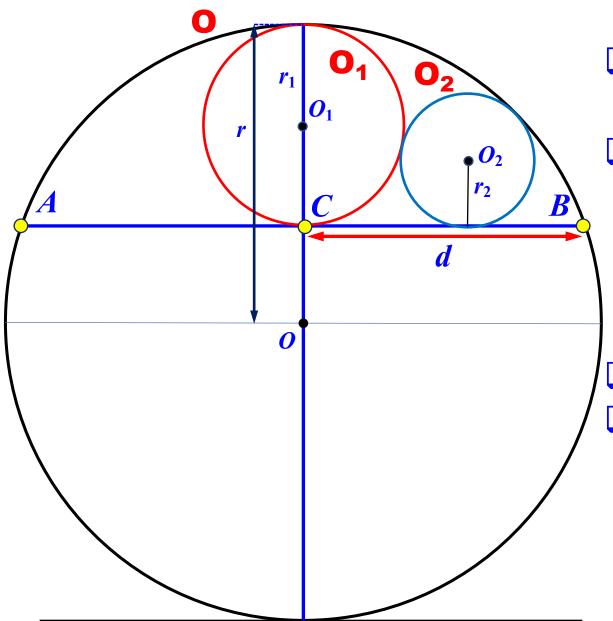
**Part II** 

## Problem 4 A Variation of Problem 3

#### **Problem**



- As in the previous problem, we have a circle  $\bigcirc$  with center  $\bigcirc$  and radius r, and a chord  $\overline{AB}$ .
  - Circle  $O_1$ , with center  $O_1$  and radius  $r_1$ , is tangent to the north pole of  $O_1$  and the midpoint  $C_1$  of  $\overline{AB}_1$ .
  - Circle  $O_2$ , with center  $O_2$  and radius  $r_2$ , is tangent to  $O_1$  and  $\overline{AB}$ .
- $\square$  Let d be the half length of AB.
- Find d in terms of r and  $r_2$ . Note that  $r_1$  is not involved.



#### Solution: 1/2

- ☐ In **Problem 3**,  $r_2$  was used as an intermediate step to find r.
- In this **Problem**,  $r_1$  will be used as an intermediate step. In other words, we find a relation among r,  $r_1$  and  $r_2$ , and a relation among r,  $r_1$  and d.
- $\square$  Then,  $r_1$  is eliminated!
  - From Part I: 1/2 of the last problem, the relation among r,  $r_1$  and  $r_2$  is

$$rr_2 = rr_1 - r_1^2$$

# $r-2r_1$

#### Solution: 2/2

- $\triangle$   $\triangle$   $\triangle$  is a right triangle with  $\triangle$  being 90-deg.
- **☐** Therefore, we have

$$d^{2} = r^{2} - (r - 2r_{1})^{2}$$

$$= (r - (r - 2r_{1}))(r + (r - 2r_{1}))$$

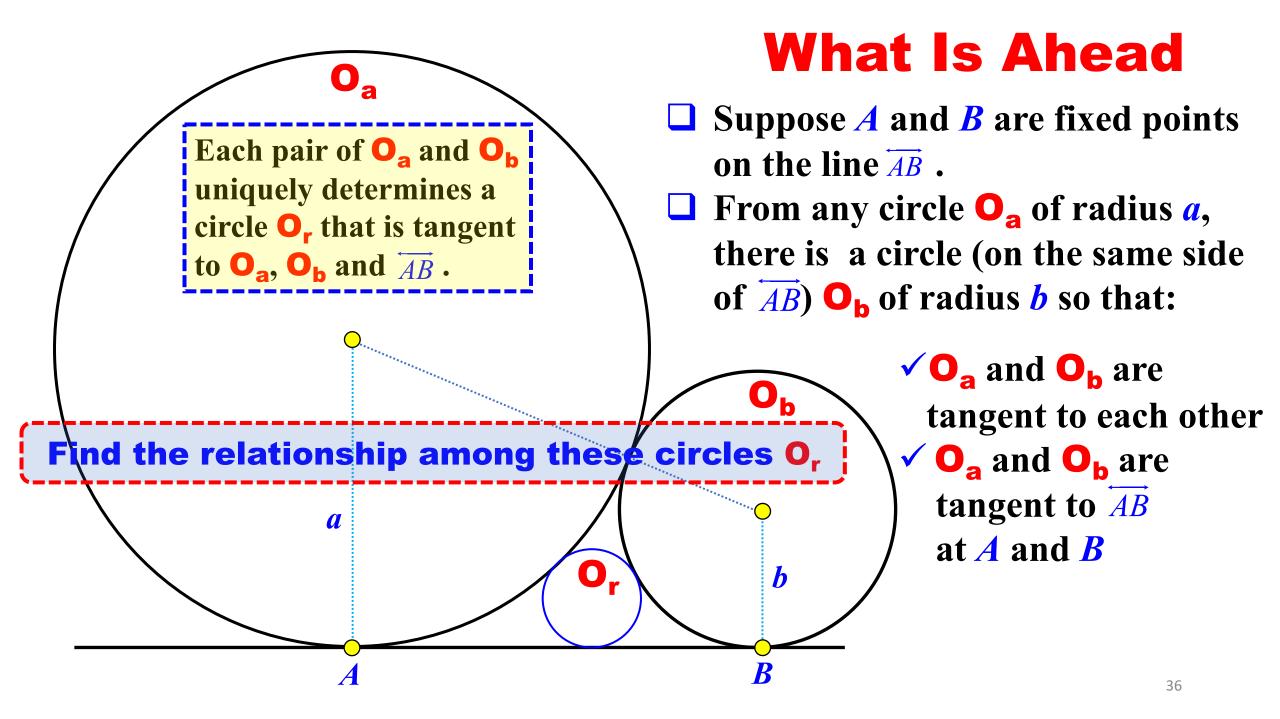
$$= (2r_{1})(2(r - r_{1}))$$
 will be used in Prob 7
$$= 4r_{1}(r - r_{1}) = 4(rr_{1} - r_{1}^{2})$$

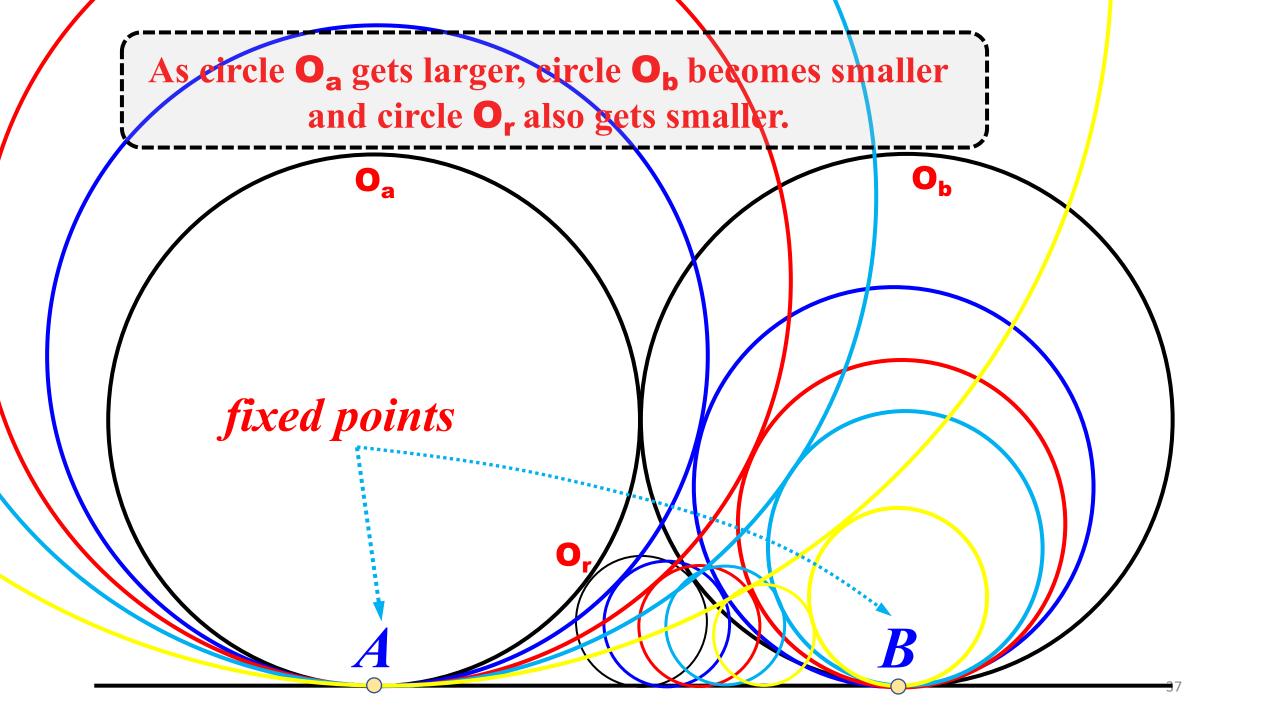
Because of  $rr_2 = rr_1 - r_1^2$ , we have  $d^2 = 4rr_2$  and  $d = 2\sqrt{rr_2}$ . Hence,

$$\overline{AB} = 4\sqrt{rr_2}$$

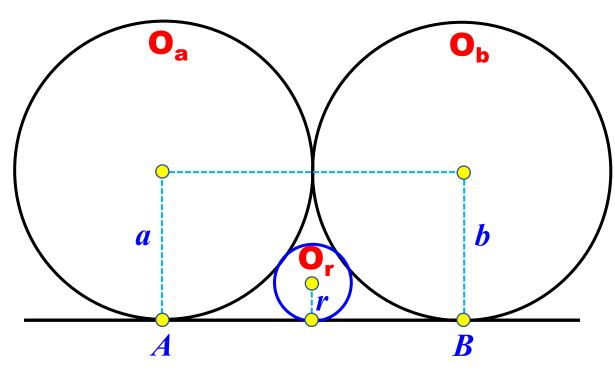
## Section 3 Problems 5, 6 and 7

## Problem 5 A Little Bit More Challenging





## Observation



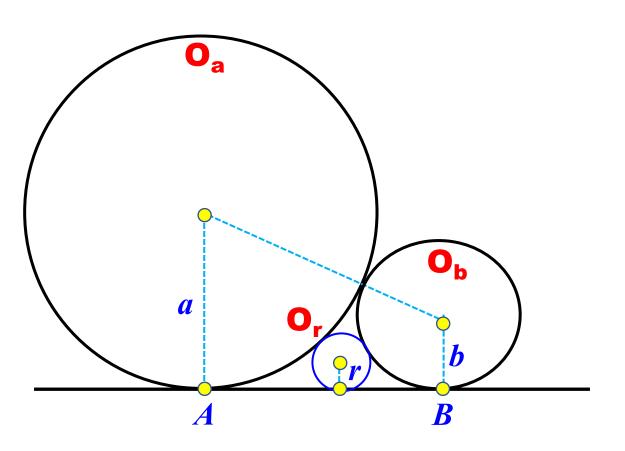
- As circle O<sub>a</sub> grows larger, circle O<sub>b</sub> becomes smaller.
- When circle  $O_a$  becomes extremely large, circle  $O_b$  approaches to a point (i.e., B).
- If O<sub>a</sub> and O<sub>b</sub> have equal radius, O<sub>r</sub> reaches its maximum.
- From Problem 1

$$\frac{1}{\sqrt{r}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} = \frac{2}{\sqrt{a}}$$

we have r as follows:

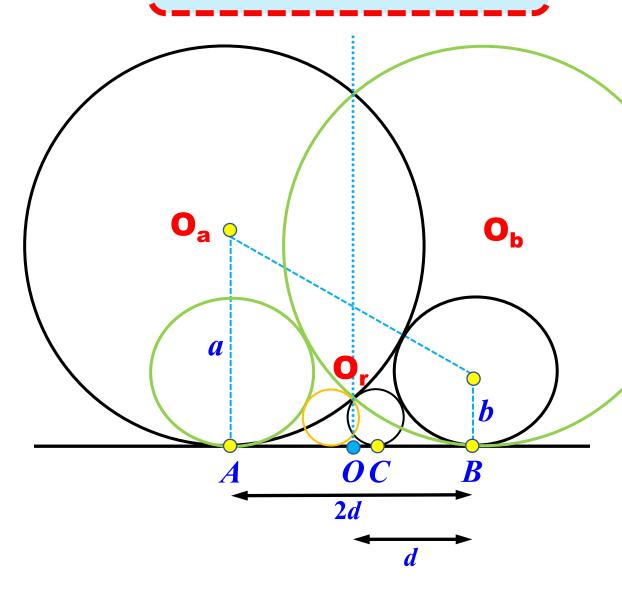
$$r = \frac{a}{4} = \frac{b}{4}$$

## Problem



- $\square$  Each pair of  $\bigcirc_a$  and  $\bigcirc_b$  uniquely determines a circle  $\bigcirc_r$ .
- There is an infinite number of circle pairs  $O_a$  and  $O_b$ , and hence there is an infinite number of circles  $O_r$ .
- $\square$  Note that points  $\underline{A}$  and  $\underline{B}$  are fixed.
- □ If points A and B are fixed, find the relationship among circles O<sub>r</sub>.

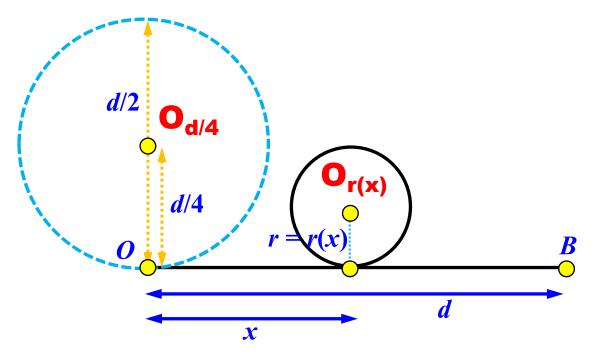
#### Analysis: 1/3



- As circle O<sub>a</sub> gets larger, circle O<sub>b</sub> becomes smaller.
- By the same reason, as circle O<sub>b</sub> gets larger, circle O<sub>a</sub> gets smaller.
- Therefore, the configurations of circles  $O_a$ ,  $O_b$  and  $O_r$  are symmetric about the line that is perpendicular to line  $\overline{AB}$  though the midpoint O of segment  $\overline{AB}$ .
  - For convenience, let the length of segment  $\overline{AB}$  be 2d, and the length of segment  $\overline{OB} = \overline{OA}$  be d.

#### Analysis: 2/3

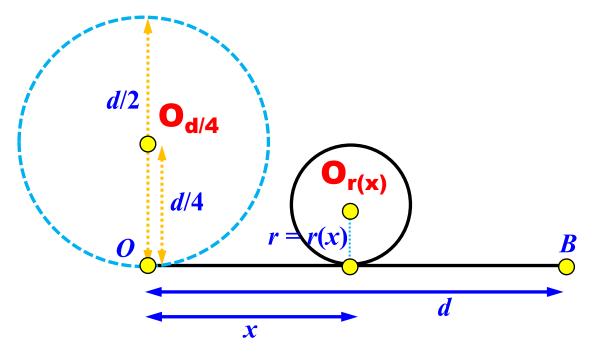
the maximum size of  $O_r$  is r = d/4



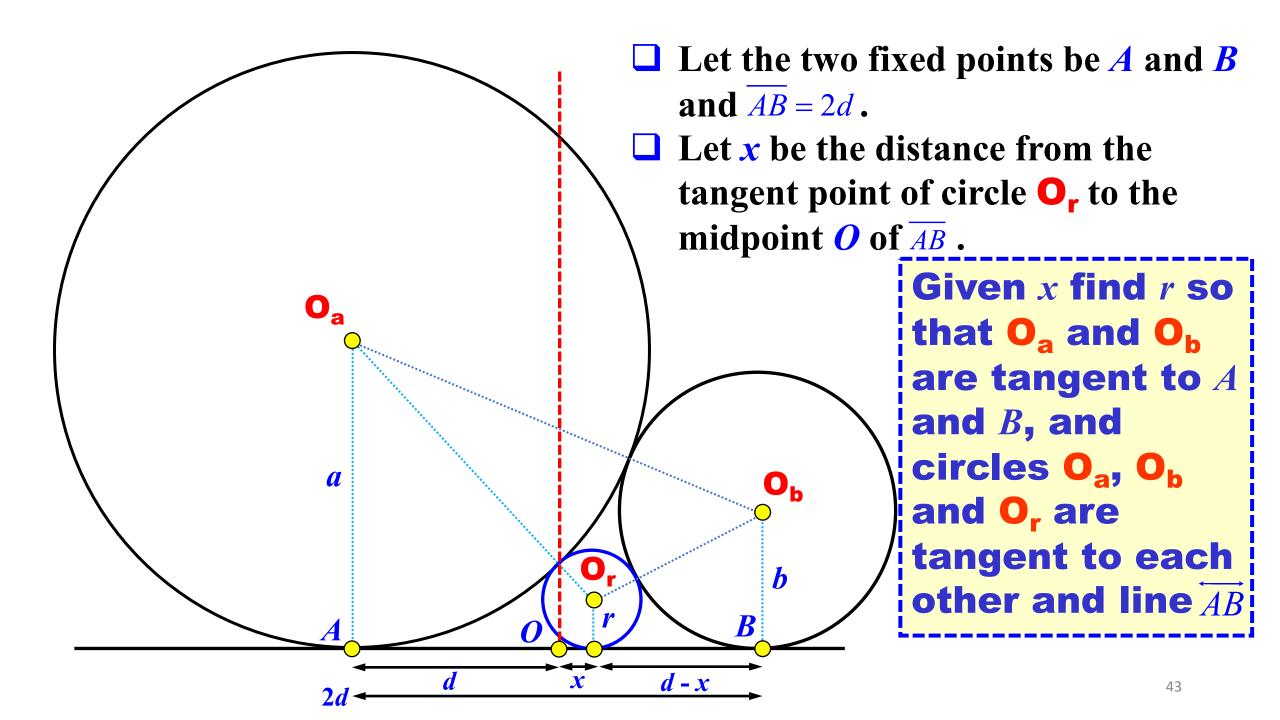
- Because of symmetry, we only study the right half of a configuration.
- Our question: Given a distance x from point O, what is the radius of circle  $O_r$  such that  $O_r$  is tangent to circles  $O_a$  and  $O_b$ ?
- Find r for  $O_r$  such that circles  $O_a$  and  $O_b$  can be found so that  $O_a$ ,  $O_b$  and  $O_r$  are tangent to each other and all tangent to  $\overline{AB}$ .
- What is the locus of the center of circles O<sub>r</sub>?

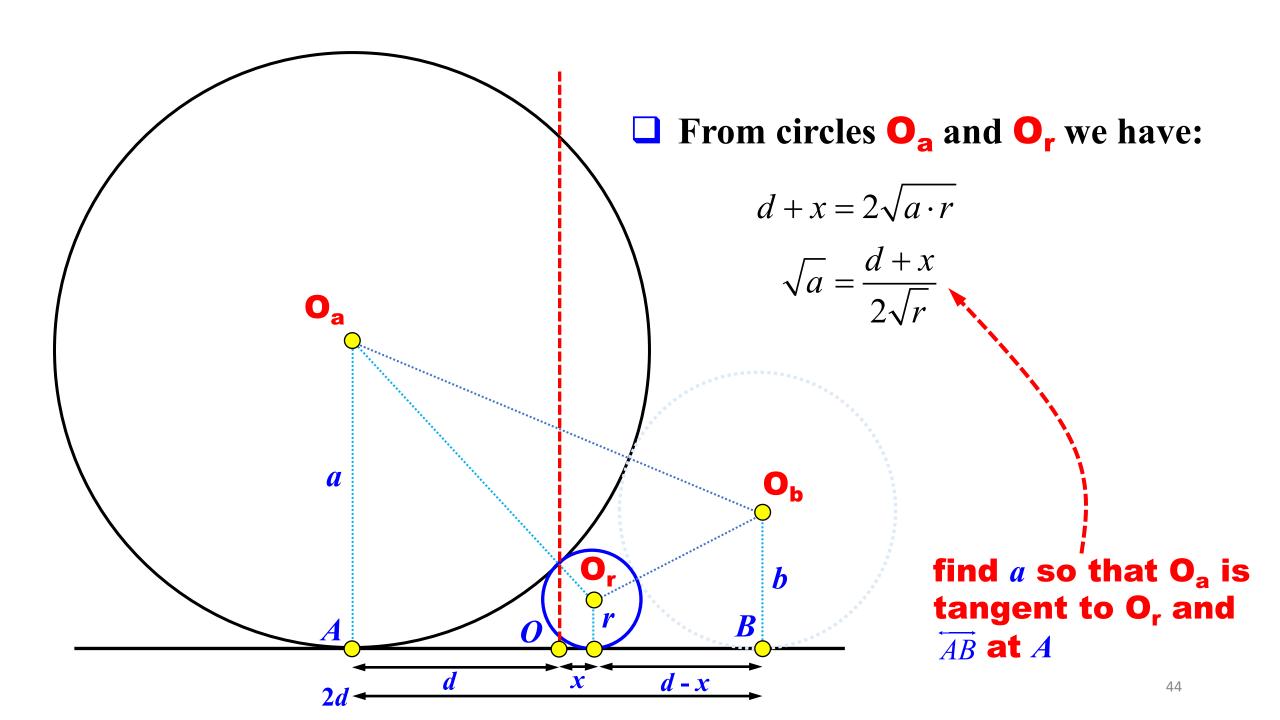
#### Analysis: 3/3

the maximum size of  $O_r$  is r = d/4

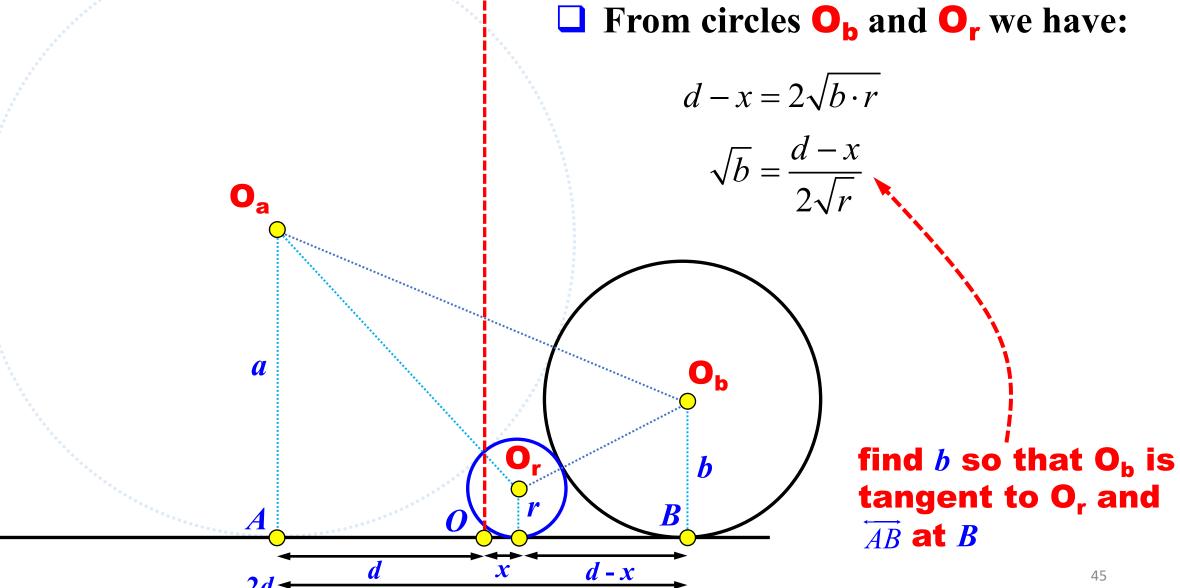


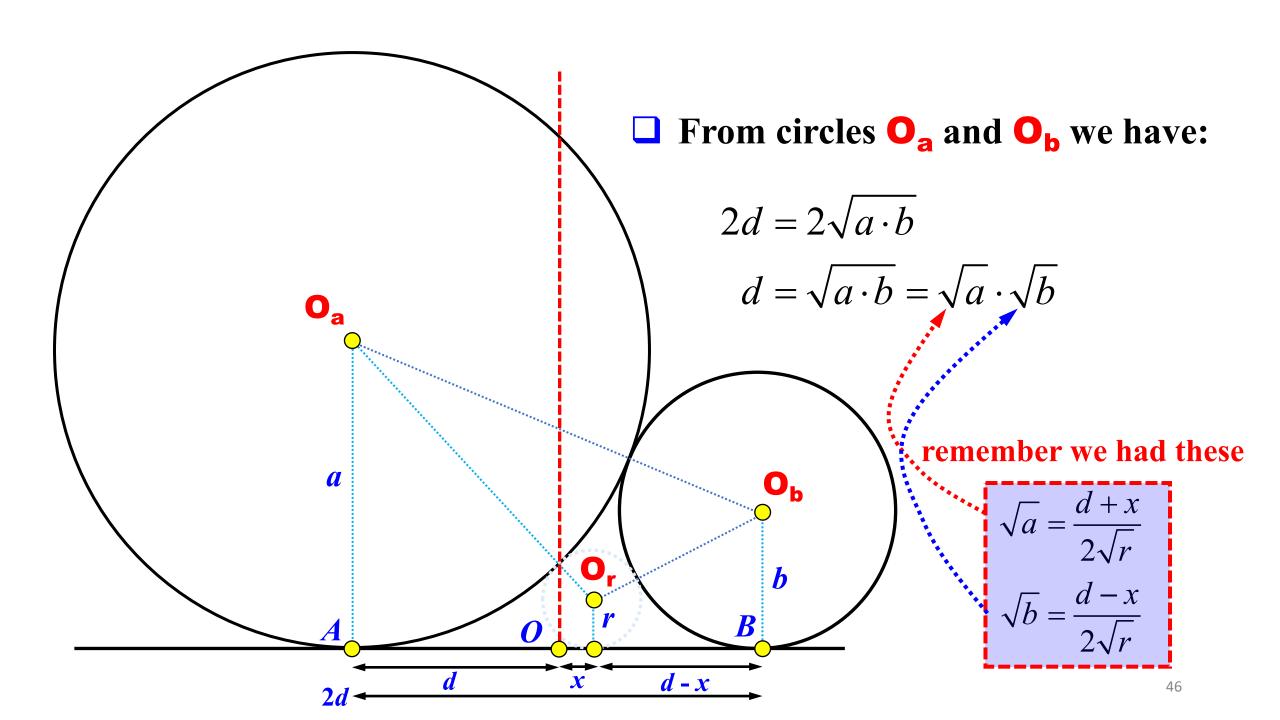
- **■** We will prove the following:
  - ✓ The locus of the center of circle O<sub>r</sub> is a parabola.
  - ✓ All of these O<sub>r</sub> circles are tangent to a common circle.

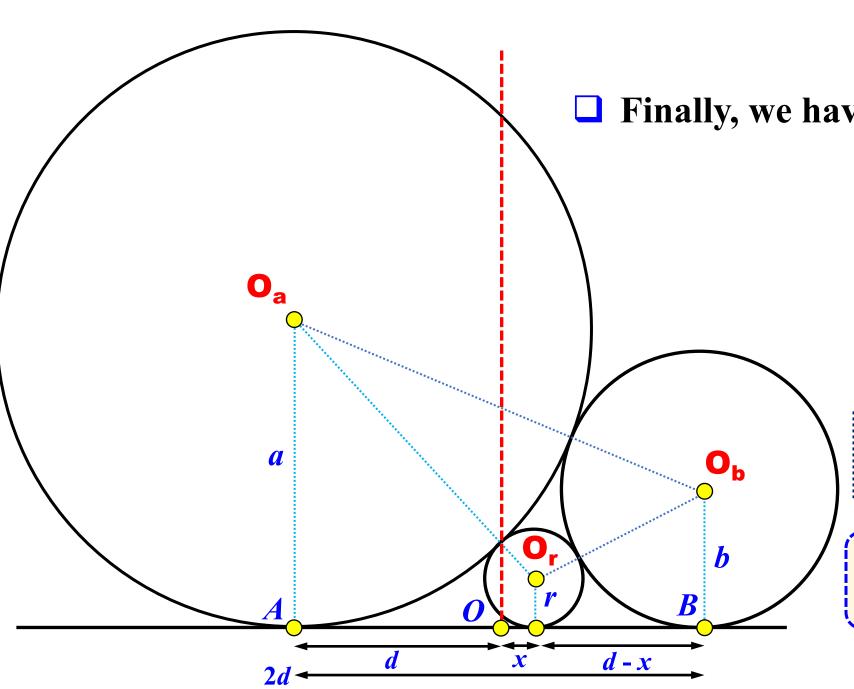




## $\square$ From circles $O_b$ and $O_r$ we have:







Finally, we have the desired result:

$$d = \sqrt{a} \cdot \sqrt{b}$$

$$= \left(\frac{d+x}{2\sqrt{r}}\right) \left(\frac{d-x}{2\sqrt{r}}\right)$$

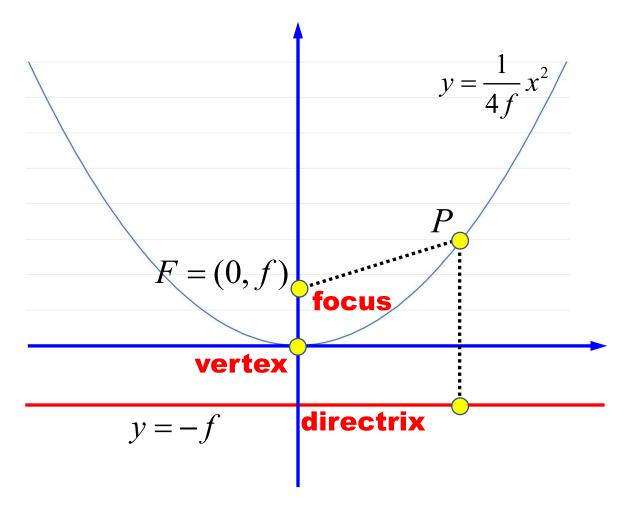
$$= \frac{1}{4r} \left(d^2 - x^2\right)$$
will be used in Figure 1.

<u>will be used</u> in Prob 7

$$r = \frac{1}{4d} \left( d^2 - x^2 \right)$$

this is the *r* so that O<sub>a</sub>, O<sub>b</sub> and O<sub>r</sub> can be found and meet the requirements

#### What is a parabola?



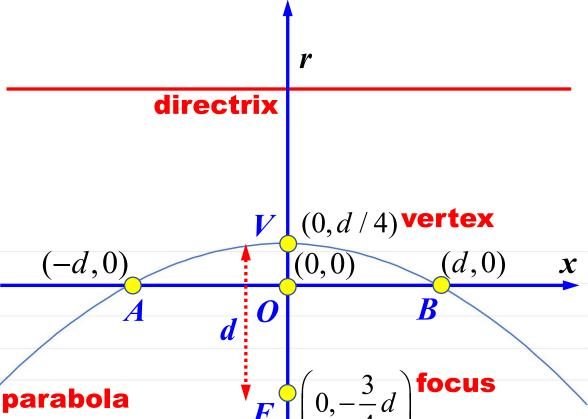
- Recall that the normal/standard form of a parabola in Cartesian coordinates is  $y = \frac{1}{4f}x^2$ .
- $\checkmark$  The point F = (0, f) is the focus
- $\checkmark y = -f$  is the directrix
- $\checkmark$  (0,0) is the vertex
- ✓ If f > 0 (resp., f < 0), the opening of the parabola is UP (resp., DOWN).
  - From any point *P* on the parabola, the distance to the focus and the distance to the directrix are **EQUAL**.

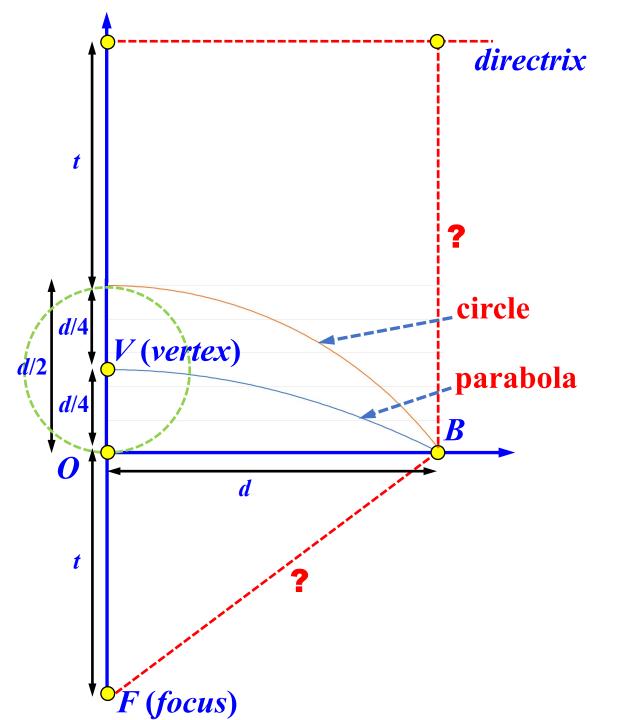
#### What is a parabola?

Recall the following equation:

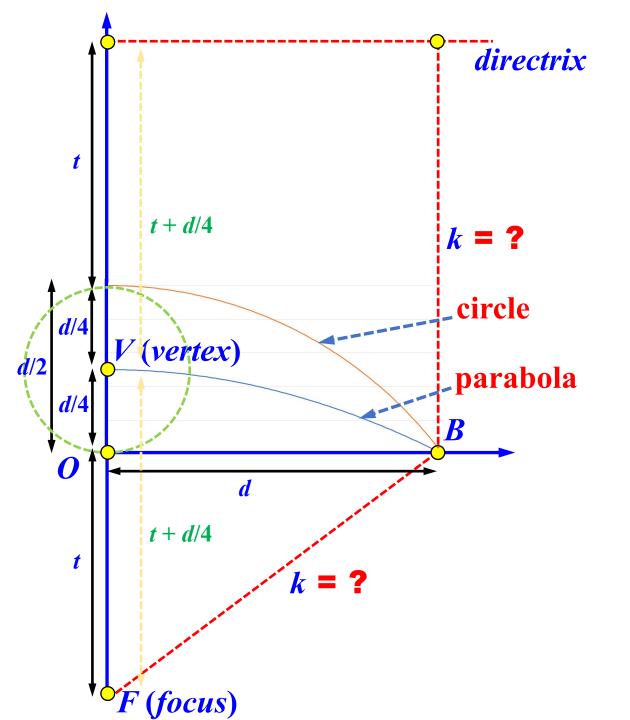
$$r = \frac{1}{4d} \left( d^2 - x^2 \right)$$

- Let the x-axis be the x in the equation and the y-axis is for r!
- This parabola has a downward opening, intersects the x-axis at  $(\pm d,$ 0) and the r-axis at (0,d/4).
- $\square$  Translating along the *r*-axis by -d/4brings the equation to  $r = -x^2/(4d)$ .
  - Therefore, the *focal length* (i.e., the distance between the focus and the vertex) is d!

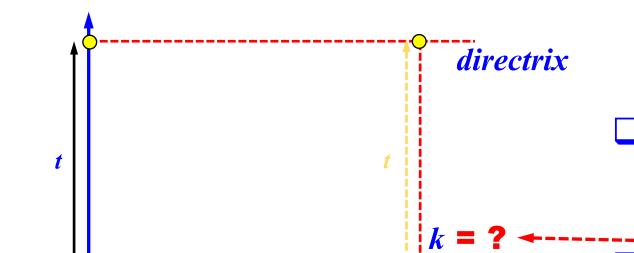




- ☐ Let us do the same without using coordinates.
- We know that the parabola of the center of circle  $O_r$  passes through B when  $O_r$  has a 0 radius, and V, the center of  $O_r$  with  $\max$  radius d/4.
- Where are the focus and directrix of this parabola?
- Let the **focus** be F. The distance from the **vertex** V to F is equal to the distance from the **vertex** V to the **directrix**.



- Let the unknown distance from O to the focus F be t as shown left.
- ☐ In this way, the distance from the vertex V to the focus is t + d/4.
- ☐ The distance from the **vertex** V to the **directrix** is also t + d/4.
- The distance from the line OB to the directrix is (t+d/4)+d/4=t+d/2.
- The distance k from the focus F to B is equal to the distance from B to the directrix, which is t + d/2.
- Let us find t and hence k!



circle

parabola

 $\Box$  Because  $\triangle FOB$  is a right triangle, we have:

$$k^2 = t^2 + d^2$$

 $\square$  Because of k = t + d/2, the above becomes

$$\left(t + \frac{d}{2}\right)^{2} = t^{2} + d^{2}$$

$$t^{2} + td + \frac{d^{2}}{2} + td^{2}$$

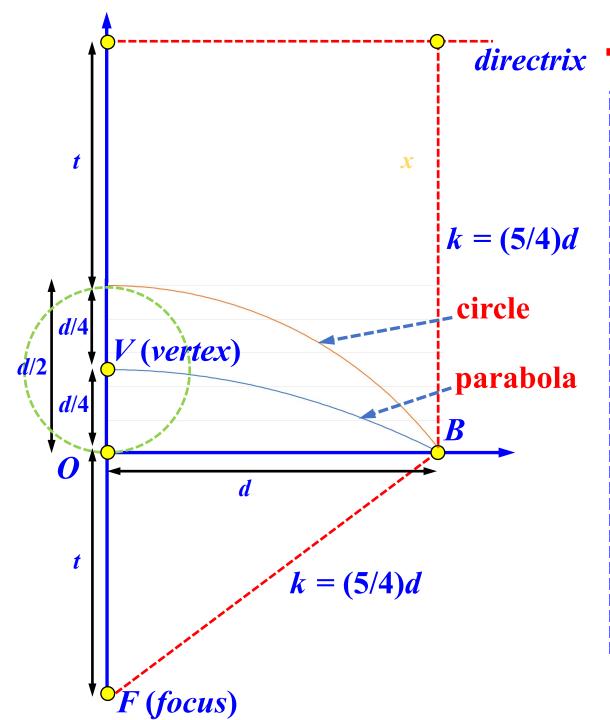
$$t^2 + td + \frac{d^2}{4} = t^2 + d^2$$

$$td = \frac{3}{4}d^2$$

$$t = \frac{3}{4}a$$

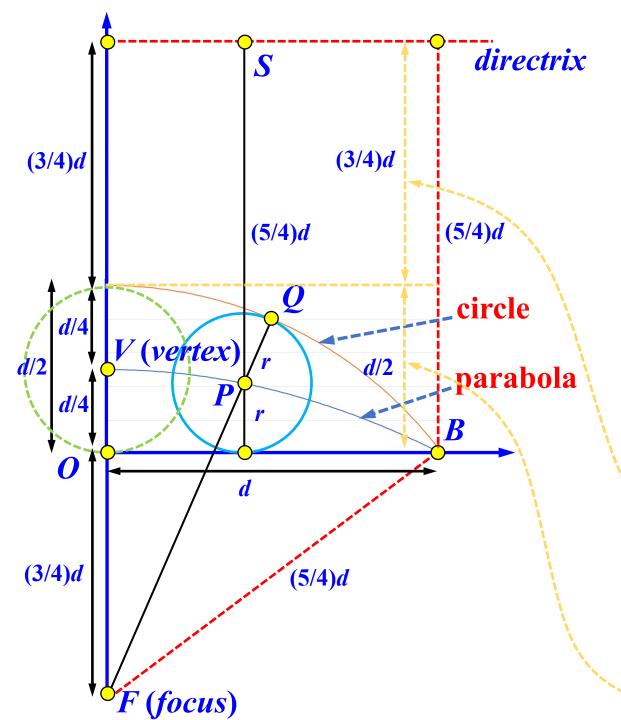
this is what we want 
$$k = t + \frac{d}{2} = \frac{3}{4}d + \frac{d}{2} = \frac{5}{4}d$$

(vertex)



#### directrix This is what we know so far!

- □ The locus of the center of circle O<sub>r</sub> is a *parabola* with the following properties:
  - ✓ The vertex is V, the center of the largest circle O<sub>r</sub>
  - ✓ The focus is F, which is
    (5/4) d from the vertex V
  - ✓ The directrix is the line perpendicular to  $\overrightarrow{VF}$  at a distance of (5/4)d from the vertex V.

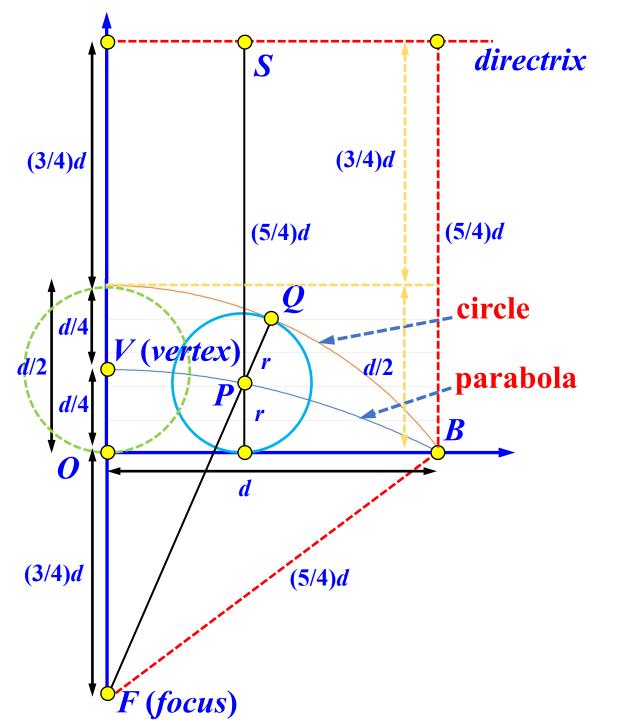


- Consider a circle  $\bigcirc_r$  whose center P lies on the parabola and is tangent to line  $\overrightarrow{OB}$ .
- Let the line  $\overline{FP}$  intersect circle  $O_r$  at Q as shown on the left diagram.
- Because P is on the parabola, we have  $\overline{FP} = \overline{PS}$ , where S is the perpendicular foot from P to the directrix. Then, we have:

$$\overline{FQ} = \overline{FP} + \overline{PQ} = \overline{PS} + r$$

 $\Rightarrow$  the distance between the directrix and  $\overrightarrow{OB}$ 

$$= \frac{3}{4}d + \frac{1}{2}d = \frac{5}{4}d = \text{constant}$$



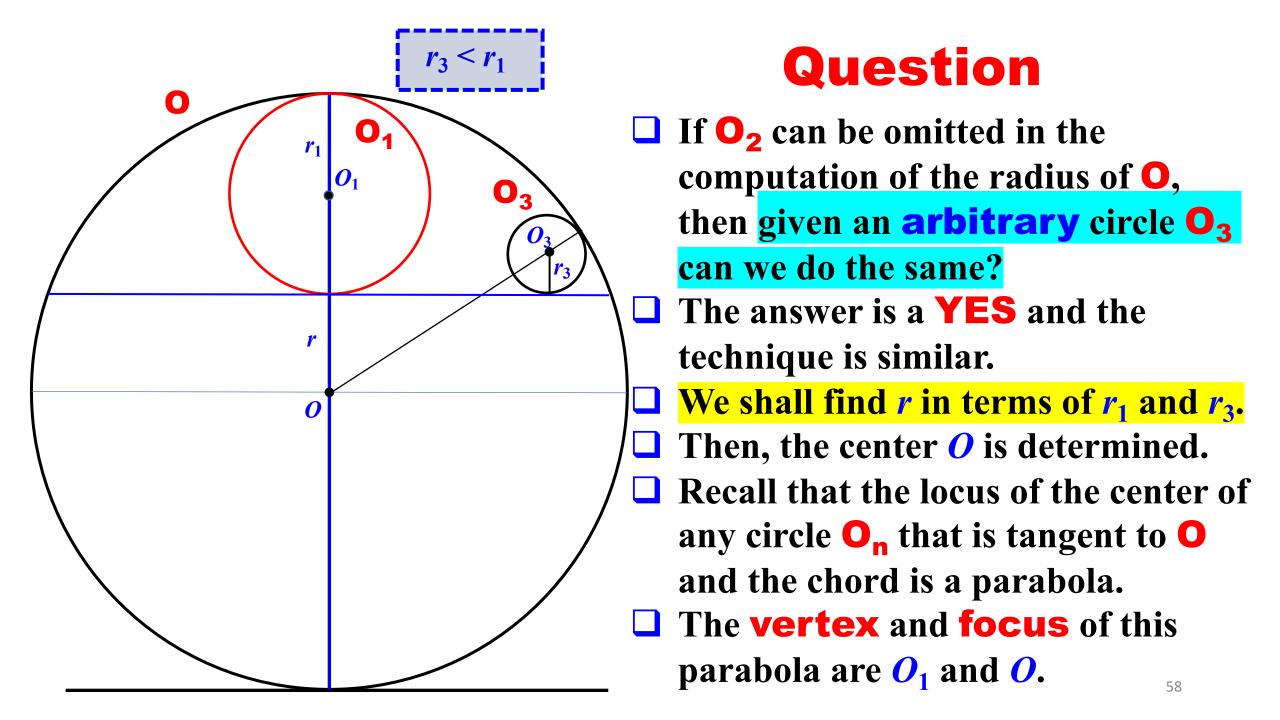
#### What is $\overline{FQ} = \text{constant} = \frac{5}{4}d$ ?

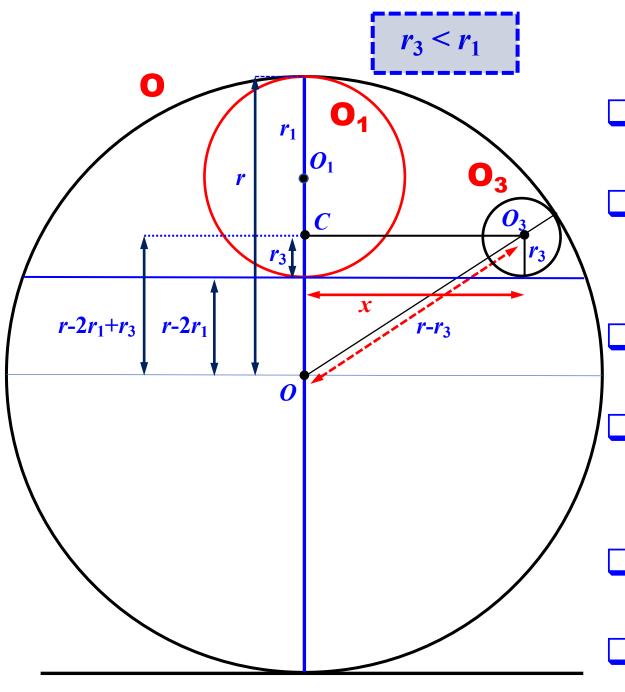
- ☐ It means point Q lies on the circle with center F and radius (5/4)d!
- ☐ It also means circle  $O_r$  is tangent to the above-mentioned circle at Q.
- $\Box$  Given two points  $\underline{A}$  and  $\underline{B}$ , any two circles O<sub>a</sub> and O<sub>b</sub> that are tangent to each other and to  $\overrightarrow{AB}$  at  $\overrightarrow{A}$  and  $\overrightarrow{B}$ uniquely determine a circle O<sub>r</sub> tangent to  $O_a$ ,  $O_b$  and AB. The center of O<sub>r</sub> lies on a parabola and all circles O<sub>r</sub> are tangent to a circle with center the focus of the parabola and passing A and B.

# Problem 6 A Variation of Problem 3

#### **Problem 3**

- ☐ From a circle O and a circle O₁ that is tangent to O and a chord at its midpoint, a circle O₂ and a third circle O₃ are constructed so that
  - ✓ O<sub>1</sub>, O<sub>2</sub> and O<sub>3</sub> are tangent to O and to the given chord
  - ✓ O₂ is tangent to O₁ and O₃ externally.
- Then, the radius *r* of O can be computed by only using the radii of O<sub>1</sub> and O<sub>3</sub>.





#### **Notation**

- Let the center and radius of circle ○be *O* and *r*.
- Let the circle tangent to  $\bigcirc$  and the chord at its midpoint be  $\bigcirc_1$  with center  $\bigcirc_1$  and  $r_1$ .
- ☐ The other circle  $O_3$  tangent to  $O_3$  and the chord has center  $O_3$  and  $r_3$ .
- Circles O<sub>1</sub> and O<sub>3</sub> are known, and circle O and its center O and radius
   r are calculated from O<sub>1</sub> and O<sub>3</sub>.
- From  $O_3$  drop a perpendicular to line  $\overrightarrow{OO_1}$  meeting it at C.
- $\square$  Let x be the distance from  $O_3$  to C.

# $r_3 < r_1$ $r-2r_1+r_3$ $r-2r_1$

#### **Proof: 1/2**

 $\triangle \Delta OCO_3$  is a right triangle and hence

$$\overline{OO_3}^2 = \overline{OC}^2 + \overline{CO_3}^2$$

■ We also have:

$$\overline{OO_3} = r - r_3$$

$$\overline{OC} = (r - 2r_1) + r_3$$

$$\overline{CO_3} = x$$

☐ Therefore, we have

$$(r-r_3)^2 = (r-2r_1+r_3)^2 + x^2$$

# $r_3 < r_1$ $r-2r_1+r_3 | r-2r_1$

#### **Proof: 2/2**

Let us do some calculation:

$$x^{2} = (r - r_{3})^{2} - (r - 2r_{1} + r_{3})^{2} - a^{2} - b^{2} = (a - b)(a + b)$$

$$= \left[ (r - r_{3}) - (r - 2r_{1} + r_{3}) \right] \cdot \left[ (r - r_{3}) + (r - 2r_{1} + r_{3}) \right]$$

$$= \left[ 2(r_{1} - r_{3}) \right] \cdot \left[ 2(r - r_{1}) \right]$$

$$= 4(r_{1} - r_{3})(r - r_{1}) \quad \text{will be used in Prob 7}$$

 $\square$  Therefore, the radius r is:

$$r = \frac{1}{4(r_1 - r_3)} x^2 + r_1$$

The center O is located  $r-2r_1$  from the tangent point on the chord:

$$r - 2r_1 = \left[\frac{1}{4(r_1 - r_3)}x^2 + r_1\right] - 2r_1$$

$$= \frac{1}{4(r_1 - r_3)}x^2 - r_1$$
<sub>61</sub>

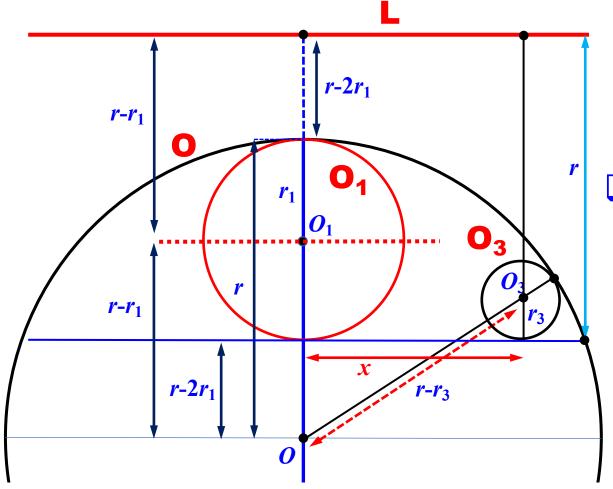
#### $r_3 < r_1$

## $r-2r_1$ *r-r*<sub>1</sub> *r-r*<sub>1</sub> $r-2r_1$

#### Parabola: 1/2

- We learned that the locus of the circles that are tangent to and the chord is a parabola.
- ☐ This is still true even though  $O_3$  is an arbitrary circle with  $r_3 < r_1$ .
- Let L be the line parallel to the chord at a distance of r from the chord. Thus, the distance from the north pole of O to L is  $r-2r_1$ .
- Now we have that the distance from  $O_3$  to O and the distance from  $O_3$  to O are equal (i.e.,  $r-r_3$ ).

#### $r_3 < r_1$



#### Parabola: 2/2

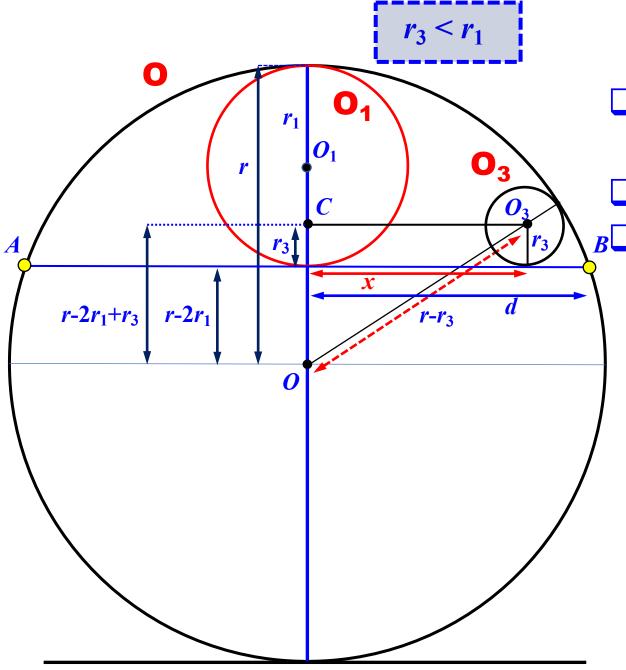
- Because  $O_3$  is an arbitrary circle tangent to circle O and the chord, and because the distance from  $O_3$  to O are equal,  $O_3$  lies on a parabola.
- The vertex, focus and directrix of this parabola are O<sub>1</sub>,
   o and L, respectively.

# Problem 7 A Converse of Problem 5

# $r-2r_1+r_3$ $r-2r_1$

#### **Problem**

- □ Given a circle O and a chord AB = 2d, what is the condition for a successful construction of a O<sub>a</sub>, O<sub>b</sub> and O<sub>r</sub> triplet?
   □ More precisely, if O<sub>r</sub> is a circle tangent to O and the chord, is it possible to find circles O<sub>a</sub> and O<sub>b</sub> such that:
  - $\triangleright$  O<sub>a</sub> and O<sub>b</sub> are tangent to  $\overline{AB}$  at A and B, respectively, and
  - $\triangleright$   $O_r$  is tangent to  $O_a$  and  $O_b$ .



#### **Analysis: 1/3**

- **■** We use the diagram of **Problem 6** and use the same notation.
- $\square$  Thus, circle  $\bigcirc_r$  is  $\bigcirc_3$  in the diagram.

Restate our question as follows:

- Given  $O_3$ , can we find  $O_a$  and  $O_b$  such that  $O_a$  and  $O_b$  are tangent to  $\overline{AB}$  at A and B, respectively, and
- $\triangleright$   $O_3$  is tangent to  $O_a$  and  $O_b$ ?

# $r_3 < r_1$ $r-2r_1+r_3 | r-2r_1$

#### **Analysis: 2/3**

■ We have shown in Problem 4:

$$d^2 = 4r_1(r - r_1)$$

☐ Therefore. We have

$$r - r_1 = \frac{d^2}{4r_1}$$

From **Problem 6** we have:

$$x^{2} = 4(r_{1} - r_{3})(r - r_{1})$$

$$= 4(r_{1} - r_{3})\frac{d^{2}}{4r_{1}}$$
 we need to represent  $r_{3}$  in terms of  $r_{1}$ ,  $d$  and  $x$ .

$$=\frac{d^2\left(r_1-r_3\right)}{r_1}$$

 $= \frac{d^2(r_1 - r_3)}{r_1}$ Solving for  $r_3$  yields

$$r_3 = r_1 \left( \frac{d^2 - x^2}{d^2} \right)$$

# $r-2r_1+r_3$ | $r-2r_1$

#### **Analysis: 3/3**

In **Problem 5**, we showed that at distance x // the  $O_a$  and  $O_b$  can be found to tangent to  $\overline{AB}$  at A and B and tangent to  $O_r$  (i.e.,  $O_3$ ) the radius  $r_3$  must satisfy the following:

$$r_3 = \frac{1}{4d} (d^2 - x^2)$$
 the  $r_3$  that generates a triplet  $O_a$ ,  $O_b$  and  $O_{r3}$ 

The two  $r_3$ 's must be equal.

$$\frac{1}{4d} \left( d^2 - x^2 \right) = r_3 = r_1 \left( \frac{d^2 - x^2}{d^2} \right)$$

**■** Solving for  $r_1$  yields:

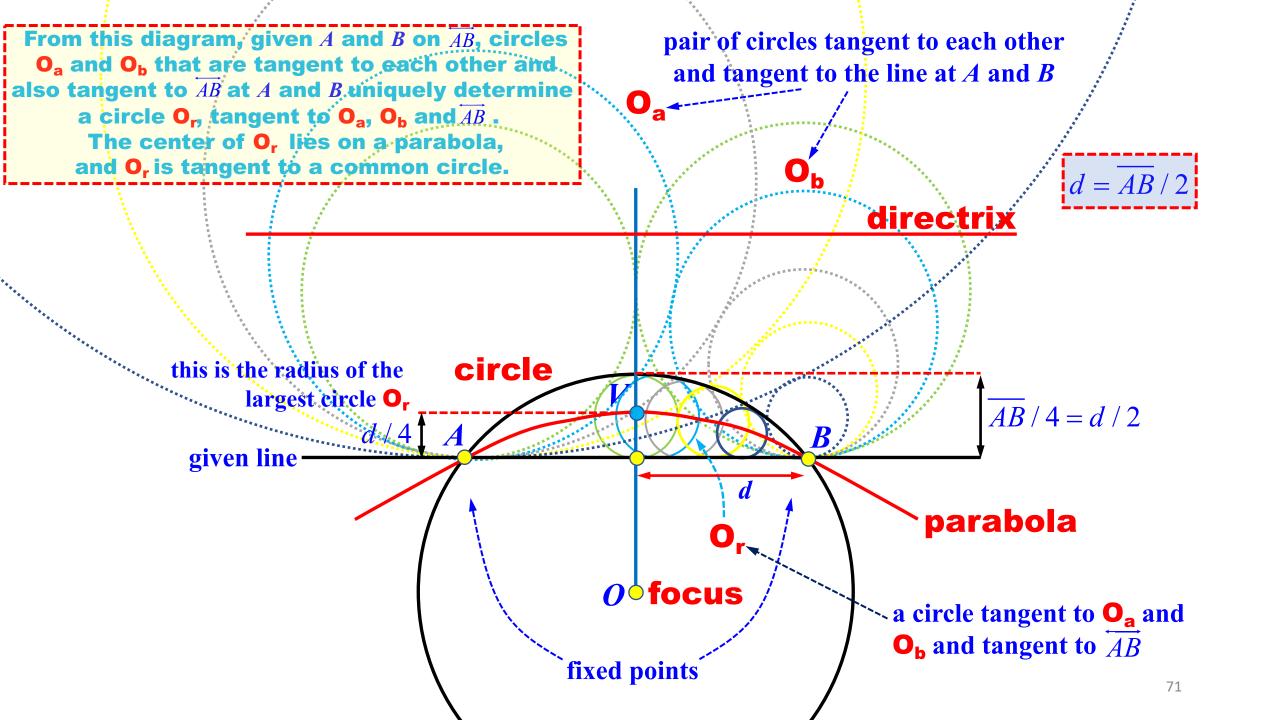
$$r_1 = \frac{d}{4}$$
 this is the  $r_1$  to make both versions of  $r_3$ 's agree

# $r-2r_1$ $r-2r_1+r_3$

#### Conclusion

- If  $r_1$ , the radius of circle  $O_1$ , is a quarter of d (i.e.,  $r_1 = d/4$ ), then for any circle  $O_3$  that is tangent to  $O_4$  and line  $\overline{AB}$ , there exists circles  $O_4$  and  $O_b$  satisfying the following:
  - $\triangleright$   $O_a$  and  $O_b$  are tangent to  $\overline{AB}$  at A and B, respectively, and
  - $\triangleright$   $O_3$  is tangent to  $O_a$  and  $O_b$ .
  - Therefore, this is the converse of **Problem 5**.

## A Summary



Conversely, given a circle O and a chord  $\overline{AB}$ , we know that all circles tangent to O and  $\overline{AB}$  have their centers on a parabola. Given any such circle  $O_r$ , is it possible to find circles  $O_a$  and  $O_b$  such that they are tangent to each other, tangent to  $\overline{AB}$  at A and B, and also tangent to  $O_r$ ?

**ANS**: Yes only if the radius of the largest circle tangent to  $\mathbf{0}$  and the chord is 1/8 of the chord length (i.e.,  $r = d/4 = \overline{AB}/8$ ).

this is the radius of the

largest circle O<sub>r</sub>

pair of circles tangent to each other and tangent to the line at A and B  $d = \overline{AB} / 2$ directrix  $\overline{AB}/4 = d/2$ 

72

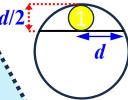
given line AB/A = d/2parabola

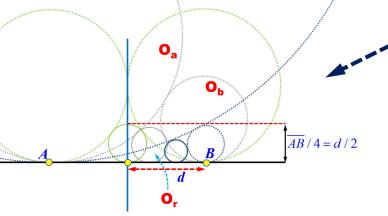
Officus

a circle tangent to  $O_a$  and  $O_b$  and tangent to  $\overline{AB}$ 

circle

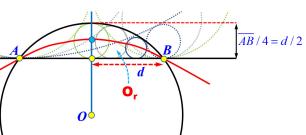






the largest circle O<sub>r</sub> has radius *d*/4

 $\mathcal{C}(O_a, O_b, O_r \mid A, B)$  exists



all O<sub>r</sub>'s are tangent to a common circle and their centers lie on a parabola

 $\mathcal{C}(O_a, O_b, O_r \mid A, B)$  is the set that contains all triplets of circles  $O_a$ ,  $O_b$  and  $O_r$  such that (1)  $O_a$  and  $O_b$  are tangent to each other, (2)  $O_a$  and  $O_b$  are tangent to  $\lim_{B \to B} AB$  at A and B, and (c)  $O_r$  are tangent to  $O_a$  and  $O_b$  and  $O_b$ .

#### What have we learned?

- We discussed seven related problems, all of which are part of the *Japanese Temple Geometry* problems.
- ☐ All problems are similar: find the radius of a circle that is tangent to some circles that are tangent to each other.
- In some cases, the locus of the centers of these circles is a parabola. We reviewed the basic facts of a parabola.
- **■** We will encounter similar but more challenging problems in the future.

#### References

- 1. [Fukagawa:1989] Hidetosi Fukagawa and Dan Pedoe, *Japanese Temple Geometry Problems: San Gaku*, The Charles Babbage Research Centre, Winnipeg, Canada, 1989.
- 2. [Fukagawa:2008] Hidetosi Fukagawa and Tony Rothman, Sacred Mathematics, Japanese Temple Geometry, Princeton University Press, 2008.
- 3. [EI-et-el:1999] Eiichi Ito, Echio Nomura, Hirotaka Kobayashi, Hideaki Tanaka, Isao Kitahara, Kenji Otani, Nobuya Nakamura, Ryutaro Yanagisawa and Tetsuo Sekiguchi, Japanese Temple Mathematical Problems in Nagano Pre. Japan, 1999. Translated from Japanese 算額への招待 by 中村信弥, available at <a href="http://www.wasan.jp/english-nagano/english.html">http://www.wasan.jp/english-nagano/english.html</a>.
- 4. [Nakamura:2010] Nobuya Nakamura, Formulas in Traditional Geometry, Translated from Japanese 算法助術, by長谷川弘 and 山本賀前 (1841), available at http://www.wasan.jp/kosiki/kosiki.html.

#### **Problem References**

| Problem Number | References                               |
|----------------|------------------------------------------|
| Lemma          | Fukagawa:1989<br>Example 1.1 (p.3)       |
| 1              | Fukagawa:1989<br>Example 1.1.1 (p.3)     |
| 2              | Fukagawa:1989<br>Example 1.1.3 (p.3)     |
| 3              | El-et-el:1999<br>Problem 26.1.2 (p. 142) |
| 4              | Nakamura:2010<br>Formula 29 (p. 21)      |
| 5              | Fukagawa:1989<br>Problem 1.1.2 (p.3)     |
| 6              | Variation of Problem 3                   |
| 7              | A Converse of Problem 5                  |

## The End