The Pythagorean Theorem: III The Proof of Jackson and Johnson

When heaven is about to confer a great responsibility on any man, it will exercise his mind with suggering, subject his sinews and bones to hard work, expose his body to hunger, put him to poverty, place obstacles in the paths of deeds, so as to stimulate his mind, harden his nature, and improve wherever he is incompetent.

Meng Tzu (Mencius), 孟子, $4^{\text {th }}$ Century BCE

What Will Be Discussed?

1. Review of Loomis' 1907 incorrect claim.
2. Review of our method discussed in Episode 2 of this 3-lecture series on the Pythagorean Theorem.
3. A pure geometric proof of the Pythagorean Theorem based on the original proof of Jackson and Johnson.
4. The original trigonometric proof of Jackson and Johnson.

Loomis' Incorrect Claim

100+ Years Ago: 1/3

1. Elisha Scott Loomis made a claim that the Pythagorean Theorem cannot be proved by trigonometry.
2. This is because trigonometry IS because the Pythagorean Theorem /s.
3. However, this is incorrect as discussed in the first episode of this series of the Pythagorean Theorem.

100+ Years Ago: 2/3

This is what Loomis said in his 1907 book

Facing forward the thoughtful reader may raise the question: Are there any proofs based upon the science of trigonometry or analytical geometry?

There are no trigonometric proofs, because. all the fundamental formulae of trigonometry are themselves based upon the truth of the Pythagurean Theorem; because of this theorem we say $\sin ^{2} A+\cos ^{2} A$ $=1$, etc. Triginometry is because the Pythagorean Theorem is.

100+ Years Ago: 3/3

1. Many people appeared to believe Loomis' claim without any doubt.
2. In the first episode of this series, we showed that Loomis was wrong, because we can prove easily that useful fundamental identities (e.g., angle difference and sum) are independent of the Pythagorean Theorem.
3. We can prove the Pythagorean Identity easily without using the Pythagorean Theorem.

Jackson and Johnson at the AMS Sectional Meeting

Jackson and Johnson: 1/3

Ne'Kiya D Jackson
St. Mary's Academy

1. Ne'Kiya D. Jackson and Calcea Rujean Johnson presented their proof at the American Mathematical Society Spring Southeastern Sectional Meeting (March 18, 2023).
2. Their proof used trigonometry.
3. They claimed that this is an impossible proof citing Loomis' book.

Author

Jackson and Johnson: 2/3

Jackson and Johnson at the meeting presenting their work.

Ne'Kiya Jackson (Left) and Calcea Rujean Johnson

Jackson and Johnson: 3/3

Ne'Kiya Jackson (right) and Calcea Rujean Johnson being interviewed by ABC News

A Review of Our New Idea

A New Idea (Linear): 1/3

1. Given a segment $X Y$ and a
 point Z in $X Y$, how do we calculate the length of $X Y$?
2. Let the segment $X Y$ be A (unknown), $Z Y$ be \mathbf{B} (unknown) and $X Z$ be $A-B$ (known)
3. If the scaling factor ρ going from $X Y$ to $X Z$ is known, then we have

$$
\overline{X Y}=\frac{1}{1-\rho} \cdot \overline{X Z}
$$

4. The scaling factor usually comes from similarity.

A New Idea (Area): 2/3

1. Given a (polygonal) shape A and B is a shape inside of A, if A and B are similar, meaning any edge e of A and its corresponding edge f in B satisfies $f=\rho \times e$ ($\rho<1$), where ρ is the scaling factor from A to B, then the area of A is

A New Idea (Area): 3/3

A Pure Geometric Proof

A Pure Geometric Proof: 1/13

1. We have a right triangle with sides $a<b<c$ and angles $\alpha<\beta$ $<90^{\circ}$. The case of $\alpha=\beta$ will be treated separately.
2. Given a line segment $Y_{0} Z_{0}$ of length x construct a triangle $\Delta X Y_{0} Z_{0}$:
a) $\angle Y_{0}=\alpha$
b) $\angle Z_{0}=\alpha+90^{\circ}$
we are interested in the area of $\Delta X Y_{0} Z_{0}$.

A Pure Geometric Proof: 2/13

1. Construct a perpendicular to $Y_{0} Z_{0}$ at Z_{0}, meeting $X Y_{0}$ at Y_{1}.
2. Construct a perpendicular to $Y_{1} Z_{0}$ at Y_{1}, meeting $X Z_{0}$ at Z_{1}.
3. Let p, q, r and h be the length of $Y_{0} Y_{1}, Z_{0} Z_{1}, Y_{1} Z_{1}$ and $Z_{0} Y_{1}$.
4. What is the area of the trapezoid $Y_{0} Z_{0} Z_{1} Y_{1}$?
5. Obviously, the area is

$$
\operatorname{Area}\left(Y_{0} Z_{0} Z_{1} Y_{1}\right)=\frac{1}{2}(x+r) \times h
$$

A Pure Geometric Proof: 3/13

1. Because the area of trapezoid
 $Y_{0} Z_{0} Z_{1} Y_{1}$ is

$$
\operatorname{Area}\left(Y_{0} Z_{0} Z_{1} Y_{1}\right)=\frac{1}{2}(x+r) \times h
$$

we need to find h and r as x is given.
2. Because $\Delta Y_{0} Y_{1} Z_{0}$ is similar to $\triangle A B C$, we have $\boldsymbol{h} / \boldsymbol{x}=a / b$ and $p / \boldsymbol{x}=\boldsymbol{c} / \boldsymbol{b}$ and

$$
h=x \cdot \frac{a}{b} \text { and } p=x \cdot \frac{c}{b}
$$

4. Because $\Delta Z_{0} Z_{1} Y_{1}$ is similar to $\triangle A B C$, we have $q / \boldsymbol{h}=\boldsymbol{c} / \boldsymbol{b}$ and $\boldsymbol{r} / \boldsymbol{h}=\boldsymbol{a} / \boldsymbol{b}$ and

$$
\begin{aligned}
& q=h \cdot \frac{c}{b}=\left(x \cdot \frac{a}{b}\right)\left(\frac{c}{b}\right)=x \cdot \frac{a \cdot c}{b^{2}} \\
& r=h \cdot \frac{a}{b}=\left(x \cdot \frac{a}{b}\right)\left(\frac{a}{b}\right)=x \cdot \frac{a^{2}}{b^{2}}
\end{aligned}
$$

A Pure Geometric Proof: 4/13

1. The area of the trapezoid $Y_{0} Z_{0} Z_{1} Y_{1}$ is:

$$
\begin{aligned}
\operatorname{Area}\left(Y_{0} Z_{0} Z_{1} Y_{1}\right) & =\frac{1}{2}(x+r) \times h \\
& =\frac{1}{2}\left(x+x \cdot \frac{a^{2}}{b^{2}}\right)\left(x \cdot \frac{a}{b}\right) \\
& =\frac{x^{2}}{2} \cdot \frac{a\left(a^{2}+b^{2}\right)}{b^{3}}
\end{aligned}
$$

2. The scaling factor ρ is

$$
\rho=\frac{r}{x}=\frac{x\left(\frac{a}{b}\right)^{2}}{x}=\left(\frac{a}{b}\right)^{2}
$$

A Pure Geometric Proof: 5/13

1. Then we compute $1-\rho$ and $1-\rho^{2}$ and 1/($\left.1-\rho_{2}^{2}\right)$, etc. as follows:

A Pure Geometric Proof: 6/13

1. According to our method, the area of triangle $X Y_{0} Z_{0}$ is:

$$
\begin{aligned}
\operatorname{Area}\left(X Y_{0} Z_{0}\right) & =\frac{1}{1-\rho^{2}} \cdot \operatorname{Area}\left(Y_{0} Z_{0} Z_{1} Y_{1}\right) \\
& =\left(\frac{\left.2 b^{4}\right)}{\left(b^{2}-a^{2}\right)}\right)\left(\frac{x^{2}}{2} \cdot \frac{\left.a^{2}+a^{2}\right)}{\left(a^{2}+b^{2}\right)}\right. \\
& =\frac{x^{2}}{2} \cdot \frac{a \cdot b}{b^{2}-a^{2}}
\end{aligned}
$$

A Pure Geometric Proof: 7/13

A Pure Geometric Proof: 8/13

1. The area of $\Delta Y_{0} Z_{0} X^{\prime}$ is $(x \times k) / 2$.
2. Because \boldsymbol{x} is given, we need to find k and t.
3. Let X_{0} be the perpendicular foot of the altitude on side $Y_{0} Z_{0}$.
4. Because $\Delta X^{\prime} X_{0} Y_{0}$ is similar to $\triangle A B C$, we have $k /(x / 2)=b / a$ and $t /(x / 2)=c / a$.
5. We have the desired results:

$$
k=\left(\frac{x}{2}\right)\left(\frac{b}{a}\right) \quad \text { and } \quad t=\left(\frac{x}{2}\right)\left(\frac{c}{a}\right)
$$

A Pure Geometric Proof: 9/13

1. The area of $\Delta X^{\prime} Y_{0} Z_{0}$ is

$$
\begin{aligned}
\operatorname{Area}\left(\Delta X^{\prime} Y_{0} Z_{0}\right) & =\frac{1}{2} x \cdot k=\frac{1}{2} x\left(\frac{x}{2}\right)\left(\frac{b}{a}\right) \\
& =\frac{x^{2}}{2^{2}}\left(\frac{b}{a}\right)
\end{aligned}
$$

2. The area of $\Delta X^{\prime} Y_{0} X$ is

$\operatorname{Area}\left(\Delta X^{\prime} Y_{0} X\right)=\mathrm{Area}\left(\Delta X^{\prime} Y_{0} Z_{0}\right)$ Area $\left(\triangle X Y_{0} Z_{0}\right)$

$$
\begin{aligned}
& =\left[\frac{x^{2}}{2^{2}}\left(\frac{b}{-\frac{a}{a}}\right)\right]--\left[\frac{-x^{2}}{2}\left(\frac{a \cdot b}{b^{2}-a^{2}}\right)\right] \\
& =\frac{x^{2}}{2} \cdot \frac{b}{a} \cdot \frac{b^{2}+a^{2}}{2\left(b^{2}-a^{2}\right)}
\end{aligned}
$$

A Pure Geometric Proof: 10/13

1. Now the area of $\Delta X{ }^{\prime} Y_{0} X$ is:

$$
\operatorname{Area}\left(\Delta X^{\prime} Y_{0} X\right)=\frac{x^{2}}{2} \cdot \frac{b}{a} \cdot \frac{b^{2}+a^{2}}{2\left(b^{2}-a^{2}\right)}
$$

2. $\Delta X^{\prime} Y_{0} X$ is a right triangle whose area can also be calculated as:
$\operatorname{Area}\left(X^{\prime} Y_{0} X\right)=\frac{1}{2} t \cdot \overline{X Y_{0}}$
3. What is the length of segment $X Y_{0}$?
4. The length of $X Y_{0}$ can be calculated using our method.

A Pure Geometric Proof: 11/13

1. We calculated the length of $X Y_{0}$:

$$
\overline{X Y_{0}}=\frac{p}{1-\rho}=\left(\frac{b^{2}}{b^{2}-a^{2}}\right)\left(x \cdot \frac{c}{b}\right)=\frac{b \cdot c}{b^{2}-a^{2}}
$$

2. The area of $\Delta X Y_{0} X^{\prime}$ is

$$
\begin{aligned}
\operatorname{Area}\left(X Y_{0} X^{\prime}\right) & =\frac{1}{2} \cdot t \cdot \overline{X Y_{0}}=\frac{1}{2}\left(\frac{x}{2} \cdot \frac{c}{a}\right):\left(x \cdot \frac{b \cdot c}{b^{2}-a^{2}}\right) \\
& =\frac{x^{2}}{2^{2}} \cdot \frac{b}{a} \cdot \frac{c^{2}}{b^{2}-a^{2}}
\end{aligned}
$$

3. But, this must be equal to the area we calculated earlier.

A Pure Geometric Proof: 12/13

A Pure Geometric Proof: 13/13

1. Special Case:

- If $a=b($ or $\alpha=\beta)$, the area of $\triangle A B C$ is

$$
\begin{aligned}
\frac{1}{2}(a \cdot a) & =\operatorname{Area}(\triangle A B C)=\frac{1}{2} \cdot c \cdot\left(\frac{c}{2}\right) \\
\frac{1}{2}(a \cdot a) & =\frac{1}{2} \cdot \frac{c^{2}}{2} \\
2 a^{2} & =c^{2} \\
a^{2}+a^{2} & =c^{2}
\end{aligned}
$$

- Hence, the Pythagorean Theorem holds.

The Original

Irigonometric Proof

The Original Trigonometric Proof: 1/4

1. The original proof of JacksonJohnson used simple trigonometric technique.
2. We need to compute the lengths of segment $X Y_{0}$ and segment $X X^{\prime}$.
3. We did $X Y_{0}$ earlier:

$$
\overline{X Y_{0}}=\frac{1}{1-\rho} \cdot p=x \cdot \frac{b \cdot c}{b^{2}-a^{2}}
$$

4. How about $X X^{\prime}$? It is the sum of $X Z_{0}$ and $X^{\prime} Z_{0}=t$.

The Original Trigonometric Proof: 2/4

1. As for $X Z_{0}$, we do it just like we did for $X Y_{0}$:

$$
\overline{X Z_{0}}=\frac{1}{1-\rho} \cdot q=x \cdot \frac{a \cdot c}{b^{2}-a^{2}}
$$

2. The length of $X^{\prime} Z_{0}$ is $t=(x / 2)(c / a)$.
3. The length of $X X^{\prime}$ is:

$$
\begin{aligned}
\overline{X X^{\prime}} & =t+\overline{X Z_{0}} \\
& =\left(\frac{x}{2}\right)\left(\frac{c}{a}\right)+x\left(\frac{a \cdot c}{b^{2}-a^{2}}\right) \\
& =(x \cdot c) \frac{a^{2}+b^{2}}{2 a\left(b^{2}-a^{2}\right)}
\end{aligned}
$$

The Original Trigonometric Proof: 3/4

$$
\begin{aligned}
& k=\left(\frac{x}{2}\right)\left(\frac{b}{a}\right) \\
& t=\left(\frac{x}{2}\right)\left(\frac{c}{a}\right)
\end{aligned}
$$

1. In the right triangle $\Delta X Y_{0} X^{\prime}$, where $\angle Y_{0}=90^{\circ}$, we have

$$
\sin \left(\angle X^{\prime}\right)=\sin (2 \alpha)=\frac{\overline{X Y_{0}}}{\overline{X X}}
$$

2. Now consider $\Delta X^{\prime} Y_{0} Z_{0}$, the law of sines indicates:

$$
\frac{\sin (2 \alpha)}{x}=\frac{\sin (\beta)}{t}=\frac{\bar{c}}{\left(\frac{x}{2}\right)\left(\frac{c}{a}\right)}=\frac{2 a \cdot b}{x \cdot c^{2}}
$$

The Original Trigonometric Proof: 4/4

1. Because of

$$
\frac{\sin (2 \alpha)}{x}=\frac{2 a \cdot b}{x \cdot c^{2}}
$$

we have

$$
\sin (2 \alpha)=\frac{2 a \cdot b}{c^{2}}
$$

2. This result must be the same as the one computed earlier:

$$
\frac{2 a \cdot b}{c^{2}}=\sin (2 \alpha)=\frac{2 a \cdot b}{a^{2}+b^{2}}
$$

3. Obviously, we have $a^{2}+b^{2}=c^{2}$.

What did we learn?

\square We provided a pure geometric version of Jackson-Johnson's proof.
\square The original proof of Jackson and Johnson was discussed. Consequently, their proof can be considered as a variation of the pure geometric proof based on our method.
\square Thus, the trigonometric component can easily be removed.
\square All slides and a long article of this 3-lecture are available here: https://pages.mtu.edu/~shene/VIDEOS/GEOMETRY/index-EN.html

References

1．【CK＇s Geometry Talks】EP4：The Pythagorean Theorem I，A 100＋Years Old Incorrect Claim， https：／／youtu．be／sdli0rR9ot0
2．【CK＇s Geometry Talks】EP5：The Pythagorean Theorem II－－A New Approach，https：／／youtu．be／EXjwoVTPWMI
3．Ne＇Kiya D．Jackson and Calcea Johnson，An Impossible Proof of Pythagoras，AMS Spring Southeastern Sectional Meeting，March 18， 2023.
4．Elisha Scott Loomis，The Pythagorean Proposition，2nd edition，The National Council of Teachers of Mathematics，1940．A scanned PDF file can be found at
https：／／files．eric．ed．gov／fulltext／ED037335．pdf．

The End

