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Abstract

One of the many flavors of the Japanese Temple Geometry problems is that given a num-
ber of circles meeting certain tangential conditions find the radius of a specific circle. This
manuscript presents seven such “easier” problems. The main problem to be discussed can eas-
ily be summarized as follows. Given two fixed points A and B and a circle OA tangent to

←→
AB

at A, there exists a circle OB tangent to
←→
AB at B and a circle Or tangent to

←→
AB such that all

three circles are tangent to each other externally. This form a triple < OA,OB,Or >. Because
circle OA can vary, circles OB and Or also vary. The question to be answered is finding the
possible relationship among the circles Or. We shall prove that the center of any Or lies on a
fixed parabola and all Or circles are tangent to a common circle. Conversely, given a circle O
serving as the common circle as mentioned above and a chord AB with A and B being on O,
it is not difficult to show that the center of any circle C tangent to O and

←→
AB lies on a fixed

parabola. However, what is the condition for C to become a circle Or? More precisely, what
is the condition to have a circle OA tangent to

←→
AB at A and a circle OB tangent to

←→
AB at B

such that circles OA, OB and C are tangent to each other externally? The condition is that
the largest circle that is tangent to O and the chord AB at its midpoint has a radius d/4 where
d = AB/2. This manuscript has three parts. Part I presents the needed results in order to prove
the main proposition, Part II discusses two problems that are important to the converse, and
Part III proves the main proposition and its converse.

1 Introduction

This manuscript will discuss seven Japanese Temple Geometry problems. These problems are not
independent of each other. In fact, they are very correlated. The discussion starts with a Lemma
(Section 2) that serves as an entry point of all subsequent discussions. This is a very simple lemma
and you may have learned it in your geometry book or did it as an exercise.

The first two problems are a direct consequence of the Lemma. Given a line L and two circles
Oa and Ob tangent to each other externally and also tangent to L , there exists one and only one
circle Or that is tangent to the two circles and to L . What is the radius of this circle in terms of the
radii of the given circles? This is Problem 1. By the same logic Oa, Or and L uniquely determine
a circle Or1 ; Oa, Or1 and L uniquely determine a circle Or2 ; Oa, Or2 and L uniquely determine a
circle Or3 ; Oa, Or3 and L uniquely determine a circle Or4 and so on. This process continues and
Orn−2 , Orn−1 and L uniquely determining a circle Orn . Problem 2 asks for the radius of circle Orn

in terms of the radius of Oa and Ob. These two problems are presented in Section 3 (Figure 1).
The next two problems have a fixed circle O with a fixed chord

←→
AB, where A and B are on the

circle. Let d = AB/2. Note that
←→
AB divides O into two halves and we are only interested in the
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Figure 1: The Relation Among Seven Problems

smaller half. The are infinite number of circles that are tangent to
←→
AB and O. Let the largest circle

tangent to O and
←→
AB be O1 with radius r1. Note that O1 is tangent to AB at its midpoint. Then, any

circle Ox with radius x tangent to O and
←→
AB can be used to find the radius of O and the chord length

2d in terms of r1 and x. These are Problem 3 and Problem 4 presented in Section 4. A closely
related problem is Problem 6, which is discussed in Section 5. Problem 6 shows that the locus of
the centers of the circles tangent to O and

←→
AB is a parabola whose vertex, focus and directrix can

be determined easily.
Section 5 is the longest and perhaps hardest one in this manuscript. Given a line

←→
AB, any circle

Oa tangent to
←→
AB at A uniquely determines a circle Ob tangent to Oa and

←→
AB at B. Problem 1

shows that Oa, Ob and
←→
AB uniquely determine a circle Or that is tangent to Oa, Ob and

←→
AB.

For convenience, we use a triple < Oa,Ob,Or > to denote circles Oa, Ob and Or that satisfy
the “tangential” property just mentioned. We will show that the center of circle Or in a triple
< Oa,Ob,Or > lies on a parabola and all Or circles are tangent to a common circle. This is
Problem 5. With the help of Problem 6 we are able to establish the converse of Problem 5, which
is Problem 7.

2 A Simple Lemma

Suppose we have two externally disjoint circles with centers O1 and O2 and radii r1 and r2. Suppose
these circles are tangent to a line at A and B (Figure 2). Let the distance between A and B be d.

Lemma 1. These two circles are tangent to each other externally if and only if d = 2
√

r1 · r2.

Proof: If r1 = r2, the circles are tangent to each other if and only if r1 + r2 = 2r1 = 2
√

r1 · r1 = d.
In what follows, we assume r1 > r2. Let C be the perpendicular foot from O2 to

←→
O1A.

(⇒) If the circles are tangent to each other externally, we have O1O2 = r1 + r2. Because4O1CO2

is a right triangle with ∠O1CO2 = 90◦, we have O1O2
2
= O1C2

+CO2
2 and hence (r1 + r2)

2 =
(r1− r2)

2 +d2. Simplifying this yields d2 = 4r1 · r2 and hence d = 2
√

r1 · r2.
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Figure 2: A Lemma

(⇐) Conversely, if d = 2
√

r1 · r2, because 4O1CO2 is a right triangle with ∠O1CO2 = 90◦, we
have

O1O2
2

= (r1− r2)
2 +d2 = (r1− r2)

2 +(2
√

r1 · r2)
2

= (r1− r2)
2 +4r1 · r2 = (r1 + r2)

2

As a result, we have O1O2 = r1 + r2 and the two circles are tangent to each other. �

3 Part I – Three Circles That Are Externally Tangent Pairwise

The first problem is a simple extension to the Lemma. We have two circles Or1 and Or2 of radii
r1 and r2 tangent to each other externally and are tangent to a line at A and B (Figure 3). Let the
circle Or3 of radius r3 be tangent to the two given circles externally and also tangent to

←→
AB at C.

The question is: what is r3 in terms of r1 and r2?

Problem 1. Given the configuration in Figure 3, we have

1
√

r3
=

1
√

r1
+

1
√

r2

Proof: From Lemma 1, the circles of radii r1 and r3 yield

AC = 2
√

r1 · r3

Similarly, for the circles of radii r2 and r3 we have

BC = 2
√

r2 · r3
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Figure 3: Three Tangent Circles

Finally, for the circles of radii r1 and r2, we have

AB = 2
√

r1 · r2

Because AB = AC+CB, the following holds:

2
√

r1 · r2 = 2
√

r1 · r3 +2
√

r2 · r3

Dividing both sides by 2
√

r1 · r2 · r3 yields

1
√

r3
=

1
√

r1
+

1
√

r2

Therefore, this proposition holds. �
The construction in Problem 1 can be repeated. More precisely, from the circles Oa and Ob

with radii a and b, a circle R1 with radius r1 can be constructed to tangent to
←→
AB and to circles Oa

and Ob externally (Figure 4). From circle Oa and R1, a circle R2 with radius r2 can be constructed
to tangent to Oa and R1 externally and to

←→
AB. From Oa and R2 we have R3 and so on. This process

can continue so that from circles Oa and Rn−1 with radii a and rn−1 a circle Rn with radius rn is
constructed so that it is tangent to Oa and Rn−1 externally and to

←→
AB. What is the radius rn of Rn?

Problem 2. From circles Oa and Ob of radii a and b, a sequence of circles can be constructed so
that circle Rn of radius rn is tangent to circle Oa and circle Rn−1 of radius rn−1 externally and also
tangent to

←→
AB (Figure 4). Then, we have

1
√

rn
=

n√
a
+

1√
b

Proof: From Problem 1 we know
1
√

r1
=

1√
a
+

1√
b
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Figure 4: A Sequence of Circles That Is Tangent to Each Other Externally and to a Line

Circles Oa and Or1 determine the circle Or2 . Use Problem 1 again to get

1
√

r2
=

1√
a
+

1
√

r1
=

1√
a
+

(
1√
a
+

1√
b

)
=

2√
a
+

1√
b

Similarly, the following holds:

1
√

r3
=

1√
a
+

1
√

r2
=

1√
a
+

(
2√
a
+

1√
b

)
=

3√
a
+

1√
b

Notice that the subscript of ri and the numerator of the term 1/
√

a are the same. As a result, we
may claim that the following holds:

1
√

rn
=

n√
a
+

1√
b

The mathematical induction technique is the best technique to establish the above result.
Base Phase: For n = 1, the result is 1√

r1
= 1√

a +
1√
b
, which is true according to Problem 1.

Induction Phase: Assume that 1√
rn
= n√

a +
1√
b

holds. For circle Orn+1 , rn+1 is calculated as follows:

1
√

rn+1
=

1√
a
+

1
√

rn
=

1√
a
+

(
n√
a
+

1√
b

)
=

n+1√
a

+
1√
b

Therefore, the case of rn+1 also holds. �

4 Part II– Circles Tangent to a Chord and a Big Circle Internally

We now look at two seemingly unrelated (to the problems discussed in Section 3) problems. Actu-
ally, these problems reveal some hidden facts that link the problems in this section and the problems
in the previous section together yielding some beautiful results that will be discussed in Section 5.
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Consider a circle O with center O and radius r (Figure 5(a)). There is a chord as shown. Circle
O1 with center O1 and radius r1 is tangent to the chord at its midpoint and circle O. Circle O2
with center O2 and radius r2 is tangent to the chord and circle O, and is also tangent to circle O1
externally. Circle O3 with center O3 and radius r3 is tangent to the chord and circle O, and is also
tangent to circle O2 externally. The problem is: Express radius r in terms of r1 and r3.

(a) Circles O, O1, O2 and O3 (b) Distances Between Tangent Points

Figure 5

Note that radius r2 is not used. Because r2 depends on r1 and r3 depends on r2, it is obvious
that r2 can be absorbed into r1 and r3. Thus, our strategy is: (1) expressing r2 in terms of r and r1,
(2) expressing r2 in terms of r, r1 and r3, and (3) eliminating r2 from these two. As a result, r is
represented by r1 and r3.

From each center drop a perpendicular to the chord meeting the chord at U , V and W (Fig-
ure 5(b)). From Lemma 1, the lengths of UV and VW are UV = 2

√
r1r2 and VW = 2

√
r2r3,

respectively. From O2 drop a perpendicular to the line
←−→
O1O meeting it at A (Figure 6(a)). It is clear

that the distance from O to the chord is r−2r1 and the distance from O to A is (r−2r1)+ r2. Be-
cause4OO2A is a right triangle with∠O1AO2 = 90◦, we have OO2

2
=OA2

+AO2
2. Because OA=

(r− 2r1)+ r2, AO2 = 2
√

r1r2 and OO2 = r− r2, plugging these values into OO2
2
= OA2

+AO2
2

followed by some simplification yields the following

r2 =
r1(r− r1)

r
or r · r2 = r1(r− r1) (1)

Let us turn to expressing r2 in terms of r, r1 and r3. The technique used is similar to expressing
r2 in terms of r and r1. Drop a perpendicular from O3 to

←−→
OO1 meeting it at B (Figure 6(b)). We have

OB = (r−2r1)+ r3, BO3 =UV +VW = 2
√

r1r2+2
√

r2r3 = 2
√

r2(
√

r1+
√

r3) and OO3 = r− r3.
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(a) Expressing r2 using r and r1 (b) Expressing r2 using r, r1 and r3

Figure 6

Because 4OBO3 is a right triangle with ∠OBO3 = 90◦, we have OO3
2
= OB2

+BO3
2. Plugging

OB= (r−2r1)+r3, BO3 = 2
√

r2(
√

r1+
√

r3) and OO3 = r−r3 into OO3
2
=OB2

+BO3
2 followed

by some simplification yields the following:

4r2 (
√

r1 +
√

r3)
2 = 4(r1− r3)(r− r1)

Because r1− r3 =
(√

r1−
√

r3
)(√

r1 +
√

r3
)
, the above becomes

r2 =
(r− r1)

(√
r1−
√

r3
)

√
r1 +
√

r3
(2)

Because the r2’s computed in Eqn (1) and Eqn (2) are the same, we have

r1(r− r1)

r
=

(r− r1)
(√

r1−
√

r3
)

√
r1 +
√

r3

Simplifying yields the final result:

r = r1

√
r1 +
√

r3√
r1−
√

r3

Hence, we have the following:

Problem 3. Given a circle O with center O and radius r and a chord. Circles O1 (center O1 and
radius r1), O2 (center O2 and radius r2) and O3 (center O3 and radius r3) are tangent to circle
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O and the chord, with O1 being tangent to the chord at its midpoint. Moreover, O1 and O2 are
tangent to each other externally and O2 and O3 are tangent to each other externally. We have

r = r1

√
r1 +
√

r3√
r1−
√

r3

Note that r2 is not used to express r and only r1 and r3 are needed.

There is an interesting variation. Instead of representing the radius of the circle O, we want to
find the chord length. Again we have a circle O with center O and radius r and a chord AB of length
2d (Figure 7). Let C be the midpoint of the chord. Circle O1 is tangent to circle O and the chord
at its midpoint C, and circle O2 is tangent to the chord and to circle O1 externally and to circle O
internally. Additionally, let the center and radius of O1 be O1 and r1 and let the center and radius
of O2 be O2 and r2. Our question is finding d in terms of r and r2. Note that r1 is not used.

Figure 7: Find the Length of he Chord in Terms of the Radii of the Smaller Tangent Circles

Because4OCB is a right triangle with ∠OCB = 90◦, we have:

d2 = BC2
= r2−OC2

= r2− (r−2r1)
2

= 4
(
r · r1− r2

1
)

(3)

From Eqn (1), we know r · r2 = r · r1− r2
1 and the above becomes d2 = 4r · r2 and d = 2

√
r · r2.

The following is our result:

Problem 4. Given a circle O with center O and radius r and a chord AB of length 2d. Circles O1
(with center O1 and radius r1) and O2 (with center O2 and radius r2) are tangent to circle O and
the chord, with O1 being tangent to the chord at its midpoint. Moreover, O1 and O2 are tangent to
each other externally. Then, we have

AB = 2d = 4
√

r · r2

Note that r1 is not used to express d and only r and r2 are needed.
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5 Part III– Combining Part I and Part II Together

This section will reveal the relationship between the results in Section 3 and Section 4. Consider a
line with two fixed points A and B (Figure 8). Let Oa be a circle tangent to the line

←→
AB at A. Then,

there is one and only one circle Ob that is tangent to
←→
AB at B and also tangent to Oa externally.

From Oa and Ob there exists one and only one circle Or that is tangent to Oa and Ob externally and
tangent to

←→
AB. Because an Oa uniquely determines an Ob and Oa and Ob uniquely determine an

Or, we shall represent this relationship as a triple < Oa,Ob,Or > given A and B. We shall denote
all of these triples as a set C (< Oa,Ob,Or > | A,B). In Figure 8, each triple < Oa,Ob,Or > is
shown in the same color so that the size change can be seen easily.

Figure 8: A Relation Between Circles that Are Tangent to Two Fixed Points

If Oa becomes larger, it is obvious that Ob gets smaller. As a result, Or is also smaller. When
Oa is so large almost becoming a straight line, Ob gets so small approaching to a point (i.e., point
B). In fact, Or is not only smaller but also gets pushed to B and eventually becomes B when Ob
approaches to B. On the other hand, if Ob becomes larger, Oa and Or get smaller and eventually
become the point A when Ob becomes a straight line. From this observation, circle Or is the
smallest when it becomes A or B. Obviously, Or cannot be arbitrarily large because it is “bounded”
by circles Oa and Ob. So, when does Or reach its maximum?

Let the radii of Oa, Ob and Or be a, b and r, respectively. The observation above states that
as a or b approaches infinity, r approaches 0 and circle Or becomes A or B. We claim that circle
Or reaches its largest size when Oa and Ob have equal radii (i.e., a = b). In this case, we have
r = a/4 = b/4. This claim is not difficult to prove. As shown in Figure 9 where Oa and Ob have
equal radii (i.e., a = b), if a gets larger, b becomes smaller and hence r is smaller. Similarly, if b
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gets larger, a becomes smaller and hence r is smaller. Therefore, the radius r is the largest among
all Or’s. From Lemma 1, we have r = a/4 = b/4.

Figure 9: Or Is the Largest If Oa and Ob Have Equal Radii

Our question is: are there any relationships among the circles Or in the set C (< Oa,Ob,Or >
| A,B)? We shall prove two important properties: (1) the center of Or lies on a parabola, and (2)
all Or’s are tangent to a common circle. To prove (1) we need a properly set up coordinate system
(Figure 10). Let the midpoint of AB be O and d = AB/2 = OA = OB. The coordinate system has
the coordinate origin at O, the x-axis being the line of

←→
AB and the r-axis being the line through O

and perpendicular to
←→
AB. Let the x-coordinate of the center of an Or be x. Hence, the radius r of

circle Or is the corresponding r-coordinate. In this way, we are about to derive a relationship from
x and r.

Figure 10: The Coordinate System
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Because Oa and Or are tangent to each other, Lemma 1 gives d + x = 2
√

a · r. Hence, we have

√
a =

d + x
2
√

r
(4)

Because Or and Ob are tangent to each other, Lemma 1 implies d− x = 2
√

b · r and hence

√
b =

d− x
2
√

r
(5)

Because Oa and Ob are tangent to each other, Lemma 1 gives d = 2
√

a ·b. Plugging Eqn (4) and
Eqn (5) into this result yields the following:

r =
1

4d

(
d2− x2) (6)

The above equation represents a parabola (Appendix). We are also able to obtain all the char-
acteristics of this parabola in a geometric way. Figure 11 shows the positive half of the coordinate
system. We know some basic facts as follows:

• The curve is symmetric about the r-axis.

• The center V of the largest circle Or lies on the curve and due to symmetry it lies on the
r-axis.

• The curve also passes through A and B.

Because V is the vertex of the parabola, the distances to the focus F and to the directrix are
equal. In order words, V F is the same as the distance from V to the directrix. For convenience, let
t = OF . Then, we have the distance from V to the directrix being t + 1

4 d and the distance from O
to the directrix being the distance from V to the directrix plus VO = d/4 (i.e., t +d/2). According
to the definition of a parabola, the distance from B to the directrix (i.e., t + d/2) is the same as
the distance from B to the focus F (i.e., BF = t + d/2). Because 4FOB is a right triangle with
∠FOB = 90◦, we have FO2

+d2 = BF . Because t = FO and BF = t+d/2, we have the following:

t2 +d2 =

(
t +

d
2

)2

Solving for t yields

t =
3
4

d (7)

BF = t +
d
2
=

5
4

d

So far we have the results:
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The locus of the center of circle Or is a parabola with the following properties:

1. the vertex is V , the center of the largest circle Or with radius d/4;

2. the focus is F , which is at a distance of 5
4 d from the vertex V ; and

3. the directrix is the line perpendicular to
←→
V F at a distance of 5

4 d from the vertex
V .

Figure 11: Handle the Parabola and Common Tangent Circle Geometrically

Let us proceed to the second part: all Or circles are tangent to a common circle. Let P and r be
the center and radius of an arbitrary circle Or. Let the line

←→
FP meet Or at Q and the line through P

and perpendicular to
←→
OB meet the directrix at S (Figure 11). Because P lies on a parabola, we have

PF = PS and PF + r = PS+ r. Now PF + r is FQ and PS+ r is the distance between the directrix
and
←→
OB, which is 5

4 d. This means that FQ is a constant and Q lies on a circle with center F and
radius 5

4 d. Additionally, this circle and Or are tangent to each other internally.
In summary, we have the following result:

Problem 5. All Orcircles in the set C (< Oa,Ob,Or > | A,B) have their centers on a parabola and
are tangent to a common circle.

This is a beautiful result. Can we do more? In Problem 5, given a chord
←→
AB with 2d = AB

we derived a set of triples < Oa,Ob,Or > such that all circles Or are tangent to a common circle
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and the centers of circles Or lie on a parabola. This produces a configuration similar to those in
Problem 3 and Problem 4. The connection between Problem 5 and the two previous problems is
revealed. What we hope to do is: given a circle O and a chord AB, what is the condition for a
circle tangent to O and

←→
AB to become a Or? More precisely, given a circle R that is tangent to O

and the chord, is it possible to construct a Oa tangent to
←→
AB at A and a Ob tangent to to

←→
AB at B so

that Oa and Ob are tangent to each other externally and R is the corresponding circle Or? If this is
not always possible, then what is the condition or conditions to make this possible? This question
can be considered as a “converse” of Problem 5.

To investigate a possible solution to this question, we need another problem similar to Prob-
lem 3 and Problem 4. Then, this converse is almost immediate.

In Problem 3, circle O2 is tangent to circle O1 and O3 externally, and r, the radius of the
“containing” circle O, can be expressed in terms of r1 and r3 without using r2. If O2 can be
omitted in the representation of r, can O3 be an arbitrary circle that is tangent to O and the chord?
In other words, if O3 is an arbitrary circle that is tangent to O and the chord, can we express r in
term of r1 and r3 (Figure 12(a))? The answer is “yes” and here is why.

(a) Expressing r in Terms of r1 and r3 (b) The Induced Parabola of Problem 6

Figure 12

Let the center and radius of circle O1 be O1 and r1 and let the center and radius of circle O3
be O3 and r3. Let C be the perpendicular foot from O3 to

←−→
OO1. Thus, x = O3C is the x-coordinate

of O3 and r3 is the r-coordinate of O3. Because 4OCO3 is a right triangle with ∠OCO3 = 90◦,
we have OO3

2
= OC2

+CO3
2. Because OC = (r−2r1)+ r3 and OO3 = r− r3, the above becomes

(r− r3)
2 = ((r−2r1)+ r3)

2 + x2. Therefore we have the following:

x2 = (r− r3)
2− ((r−2r1)+ r3)

2

= 4(r1− r3)(r− r1) (8)
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Solving for r yields

r = r1 +
1

4(r1− r3)
x2 (9)

Then, solving for r3 yields the following:

r3 = r1−
1

4(r− r1)
x2 (10)

The relationship between x and r3 given by Eqn (10) is a parabola as we did in Eqn (6). In other
words, the center of this arbitrary circle O3 lies on a parabola given by Eqn (10). Following the
logic used in Problem 5, we know that this parabola has its vertex at O1, its focus at O and its
directrix the line perpendicular to

←−→
OO1 at a distance r−2r1 from the north pole of O.

Problem 6. Given a circle O with center O and radius r and a chord AB, if O3 is a circle (with
center O3 and radius r3) tangent to O and the chord, the locus of O3’s center is a parabola with
vertex O1, focus O and directrix the line perpendicular to

←−→
OO1 at a distance of r− r1 from O1.

Problem 5 provided an important result: given a triple < Oa,Ob,Or >, we have that the locus
of the center of Or is a parabola satisfying r = (d2− x2)/(4d) where the chord

←→
AB is the x-axis

and the line perpendicular to
←→
AB at the midpoint O of AB is the r-axis. Moreover, the distance

from O to the north pole of the common tangent circle O is d/2 where d = AB/2. Note that the
common tangent circle to which all Or’s are tangent is derived as a result of the condition of the
triple < Oa,Ob,Or >. On the other hand, Problem 6 offers a different point of view. Now we have
a common tangent circle O and the locus of all circles that are tangent to O and the common chord
is a parabola. We ask this question: what is the condition for a circle tangent to O and the common
chord to become a Or? More precisely, given a circle O and a chord AB, find the condition so that
for any circle Or that is tangent to O and the chord AB there exists a circle Oa tangent to

←→
AB at A

and a circle Ob tangent to
←→
AB at B such that Oa, Ob and Or are tangent to each other externally.

This can be consider a form of “converse” of Problem 5.
Given a circle Or, the x-coordinate of Or is the distance from the tangent point to the midpoint

of the chord (Problem 6), The corresponding r-coordinate is the radius of circle Or, as given by
Eqn (10) as follows:

r3 = r1−
1

4(r− r1)
x2

This (x,r3) relation is a parabola. We need a better form for our purpose. From Eqn (3), we have

d2 = 4(r · r1− r2
1) = 4r1(r− r1)
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Plugging r− r1 = d2/(4r1) into the equation of r3 yields what we want:

r3 = r1−
1

4(r− r1)
x2 = r1−

1(
4 d2

4r1

)x2

= r1−
r1

d2 x2 = r1

(
1− x2

d2

)
= r1

(
d2− x2

d2

)
(11)

If this Or is a circle in a triple < Oa,Ob,Or >, circles Oa and Ob must exist. Consequently,
this r3 must satisfy the relation between x and the radius r as shown in Eqn (6):

r =
1

4d

(
d2− x2)

As a result, we must have

1
4d

(
d2− x2)= r = r3 = r1

(
d2− x2

d2

)
Therefore, r1 = d/4 holds. This means if the circle O1 that is tangent to O and also tangent to the
midpoint of the chord AB has a radius of d/4, any circle that is tangent to O and the chord AB is a
Or circle.

Figure 13: The Existence of the Needed Chord

Problem 7. Given a circle O and line
←→
AB with A and B on O, if the largest circle that is tangent to

O and
←→
AB has a radius of d/4, where d = AB/2, then any circle Or tangent to O and line

←→
AB is a

circle Or of a triple < Oa,Ob,Or >. This is a kind of a converse to Problem 5.
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The next unavoidable question is: is this always doable? More precisely, given any circle of
radius r, is it always possible to find a chord of length 2d such that the largest circle tangent to
O and the chord has radius d/4? Suppose we have a circle O with radius r. We wish to find a
chord of length 2d such that the largest circle that is tangent to O and the chord is radius d/4 (or
diameter d/2). As shown in Figure 13, we have a right triangle of lengths r, d and r−d/2. Because
r2 = d2 +(r− d/2)2, solving for d yields d = 4

5 r. Consequently, for any circle of radius r if we
choose the chord of half length to be 4

5 r, we always have a valid set C (< Oa,Ob,Or > | A,B).

6 Conclusions

This manuscript presented seven related Japanese Temple Geometry problems. The first four prob-
lems imply the Problem 5, and together with Problem 6 we have a “converse” of Problem 5, the
Problem 7. Given two fixed points A and B we have a fixed line

←→
AB. Given any circle Oa that is

tangent to
←→
AB at A, there is a unique circle Ob tangent to Oa and to

←→
AB at B. Then, circles Oa and

Ob uniquely determine a circle Or which is tangent to Oa, Ob and
←→
AB. This is the main reason we

always represent circles Oa, Ob and Or using a triple < Oa,Ob,Or > (Figure 14). We obtained the
following results:

1. The radius of the largest circle Or is d/4, where d = AB/2.

2. All Or circles are tangent to a common circle.

3. The center of Or lies on a parabola that passes through A and B

Figure 14: Summary of Findings: I
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Conversely. if we have a circle O and a chord AB and d = AB/2, then if the largest circle
Or that is tangent to O and the chord AB at its midpoint has a radius d/4, then for any circle Or
tangent to O and the chord AB there exists circles Oa and Ob such that Oa, Ob and Or are tangent
to each other externally and also tangent to

←→
AB. More precisely, if the radius of the largest circle

tangent to O and the chord
←→
AB is d/4, any circle that is tangent to O and

←→
AB is a Or circle in a triple

< Oa,Ob,Or >. Thus, the condition of the radius of the largest circle tangent to O and the chord←→
AB being d/4 implies the existence of < Oa,Ob,Or >.

These are beautiful results, in particular Problem 5 and Problem 7, in the Japanese Temple
Geometry problems. Table 1 shows the reference of each problem. Moreover, there is a video
lecture on these seven problems [5].

Table 1: Problem References

Problem References
Lemma Fukagawa and Pedoe [1, Example 1.1 (p. 3)]

1 Fukagawa and Pedoe [1, Example 1.1.1 (p. 3)]
2 Fukagawa and Pedoe [1, Example 1.1.3 (p. 3)]
3 Eiichi Ito et. al. [2, Problem 26.1.2 (p. 142)]
4 Nakamura [3, Formula 29 (p. 21)]
5 Fukagawa and Pedoe [1, Example 1.1.2 (p. 3)]
6 Variation of Problem 3
7 A Converse of Problem 5

A A Brief Review of Parabolas

The normal form of a parabola is y = 1
4 f x2 (Figure 15(a)). The focus of this parabola is F = (0, f ),

the line y =− f is the directrix, and (0,0) is the vertex. If f > 0 (resp., f < 0), the opening of the
parabola is up (resp., down). From any point P on the parabola, the distance to the focus and the
distance to the directrix are equal.

Consider Eqn (6) which is the parabola of the center of circle Or (Figure 15(b)). This parabola
contains (0,d/4) on the r-axis and (±d,0) on the x-axis. By translating the parabola downward by
d/4, it has a new form of r =− 1

4d x2. As a result, we have f = d and the opening is downward.

B Updating History

1. Draft: October 24, 2023

2. Partially Rewritten: December 21, 2023
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(a) Basic Elements of a Parabola (b) The Parabola of Eqn (6)

Figure 15
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