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Abstract
Ne’Kiya D. Jackson and Calcea Rujean Johnson presented a trigonometric proof of the

Pythagorean Theorem at the 2023 AMS Spring Southeastern Sectional Meeting claiming that
it is an impossible proof. They cited a false claim in Loomis’ 1907 book “There are no trigono-
metric proofs. . . . . . . Trigonometry is because the Pythagorean Proposition is.” This note
presents a new approach based on similarity and geometric progression with which a pure ge-
ometrical proof is given. Additionally, this note also discusses some proofs in Loomis’ book
and provides more new proofs using the concept of the Lemoine Point. The first appendix has
proofs of the angle difference and angle sum identities for sin() and cos() without using the
Pythagorean Theorem. Both results can be used to prove the Pythagorean Identity. In fact, two
proofs are discussed, one by Friedrich Schur (1899) and the other by Versluys (1914). In addi-
tion, with the help of calculus, we are able to construct a few more trigonometric proofs. We
show that computing the derivatives of sin() and cos() is independent of the Pythagorean Iden-
tity and the Pythagorean Theorem. Then, the Pythagorean Identity is proved using L’Hôpital’s
Rule, the concept of a constant function (i.e., derivative being 0 everywhere) in calculus, the
product of two power series, and Euler’s formula. The second appendix shows that the origi-
nal proof in Euclid’s The Elements offers a trigonometric proof even though trigonometry was
available to Euclid. As a result, Loomis’ claim is false and the proof of Jackson-Johnson can
easily be replaced by a purely geometrical one.

1 Introduction

A proof of the Pythagorean Theorem using trigonometry was presented at the AMS Spring South-
eastern Sectional Meeting on March 18, 2023 by Ne’Kiya D. Jackson and Calcea Rujean John-
son [7]. This was reported widely by the media such as The Guardian [16], Popular Mechan-
ics [11] and Scientific American [15]. Unfortunately, the authors of these articles and some other
reports kept suggesting that a trigonometric proof is “impossible.” They all cited a 1907 book The
Pythagorean Proposition by Elisha Scott Loomis [9, second edition, pp. 244-245] (Figure 1(a)) in
which Loomis (Figure 1(b)) stated the following:

Facing forward the thoughtful reader may raise the question: Are there any proofs
based upon the science of trigonometry or analytical geometry?

There are no trigonometric proofs, because all the fundamental formulae of trigonom-
etry are themselves based upon the truth of the Pythagorean Theorem; because of this
theorem we say sin2 A+ cos2 A = 1, etc. Trigonometry is because the Pythagorean
Theorem is [9, p.244].
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(a) The 1940 Second Edition Published by The
National Council of Teachers of Mathematics

(b) Elisha Scott Loomis (Photograph Taken 1935)

Figure 1

This is false, because the validity of cos(α−β) = cos(α)cos(β)+ sin(α)sin(β) and sin(α−
β)= sin(α)cos(β)−cos(α)sin(β) is independent of the Pythagorean Identity1 which can be proved
by setting α = β or by using the angle sum identity sin(α+(90◦−α)). This author found that a
proof was published in Schur’s book [13, p. 22] (1899) and another in Versluys’s book [17, p.
98] (1914). It is even more important to note that the original proofs of the Law of Cosines in The
Elements stated the results in terms of lengths and areas which can easily be replaced with the cos()
function. Consequently, the Pythagorean Theorem and the Pythagorean Identity were proved long
before the modern trigonometry was born. Hence, Euclid perhaps offered the first trigonometric
proof of the Pythagorean Theorem.

We will develop a simple method based on similarity and geometric progression to prove the
Pythagorean Theorem. While this method can be applied to more general geometric shapes, we
only focus on right triangles. In what follows, Section 2 presents our method; Section 3 shows
that some classical proofs in Loomis’ book can easily be converted to use this technique; Section 4
presents Jackson and Johnson’s proof without using trigonometry; Section 5 discusses the original

1The Pythagorean Identity refers to the identity sin2(x) + cos2(x) = 1, which implies the Pythagorean Theorem
immediately. Conversely, if the Pythagorean Identity holds, the Pythagorean Theorem can be obtained easily.
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trigonometric version; Section 6 first discusses the concepts of symmedians and the Lemoine point
of a triangle, and then proceeds to offer more proofs based on the Lemoine point, and Section 7
has our conclusions.

Section 3 is further divided into three subsections: Section 3.1 discusses proofs in which square
dissection is used, Section 3.2 has simple proofs that use the given right triangle directly, and
Section 3.3 includes a proof which has a square on the hypothenuse.

Finally, Appendix A includes proofs showing that the angle difference and angle sum identities
for sin() and cos() can be derived without using the Pythagorean Identity. Furthermore, from the
angle sum identities the sum-to-product identities are derived from which the derivatives of sin()
and cos() are shown to be independent of the Pythagorean Identity. Then, we use the double
angle identities to prove the Pythagorean Identity. With the help of calculus, we first prove that
computing the derivatives of sin() and cos() is independent of the Pythagorean Identity. Then,
several proofs of the Pythagorean Identity are shown. These include the use of L’Hôpital’s Rule,
the fact that f (x) = sin2(x)+ cos2(x) is a constant function by showing f ′(x) = 0, the squares of
the power series of sin(x) and cos(x), and the use of Euler’s formula. Appendix B correlates the
original proofs of the Law of Cosines and cos(). Therefore, this chain of reasoning suggests that
“Trigonometry is because the Pythagorean Theorem is” is false.

2 The Main Idea

Given a polygonal shape A and a polygonal shape B⊆ A, if B is similar to A with a scaling factor
ρ (i.e., any edge q of B and its corresponding edge p of A satisfying q = ρ · p, where 0 < ρ < 1),
then A(A) = A(A−B)+A(B), where A(X) denotes the area of X (Figure 2).

Note that a scaling factor ρ for length induces a scaling factor ρ2 for area. Because B ∼ A,
A(B) = ρ2A(A), we have A(A) = A(A−B)+A(B) = A(A−B)+ρ2A(A). Therefore, we have

A(A) = A(A−B)+A(B) = A(A−B)+ρ
2A(A)

= A(A−B)+ρ
2(A(A−B)+A(B))

= A(A−B)+ρ
2A(A−B)+ρ

2A(B))

= A(A−B)+ρ
2A(A−B)+ρ

4A(A)

= A(A−B)+ρ
2A(A−B)+ρ

4(A(A−B)+A(B))

= A(A−B)+ρ
2A(A−B)+ρ

4A(A−B)+ρ
4A(B)

= A(A−B)+ρ
2A(A−B)+ρ

4A(A−B)+ρ
4(ρ2A(A))

= A(A−B)+ρ
2A(A−B)+ρ

4A(A−B)+ρ
6A(A)

...

= A(A−B)
(
1+ρ

2 +ρ
4 +ρ

6 + · · ·
)

=
A(A−B)

1−ρ2 (1)

3



Hence, if we are able to find B and ρ and compute A(A−B), it is easy to find A(A).

Figure 2: This Is How the Idea Goes for Area Computation

As for line segment length, the scaling factor is only ρ. If a point Z is selected on a line segment
XY , we have of XY = XZ +ZY (Figure 3). Let ρ = ZY/XY . Based on the idea above we have

XY = XZ +ρXZ +ρ
2XZ +ρ

3XZ +ρ
4XZ + · · ·= XZ

1−ρ
(2)

Figure 3: This Is How the Idea Goes for Line Segment Length Computation

3 Re-Do Some Classical Proofs

Many proofs in Loomis’ book [9] can easily be redone with the new method. The next few sub-
sections discuss how this conversion can be done easily. First, a shape A is constructed from the
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given right triangle of sides a ≤ b < c with c being the hypotenuse. Second, find a sub-shape B
that is similar to A and the area of A−B can be computed easily. Third, find the scaling factor ρ.
Fourth, use our method to compute the area of figure A. Fifth, find another way to compute the area
of A without using B. Finally, equating the two results followed by some simplification yields the
desired result. However, we have to point out that for the Pythagorean Theorem, the length of the
hypotenuse c should be used in the first stage and should not be cancelled out because c is typically
not used in the second stage.

3.1 Proofs Involving the Use of a Square

Proof 1
In Figure 4(a) the square has side length a+b and the right triangle is repeated four times inside

the square. The scaling factor going from the outer square to the inner one is ρ = c/(a+ b) and
hence we have

1
1−ρ2 =

(a+b)2

(a+b)2− c2

Therefore, the area of the square is

(a+b)2 =
1

1−ρ2 ×4
(

1
2

a ·b
)
=

(a+b)2

(a+b)2− c2 ×4
(

1
2

a ·b
)

After simplifying the above, we get a2 +b2 = c2 (Loomis [9, Proof Thirty-Three, p. 48]).

Proof 2
Figure 4(b) is another commonly seen proof in which the inner square has side length b− a.

The scaling factor is ρ = (b−a)/c and 1/(1−ρ2) = c2/(c2− (b−a)2). The area of the square is
computed as follows:

c2 =
1

1−ρ2 ×4
(

1
2

a ·b
)
=

c2

c2− (b−a)2 ×4
(

1
2

a ·b
)

Again, simplifying the above yields a2 +b2 = c2.

Proof 3
In Loomis [9, Proof Two Hundred Fifteen, p. 221] a proof similar to the above one is shown.

Given a right triangle4ABC (Figure 4(c)), construct a square of side length b on side AC and drop
a penpendicular from C to

←→
AB meeting it at F . Then, drop a perpendicular from D to

←→
CF meeting it

at G and perpendiculars from E to
←→
DG and

←→
AB meeting them at H and K, respectively. It is obvious

that4AFC ∼=4CGD∼=4DHE ∼=4EKA and the lengths of AK and CF are equal. Furthermore,
because4ABC ∼4ACF , we have

p = AK =
a ·b

c
, p+q = AF =

b2

c
and q = KF = AF−AK =

b(b−a)
c
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(a) (b) (c)

Figure 4: Proofs Involving the Use of Squares

Hence, the sum of the areas of the four right triangles is

4
(

1
2

p(p+q)
)
=

1
2

ab3

c2 (3)

The scaling factor going from square ACDE to square FGHK is

ρ =
q
b
=

(b/c)(b−a)
c

=
b−a

c
and

1
1−ρ2 =

c2

c2− (b−a)2

The area of the outer square is

A(ACDE) =
1

1−ρ2 ×
(

1
2

ab3

c2

)
=

c2

c2− (b−a)2 ×
(

1
2

ab3

c2

)
=

2ab3

c2− (b−a)2

Because A(ACDE) = b2 which is equal to the above result, we have

b2 =
2ab3

c2− (b−a)2

Simplifying yields c2 = a2 +b2.

Notes
Some proofs in Loomis [9] share the same technique, although the division of the sides of the

square may not be a : b. For example, in Loomis [9, Proof Sixty-Three, p. 137], the division of the
side c square is exactly a : b; but other rectangles and squares are needed to complete the proof.
Loomis [9, Proof Thirty-Three, p.48] is exactly the same as shown in Figure 4(b). Loomis [9,
Proof One Hundred Thirty-Three, p. 177] is similar to Figure 4(c), but the division of side c is
ac/b : c(b−a)/b. Other proofs in Loomis [9] are similar (e.g., Proofs 131–132, Proofs 134–137,
etc.) and use different ways of cutting the square of side c. These proofs can also be transformed
to use the technique presented here.
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3.2 Proofs Based on Similar Right Triangles Inside or Outside the Given One

Proof 4

Consider4ABC in Figure 5(a), where D is the perpendicular foot from C to side
←→
AB. Line

←→
CD

divides4ABC into two smaller triangles both similar to4ABC (Loomis [9, Proof One, p. 23]).

(a) (b)

Figure 5: Very Simple Proofs Using the Given Triangle Directly

From4CDB∼4ACB, we have h = (a ·b)/c and k = a2/c. Therefore, we have

A(4CBD) =
1
2
·h · k = 1

2
(a ·b)

(a
c

)2
(4)

Because 4ACD ∼ 4ABC, the scaling factor ρ from 4ABC to 4ACD is ρ = h/c = b/c. Hence,
we have

A(4ABC) =
A(4CBD)

1−ρ2 =
1
2

a3b
c2−b2 (5)

Because we also have A(4ABC) = (a ·b)/2, the following holds:

1
2

a ·b =
1
2

a3b
c2−b2

Simplifying the above yields

1 =
a2

c2−b2

This leads to c2 = a2 +b2, the desired result.

Proof 5
As a direct consequence of Proof 5, a very similar one was discussed in the Cut the Knot

site [1], credited to John Arioni. From D drop a perpendicular to
←→
AC meeting it at E (Figure 5(a)).

Let p = DE and q =CE. Because4DCE ∼4ABC, we have

p
h
=

b
c

and
q
h
=

a
c
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Because we know h = (a ·b)/c, we have

p =
a ·b2

c2 and q =
a2 ·b

c2

The area of trapezoid BCED is:

A(BCED) =
1
2
(p+a) ·q =

a3b
2c4 (b

2 + c2) (6)

The scaling factor going from4ABC to4ADE is ρ = p/a = (b/c)2 and

1
1−ρ2 =

c4

(c2−b2)(c2 +b2)

Then, the area of4ABC is

A(ABC) =
1

1−ρ2 ×
(

a3b
2c4 (b

2 + c2)

)
=

c4

(c2−b2)(c2 +b2)
×
(

a3b
2c4 (b

2 + c2)

)
=

a3b
2(c2−b2)

However, because A(ABC) = (a ·b)/2, we have

1
2
(a ·b) = a3b

2(c2−b2)

Again, we have c2 = a2 +b2. Note that this proof is essentially applying the previous proof twice,
once reducing4ABC to4ACD and the other reducing4ACD to4ADE.

Proof 6
Proofs Three and Four in Loomis [9, p. 26] share the same idea as discussed in the first proof

in this section. We only discuss Proof Four here and Proof Three can be obtained exactly the
same way. In Figure 5(b), 4ABC is the given right triangle. Extend the hypotenuse

←→
AB to D so

that BD = BC = a, and construct a line
←→
DE perpendicular to

←→
AB meeting

←→
AC at E. It is obvious

that 4BDE ∼=4BCE and 4AED ∼4ABC. As a result, we have p = (a/b)(a+ c). The area of
quadrilateral BCED is

A(BCED) = 2
(

1
2

a · p
)
=

a2(a+ c)
b

The scaling factor ρ bringing4AED to4ABC is

ρ =
a
p
=

b
a+ c

and
1

1−ρ2 =
(a+ c)2

(a+ c)2−b2

Consequently, we have

A(AED) =
1

1−ρ2 A(BCED) =

(
(a+ c)2

(a+ c)2−b2

)(
a2(a+ c)

b

)
=

a2(a+ c)3

b((a+ c)2−b2)
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However. A(AED) may also be calculated as

A(AED) =
1
2

p(a+ c) =
1
2

a(a+ c)2

b

Both results must agree:
a2(a+ c)3

b((a+ c)2−b2)
=

1
2

a(a+ c)2

b

A simple simplification yields c2 = a2 +b2.

3.3 Proofs with Squares Standing on the Sides of a Right Triangle

Proof 7
There are many proofs in which a square is constructed on a side of a right triangle, and some

of these proofs can easily be adapted for our method. The following is taken from Loomis [9,
Proof Nineteen, p. 43] (Figure 6). Because of4A1AA2 ∼4ABC and4BB1B2 ∼4ABC, we have
p = (bc)/a and q = (ca)/b. As a result, the length of side A1B1 is:

A1B1 = p+ c+q =
c

ab
(ab+a2 +b2)

Figure 6: A Square on Side c (i.e., AB)

The area of the trapezoid ABB1A1 is

A(AA1B1B) =
1
2
(c+A1B1) · c =

c2

2
· (a+b)2

ab

The scaling factor ρ is the ratio of c and A1B1

ρ =
c

A1B1
=

ab
ab+a2 +b2
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Therefore, we have

ρ
2 =

(ab)2

(ab+a2 +b2)2 and
1

1−ρ2 =
(ab+a2 +b2)2

(a2 +b2)(a+b)2

Hence, the area of4CA1B1 is calculated from the area of the trapezoid ABB1A1 as follows:

A(CA1B1) =
1

1−ρ2 A(ABB1A1) =
(ab+a2 +b2)2

(a2 +b2)(a+b)2 ·
c2

2
(a+b)2

ab
=

1
2
· c

2(ab+a2 +b2)2

ab(a2 +b2)
(7)

Because of similarity, the lengths of side CA1 and CB1 are simply CA1 = b/ρ and CB1 = a/ρ.
Consequently, the area of4CA1B1 is also calculated as follows:

A(CA1B1) =
1
2

CA1 ·CB1 =
1
2
· a

ρ
· b

ρ
=

1
2
· (ab+a2 +b2)2

ab

This result must agree with the one in Eqn. (7):

1
2
· c

2(ab+a2 +b2)2

ab(a2 +b2)
=

1
2
· (ab+a2 +b2)2

ab

Simplifying the above yields c2 = a2 +b2.
It does not have to use area in this particular case. Because 4ABC ∼ 4A1B1C, the altitude

from from C to
←→
AB and the altitude from C to

←−→
A1B1 are h = (a · b)/c and h+ c = (a · b+ c2)/c,

respectively, and hence the scaling factor ρ can also be computed as follows:

ρ =
h

h+ c
=

ab
ab+ c2

Because ρ = ρ, c2 = a2 +b2 follows immediately.

4 Jackson and Johnson’s Proof without Trigonometry

Proof 8
This section will re-do the proof of Ne’Kiya D. Jackson and Calcea Rujean Johnson. The

construction is similar, but the proof is completely geometrical without the use of trigonometry.
Given a right triangle 4ABC with 6 A = α, 6 B = β > α, 6 C = 90◦, a = BC, b = CA and c =
AB (Figure 8). The case of α = β = 45◦ will be addressed separately. Given a line segment
Y0Z0 of length x, construct a triangle 4XY0Z0 so that 6 Y0 = α and 6 Z0 = α+ 90◦. Note that this
construction does not work if α = β = 45◦ because X is at infinity and the area of 4XY0Z0 is not
finite. From Z0 construct a line perpendicular to

←−→
Y0Z0 meeting

←→
XY0 at Y1 and then construct a line

perpendicular to
←−→
Y1Z0 at Y1 meeting

←→
XZ0 at Z1. Let p = Y0Y1, q = Z0Z1, r = Y1Z1 and h = Z0Y1.
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Figure 7

Figure 8: Jackson and Johnson’s Proof: Part 1

Because4ABC∼4Y0Y1Z0, we have h = x(a/b) and p = x(c/b). Because4ABC∼4Z0Z1Y1,
we have q = h(c/b) = x(ac/b2) and r = x(a/b)2. As a result, the area of trapezoid Y0Z0Z1Y1 is

A(Y0Z0Z1Y1) =
1
2
(x+ r) ·h =

1
2

[
x+ x

(a
b

)2
]
·
(xa

b

)
=

x2

2
a(a2 +b2)

b3 (8)

Because 4XY0Z0 ∼ 4XY1Z1 and r/x = (a/b)2, the scaling factor from 4XY0Z0 to 4XY1Z1 is
ρ = (a/b)2. Hence, we have

ρ
2 =

(a
b

)4
and

1
1−ρ2 =

b4

b4−a4 =
b4

(b2−a2)(b2 +a2)

The area of4XY0Z0 is:

A(4XY0Z0) =
1

1−ρ2 ·A(Y0Z0Z1Y1) =

(
b4

(b2−a2)(b2 +a2)

)(
x2

2
a(a2 +b2)

b3

)
=

x2

2
ab

b2−a2 (9)

Then, we determine the lengths of XY0 and XZ0. Because we know Y0Y1 = p = x(c/b) and
ρ = (a/b)2, our method (Eqn. (2)) yields

XY0 =
p

1−ρ
= x

bc
b2−a2 and XZ0 =

q
1−ρ

= x
ac

b2−a2 (10)

Construct a line perpendicular to
←→
XY0 at Y0 meeting

←→
XZ0 at X ′. It is not difficult to see that

4X ′Y0Z0 is an isoceles with 6 Y0 = 6 Z0 = β and 6 X ′ = 2α (Figure 9).
The length k of the altitude on side Y0Z0 is k = (x/2)(b/a), and we have

A(4X ′Y0Z0) =
1
2
(x · k) = x2

22

(
b
a

)
(11)
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Figure 9: Jackson and Johnson’s Proof: Part 2

The length t of side X ′Y0 is t = (x/2)(c/a). Therefore, the area of triangle4XY0X ′ is

A(4XY0X ′) =
1
2

t ·XY0 =

(
1
2
· x

2
· c

a

)(
x

b · c
b2−a2

)
=

x2

22 ·
b
a
· c2

b2−a2 (12)

The area of4XY0X ′ may also be calculated as the sum of the areas of4X ′Y0Z0 and4XY0Z0:

A(4XY0X ′) = A(4XY0Z0)+A(4X ′Y0Z0) =
x2

22

(
b
a

)
+

x2

2
· ab

b2−a2 =
x2

2
· b

2a
· a

2 +b2

b2−a2 (13)

Because the areas computed by Eqn. (12) and Eqn. (13) are the same, we have

x2

22 ·
b
a
· c2

b2−a2 =
x2

2
· b

2a
· a

2 +b2

b2−a2

After a simple simplification, we have the desired result is c2 = a2 +b2.
If α = β = 45◦, the altitude on the hypotenuse is c/2. The area of the right triangle can be

computed in two ways: a2/2 and ((c/2) ·c)/2. Therefore, a2/2=((c/2) ·c)/2 implies a2+a2 = c2.

5 Jackson and Johnson’s Original Proof

Proof 9
The original proof of Jackson and Johnson used trigonometry based on side lengths XY0 and

XX ′ and the law of sines that is independent of the Pythagorean Theorem and the Pythagorean
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Identity [10, 12]. We know the following from the previous section:

XY0 = x · bc
b2−a2 and t =

( x
2

)( c
a

)
To compute sin(2α), we need XX ′ = t +XZ0. Our technique gives XZ0 as follows:

XZ0 =
1

1−ρ
·q = x · ac

b2−a2

Therefore, we have

XX ′ = t +XZ0 =
( x

2

)( c
a

)
+ x · ac

b2−a2 = (x · c) a2 +b2

2a(b2−a2)

From the right triangle4XY0X ′, with the help of Eqn (10) we have sin(2α) as follows:

sin(2α) =
XY0

XX ′
=

x · bc
b2−a2

(x · c) a2+b2

2a(b2−a2)

=
2ab

a2 +b2 (14)

From the given triangle we have sin(β) = b/c. From4X ′Y0Z0, the law of sines gives

sin(2α)

x
=

sin(β)
t

=
(b/c)

(x/2) · (c/a)
=

2ab
x · c2

Hence, we have the second way of computing sin(2α):

sin(2α) =
2ab
c2 (15)

The results from Eqn (14) and Eqn (15) must be equal. Then, it is obvious that the desired result
a2 + b2 = c2 holds. Because we know sin(2α) = 2ab/(a2 + b2), the above discussion yields the
Pythagorean Theorem and the double angle formula for sin(x) at the same time. Obviously, the
only difference between Jackson and Johnson’s original proof and the proof in the previous section
is the use of length and trigonometry vs. the use of area.

6 Possibly New Proofs

This section presents our (possibly) new proofs based on the concept and properties of the Lemoine
point. Section 6.1 introduces the concepts of symmedian and the Lemoine point and some proper-
ties. Then, Section 6.2 presents three more proofs.
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6.1 Symmedians and the Lemoine Point of a Triangle

A vertex of a triangle has an angle bisector that bisects the angle of that vertex and a median that is
the line joining that vertex and the midpoint of that vertex’s opposite side. In Figure 10, the black
solid line is the angle bisector of angle C, the red dashed line is the median, and the blue dashed
line is the line symmetric to the median with respect to the angle bisector. This line is referred to
as the symmedian of the median at that vertex. Note that the angle between the angle bisector and
the median is equal to the angle between the angle bisector and the symmedian. Or, the bisector
bisects the angle between the median and the symmedian.

Figure 10: The Symmedian at a Vertex

Each triangle has three vertices and hence three symmedians. It is known that these three
symmedians are concurrent. The point where the three symmedian lines meet is referred to as
the Lemoine point, the Grebe point or the Symmedian point (Figure 11). In this note we shall use
“Lemoine point”exclusively. This point plays a significant role in modern triangle geometry.

Figure 11: The Lemoine/Grebe/Symmedian Point

Suppose a triangle 4ABC has all three squares on its sides (Figure 12). Extending the outer
side of each square creates a similar right triangle 4A0B0C0. It is clear that 4ABC ∼4A0B0C0.
Because the corresponding sides are parallel, their intersection points are collinear (i.e., meeting
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at the line at infinity) and by Desargues’ Theorem the lines joining the corresponding vertices
are concurrent at a point K. This point K is exactly the Lemoine point of 4ABC and 4A0B0C0
(Gallatly [3, Chap X, p.86]).

Figure 12: The Lemoine Point Construction

In fact, K is the homothetic center of 4ABC and 4A0B0C0. It is also known as the center of
similarity or center of similitude of 4ABC and 4A0B0C0. Let the distances from K to sides a,
b and c be pa, pb and pc, respectively. An important property of K is pa : pb : pc = a : b : c or
pa/a = pb/b = pc/c (Honsberger [5, p. 59]). This property can be used as a characterization of
the Lemoine/Grebe/Symmedian point.

For a right triangle, the Lemoine point is the midpoint of the altitude on the hypotenuse. Sup-
pose 4ABC is a right triangle with 6 C = 90◦. We need to show that (1) the altitude on the hy-
potenuse is an symmedian and (2) the midpoint of this symmedian is the Lemoine point.

Figure 13: The Lemoine/Grebe/Symmedian Point of a Right Triangle

The first thing we need to show is that the altitude
←→
CD is actually a symmedian. This is not

difficult to do. Suppose 6 A and 6 B of4ABC be α and β (Figure 13). The line joining the midpoint
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O of side
←→
AB and C is a median. Because4ABC is a right triangle, O is the center of its circumcircle

whose radius is c/2. Hence,4OAC is an isosceles with 6 OAC = 6 OCA = α. Let the altitude on the
hypotenuse be

←→
CD. Because 6 BCD = α, the altitude is symmetric to the median

←→
CO with respect

to the angle bisector of 6 C. As a result, the altitude on the hypotenuse is an symmedian.
Now we need to show the Lemoine point is the midpoint of CD. Let K be a point on the altitude

and the distances from K to side a, b and c be pa, pb and pc. For convenience, let pc = w = r ·h,
where h is the length of the altitude and 0 < r < 1. In this way, pc is measured based on the ratio
related to h. Because4ABC ∼4CKE, we have

pa

a
=

CK
c

=
h(1− r)

c

Because4ABC ∼4KCF , we have
pb

b
=

h(1− r)
c

If K is the Lemoine point, we must have

pa

a
=

pb

b
=

pc

c
=

r ·h
c

This implies
h(1− r)

c
=

h · r
c

Therefore, if K is the Lemoine point, r = 1/2 and the Lemoine point is the midpoint of the altitude
on the hypotenuse.

6.2 New Proofs Based on the Lemoine Point

Proof 10
We showed that K is the midpoint of the altitude CD. Hence, pc = h/2. Because h = (a ·b)/c,

we have pc = h/2 = ((a ·b)/c)/2 = (a ·b)/(2c). Because of pa/a = pb/b = pc/c = (a ·b)/(2c2),
we have pa, pb and pc as follows:

pa =
a2b
2c2 , pb =

ab2

2c2 and pc =
ab
2c

(16)

Using the areas of the three trapezoids A(AA0B0B), A(BB0C0C) and A(CC0A0A) the area of
4A0B0C0 is calculated easily with our method. Note that pc and the pc + c are the lengths of the
altitude of 4ABC and 4A0B0C0 on the hypotenuse. Because 4ABC ∼ 4A0B0C0, ρ = c/c0 =
pc/(pc + c) and hence the scaling factor ρ going from4A0B0C0 to4ABC is

ρ =
pc

pc + c
=

ab
2c

ab
2c + c

=
a ·b

a ·b+2c2 and
1−ρ

ρ
=

2c2

ab
(17)
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Because a0 = a/ρ, b0 = b/ρ and c0 = c/ρ, the areas of trapezoids AA0C0C, BC0B0B and AA0B0B
are as follows:

A(AA0C0C) =
1
2
(a+a0) ·a =

1
2

(
a+

a
ρ

)
·a =

a2

2

(
1+

1
ρ

)
A(BC0B0B) =

1
2
(b+b0) ·b =

1
2

(
b+

b
ρ

)
·b =

b2

2

(
1+

1
ρ

)
A(AA0B0B) =

1
2
(c+ c0) · c =

1
2

(
c+

c
ρ

)
· c = c2

2

(
1+

1
ρ

)
The area sum of all three trapezoids is

A(outer ring of4ABC) =

(
1+

1
ρ

)
a2 +b2 + c2

2

Therefore, the area of4A0B0C0 according to our method is

A(A0B0C0) =
1

1−ρ2

[
a2 +b2 + c2

2

(
1+

1
ρ

)]
=

1
2

a2 +b2 + c2

ρ(1−ρ)
(18)

The area of4A0B0C0 may also be computed as follows:

A(4A0B0C0) =
1
2

A0C0 ·B0C0 =
1
2

(
a
ρ

)
·
(

b
ρ

)
=

1
2
· a ·b

ρ2

This result must agree with the one shown in Eqn. (18) and we have the following:

1
2

a2 +b2 + c2

ρ(1−ρ)
= A(A0B0C0) =

1
2
· a ·b

ρ2

Simplifying yields

a2 +b2 + c2

1−ρ
=

a ·b
ρ

or a2 +b2 + c2 =
1−ρ

ρ
· (a ·b)

and after plugging the value of ρ Eqn. (17) followed by a very simple simplification we have
c2 = a2 +b2.

Proof 11
It is worthwhile to note that with the property of the Lemoine point for right triangle in hand,

a simpler proof is possible. Recall the results in Eqn (16), the area of 4ABC is the sum of three
smaller triangles4KAB,4KBC and4KCA (Figure 14):

A(ABC) =
1
2
(pa ·a+ pb ·b+ pc · c) =

a ·b
2

(
a2

2c2 +
b2

2c2 +
1
2

)
=

a ·b
2
· a

2 +b2 + c2

2c2
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Figure 14: A Proof that Only Uses the Lemoine Point

Because the above is equal to (ab)/2, after a simple simplification we have c2 = a2 +b2. This is a
direct proof of the Pythagorean Theorem.

It is worthwhile to note that if K is the midpoint of the altitude on the hypotenuse, then pa, pb
and pc can be computed using similar triangles as in Eqn (16) and hence the same idea yields the
Pythagorean Theorem. In this way, the concept of the Lemoine can be completely avoided.

Proof 12
Our next question is: can K be selected as an arbitrarily point on the altitude? Of course, K

cannot be C and D. In this way, the distance pc can be measured with respect to the length of the
altitude. Again, let h be the length of the altitude CD and pc = r ·h (Figure 13). We have already
obtained the following at the beginning of this section:

pa

a
=

pb

b
=

(1− r)h
c

and
pc

c
=

r ·h
c

and hence

pa =
(a

c

)
h(1− r), pb =

(
b
c

)
h(1− r) and pc = h · r

The area of4ABC is the sum of the areas of three triangles:

A(4ABC) = A(4KBC)+A(4KCA)+A(4KAB)

=
1
2

a
(

a ·h
c

(1− r)
)
+

1
2

b
(

b ·h
c

(1− r)
)
+

1
2

c ·h · r

=
1
2

[
a2h
c
− a2h

c
r+

b2h
c
− a2h

c
r+ c ·h · r

]
=

1
2

[
h
c

(
a2 +b2)−h · r

(
a2

c
+

b2

c
− c
)]

=
1
2

(
h
c

)[(
a2 +b2)− r

(
a2 +b2− c2)]
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Because the area of4ABC is also computed as (h · c)/2, we have

1
2

(
h
c

)[(
a2 +b2)− r

(
a2 +b2− c2)]= 1

2
(c ·h)

A simple simplification yields:

(a2 +b2)− r(a2 +b2− c2) = c2

Hence, we have
(1− r)

(
a2 +b2− c2)= 0

Because 0 < r < 1, a2 +b2− c2 = 0 and hence the Pythagorean Theorem holds.
Note that this proof still works when we set r = 0. In this way, the values for pa and pb are still

correct and pc = 0.

Proof 13
The previous proof actually provides another proof without the use of Lemoine point. In Fig-

ure 15 we have K = D and pc = 0. Because4CDE ∼4ABC ∼4CDF , we have

pa

h
=

a
c

and
pb

h
=

b
c

We know that h = (a ·b)/c. Plugging h into pa and pb yields:

pa = h · a
c
=

(
a ·b

c

)(a
c

)
=

a2b
c2

pb = h · b
c
=

(
a ·b

c

)(
b
c

)
=

a ·b2

c2

The area of4ABC is the sum of the areas of the rectangle CEDF and the two right triangles4DBE
and4ADF . The area of rectangle CEDF is

A(CEDF) = pa · pb =
a2b
c2 ·

a ·b2

c2 =
a3b3

c4 (19)

Let x and y be the length of segments EB and FA, respectively. Because 4BDE ∼4BAC, we
have x/pa = a/b. Because4ADF ∼4ABC, we have y/pb = b/a. Hence, x and y in terms of a, b
and c are

x = pa ·
a
b
=

a2b
c2 ·h =

a2b
c2 ·

a ·b
c

=
a3

c2

y = pb ·
b
a
=

ab2

c2 ·h =
ab2

c2 ·
a ·b

c
=

b3

c2

19



Figure 15: A Special Case for a Right Triangle

The areas on4DBE and4ADF are computed as follows:

A(4DBE) =
1
2

x · pa =
1
2
· a

3

c2 ·
a2b
c2 =

1
2

a5b
c4

A(4DAF) =
1
2

y · pb =
1
2
· b

3

c2 ·
ab2

c2 =
1
2

ab5

c4

The area of4ABC is calculated as follows:

A(4ABC) = A(CEDF)+A(4DBE)+A(4ADF)

=
a3b3

c4 +
1
2

a5b
c4 +

1
2

ab5

c4

=
a ·b
c4 ·

a4 +b4 +2a2b2

2

=
a ·b
c4 ·

(a2 +b2)2

2
This area computation must agree with the known one (a ·b)/2:

a ·b
c4 ·

(a2 +b2)2

2
=

1
2
(a ·b)

Then we have (a2 +b2)2 = c4. However, this is equivalent to (a2 +b2)2− (c2)2 = 0 and hence we
have

(a2 +b2− c2)(a2 +b2 + c2) = 0

Because a2 + b2 + c2 cannot be 0, we must have a2 + b2− c2 = 0 and the Pythagorean Theorem
follows.

7 Conclusions

We developed an easy and effective way for proving the Pythagorean Theorem. This method is
based on a simple principle of similarity. Given a shape A and a similar shape B⊆ A, if the scaling
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factor from A to B is ρ (0 < ρ < 1), then the area of A is computed as A(A) = A(A−B)/(1−ρ2).
Note that even though this method is only applied to right triangles in this essay, it can be used with
general shapes. This method is applied to several classical proofs in Lommis [9] and to new proofs.
In particular, the use of trigonometry in Jackson and Johnson’s proof [7] is eliminated becoming
a geometrical one. With the help of the Lemoine Point, we have a number of new proofs based
on our method. The Appendix includes proofs of the angle difference and angle sum identities
of sin() and cos() being independent of the Pythagorean Theorem. Then, the computation of the
derivatives of sin() and cos() is derived from the angle sum identities, and, finally, with the help
of calculus, we offer a few more proofs of the Pythagorean Identity. Consequently, this essay
successfully demonstrated that many fundamental formulae of trigonometry are independent of the
Pythagorean Theorem and the Pythagorean Identity.

A Proofs of Some Important Trigonometric Identities

We present proofs showing that the angle difference and angle sum identities of sin() and cos() are
independent of the Pythagorean Theorem and the Pythagorean Identity, and the Pythagorean Iden-
tity is easily proved (Section A.1 and Section A.2). Versluys’ proof using the angle sum identity is
presented in Section A.2. Section A.3 discusses Schur’s proof of the Pythagorean Identity, which
is based on the angle difference identities. We show that the formulation of coordinate rotation is
also independent of the Pythagorean Theorem and the Pythagorean Identity. Then, from the angle
sum identities the double angle identities are also independent of the Pythagorean Theorem and the
Pythagorean Identity (Section A.4). Using some simple manipulations, we prove the Pythagorean
Identity using the double angle identities. In Section A.5, we establish the fact that computing
the derivatives of sin() and cos() is independent of the Pythagorean Theorem and the Pythagorean
Identity. The next few sections use basic knowledge in calculus to prove the Pythagorean Iden-
tity. Section A.6 proves the Pythagorean Identity using L’Hôpital’s Rule; Section A.7 proves that
f (x) = sin2(x)+ cos2(x) is a constant function; Section A.8 proves the Pythagorean Identity using
the power series of sin2(x) and cos2(x); and Section A.9 uses Euler’s formula in complex anal-
ysis. This firmly shows that Loomis’ claim is false and that even though analytic geometry uses
the Cartesian Coordinate System many fundamental results are independent of the Pythagorean
Theorem and the Pythagorean Identity.

Due to its length, this appendix will become a separate essay in the future.

A.1 The Angle Difference Identities

Without loss of generality, we assume 0 < β ≤ α < 90◦ in this section because the main focus is
a right triangle. Consider Figure 16. Line

←→
OQ makes an angle of α− β with the x-axis, where

OQ = 1. Let line
←→
OP make an angle of β with

←→
OQ, where P is the perpendicular foot from Q to

←→
OP.

Thus,
←→
OP makes an angle of α with the x-axis. From P and Q drop perpendiculars to the x-axis

meeting it at S and T . Therefore, we have QT = sin(α−β) and OT = cos(α−β). From 4OPQ
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we have PQ = sin(β) and OP = cos(β).

Figure 16: Proof of the Angle Difference Identities

In 4OPS, because sin(α) = PS/PO = PS/cos(β) we have PS = sin(α)cos(β). Similarly, we
have OS = cos(α)cos(β). From Q drop a perpendicular to

←→
PS meeting it at R. Note that 6 P of

4PQR is α. In 4PQR, because sin(α) = QR/QP = QR/sin(β) we have QR = sin(α)sin(β).
Similarly, we have PR = cos(α)sin(β). Consequently, the desired results are as follows:

sin(α−β) = QT = PS−PR = sin(α)cos(β)− cos(α)sin(β)

cos(α−β) = OS+ST = OS+RQ = cos(α)cos(β)+ sin(α)sin(β)

If α = β, we have the following:

1 = cos(0) = cos(α−α) = cos2(α)+ sin2(α)

The Pythagorean Identity can also be proved directly as shown in Figure 17. Construct a right
triangle4ABC with 6 A = α, 6 C = 90◦ and AB = 1. Let the perpendicular foot from C to

←→
AB be D.

Then, it is easy to see AC = cos(α) and BC = sin(α). In the right triangle 4ADC we have AD =
AC ·cos(α) = cos2(α). Similarly, in the right triangle4CDB we have BD = BC · sin(α) = sin2(α).
Because 1 = AB = AD+BD, we have the Pythagorean Identity sin2(α)+ cos2(α) = 1.

Note that if4OQT in Figure 16 collapses to the x-axis so that Q = T and OQ = OT = 1, then
PS is the altitude at P of4OPQ. In this case, Figure 16 reduces to Figure 17.
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Figure 17: Prove the Pythagorean Identity Directly

A.2 The Angle Sum Identities

We shall prove the angle sum identities for sin() and cos() based on Zimba’s approach. From O
construct a line

←→
OP that makes an angle of α+β with the x-axis and OP = 1 (Figure 18). From

O construct a line
←→
OQ that makes an angle α with the x-axis such that Q is the perpendicular foot

from P to
←→
OQ. In this way, the angle between

←→
OP and

←→
OQ is β. Let the perpendicular feet from P

and Q to the x-axis be S and T . From Q construct a perpendicular to
←→
PS meeting it at R. Hence, we

have sin(α+β) = PS, cos(α+β) = OS, sin(β) = PQ and cos(β) = OQ.

Figure 18: Proof of the Angle Sum Identities

From 4OQT , because sin(α) = QT/QO = QT/cos(β) we have QT = sin(α)cos(β). Simi-
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larly, we have OT = cos(α)cos(β). From4PQR, because sin(α) = QR/QP = QR/sin(β) we have
QR = sin(α)sin(β). Similarly, we have PR = cos(α)sin(β). Therefore, we have:

sin(α+β) = PR+RS = sin(α)cos(β)+ cos(α)sin(β)

cos(α+β) = OT −ST = cos(α)cos(β)− sin(α)sin(β)

Consequently, the angle sum identities for sin() and cos() are independent of the Pythagorean
Theorem and the Pythagorean Identity.

Versluys [17, p. 98] (1914) (Figure 19) in his collection of 96 proofs of the Pythagorean
Theorem indicated that Schur [13, p. 21–22] (1899) included a proof using the angle sum identity.
Let 0 < α < 90◦ be an angle of a right triangle. Then, from the angle sum identity we have

1 = sin(90◦) = sin(α+(90◦−α))

= sin(α)cos(90◦−α)+ cos(α)sin(90◦−α)

= sin2(α)+ cos2(α)

Thus, we have a trigonometry proof of the Pythagorean Identity and the Pythagorean Theorem.
Note that β = 90◦−α in Figure 18. In this case, S = O and P lies on the line perpendicular to←→
OT at O. The resulting configuration is similar to Figure 17 and a similar argument proves the
Pythagorean Identity directly.

A.3 Schur’s 1899 Proof and Coordinate Rotation

As mentioned in the last section, Schur [13, p. 22] offered a proof of the Pythagorean Identity. His
proof uses the concept of coordinate rotation.

Figure 20 is a modified Figure 18. Let the x- and y- axes of the given coordinate system be
−→
OT

and the line through O and perpendicular to
−→
OT , respectively. Let P be any point whose coordinates

in the given system be (x,y) and OP = r > 0. We have x = OS and y = PS. Suppose this system is
rotated an angle of α so that the new x-axis is

−→
OQ. Let the coordinates of P in the new system be

(x′,y′). Then, x′ = OQ and y′ = PQ. Let the angle between
−→
OP and

−→
OQ be β.

It is easy to find the relation from (x′,y′) to (x,y) as follows:

x = OS = OT −ST = OT −QR = x′ cos(α)− y′ sin(α)

y = PS = PR+RS = PR+QT = y′ cos(α)+ x′ sin(α)

The coordinate rotation expressions going from (x′,y′) to (x,y) is actually the angle sum identities
for cos(α+ β) and sin(α+ β). We just set r to 1 and replace x′ and y′ by cos(β) and sin(β),
respectively, and the angle sum identities follow immediately.
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(a) Cover (b) p. 98

Figure 19: Versluys’ 1914 Book

Going from (x,y) to (x′,y′) requires the use the angle sum identity:

x′ = r cos(β) = r cos((α+β)−α)

= r [cos(α+β)cos(α)+ sin(α+β)sin(α)]

= [r cos(α+β)]cos(α)+ [r sin(α+β)]sin(α)

= xcos(α)+ ysin(α)

y′ = r sin(β) = r sin((α+β)−α)

= r [sin(α+β)cos(α)− cos(α+β)sin(α)]

= [r sin(α+β)]cos(α)− [r cos(α+β)]sin(α)

= ycos(α)− xsin(α)

Because the angle sum identities are independent of the Pythagorean Identity, the coordinate
rotation relations are also independent of the Pythagorean Identity. Schur’s proof uses β = −α in
the angle sum identity of cos() which is essentially the angle difference identity of cos() and is the
same as the one discussed in Zimba [18], while Versluys’ proof [17] uses the angle sum identity of
sin() as discussed in previous section.
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Figure 20: Coordinate Rotation

In summary, there were trigonometric proof of the Pythagorean Identity by Schur [13] (1899)
and Versluys [17] (1914) long time ago before Zimba [18]. It is interesting to point out that
Loomis [9, p. 273] and Zimba [18] both cited Versluys’ book [17], but both missed Versluys’
simple proof and Schur’s book [13] which is cited in Versluys’ book.

A.4 The Double Angle Identities and the Pythagorean Identity

We now prove sin2(x)+ cos2(x) = 1 using the double angle identities:

sin(2α) = 2sin(α)cos(α)

cos(2α) = cos2(α)− sin2(α)

Because of the following:

sin(x) = 2sin
( x

2

)
cos
( x

2

)
cos(x) = cos2

( x
2

)
− sin2

( x
2

)
we have

sin2(x)+ cos2(x) =
(

sin2
( x

2

)
+ cos2

( x
2

))2

26



(a) Cover (b) p. 22

Figure 21: Schur’s 1912 Book

With the same technique, we have:

sin2(x)+ cos2(x) =
(

sin2
( x

2

)
+ cos2

( x
2

))2

=

((
sin2

( x
4

)
+ cos2

( x
4

))2
)2

=
(

sin2
( x

22

)
+ cos2

( x
22

))22

...

=
(

sin2
( x

2n

)
+ cos2

( x
2n

))2n

(20)

If there exists a x such that sin2(x)+cos2(x)> 1, then the expressions in Eqn (20) are all greater
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than 1. From two successive ones, we know(
sin2

( x
2n

)
+ cos2

( x
2n

))2n

=
(

sin2
( x

2n+1

)
+ cos2

( x
2n+1

))2n+1

Taking the 2n-th root we have

sin2
( x

2n

)
+ cos2

( x
2n

)
=
[
sin2

( x
2n+1

)
+ cos2

( x
2n+1

)]2
(21)

If a > 1, then a >
√

a > 1, and hence we have:

sin2
( x

2n

)
+ cos2

( x
2n

)
=
[
sin2

( x
2n+1

)
+ cos2

( x
2n+1

)]2
> sin2

( x
2n+1

)
+ cos2

( x
2n+1

)
> 1

and {sin2(x/2n)+ cos2(x/2n)}n=0,∞ is a strictly monotonically decreasing sequence with all terms
being greater than 1.

From Eqn (21) we have:

1 =
sin2(x/2n)+ cos2(x/2n)

[sin2(x/2n+1)+ cos2(x/2n+1)]2

Because the denominator is greater than 1, we have (sin2(x/2n+1)+cos2(x/2n+1))2 > sin2(x/2n+1)+
cos2(x/2n+1) and

1 =
sin2(x/2n)+ cos2(x/2n)

[sin2(x/2n+1)+ cos2(x/2n+1)]2
<

sin2(x/2n)+ cos2(x/2n)

sin2(x/2n+1)+ cos2(x/2n+1)

As n approaches ∞, the last part approaches 1 and we have 1 < 1, which is impossible. On
the other hand, if there exists a x such that sin2(x) + cos2(x) < 1, the sequence {sin2(x/2n) +
cos2(x/2n)}n=0,∞ is strictly monotonically increasing with all terms being less than 1. A similar
line of reasoning shows that it is also impossible, and, as a result, sin2(x)+ cos2(x) = 1 must hold
for all x. This proves the Pythagorean Identity without using the Pythagorean Theorem nor the
Pythagorean Identity.

A.5 d sin(x)
dx and d sin(x)

dx Are Independent of the Pythagorean Theorem

The angle sum and angle difference identities give the following:

sin(α+β) = sin(α)cos(β)+ cos(α)sin(β)

sin(α−β) = sin(α)cos(β)− cos(α)sin(β)

Subtracting the second from the first yields

sin(α+β)− sin(α−β) = 2cos(α)sin(β)
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Let p = α+β and q = α−β. Then, α = (p+q)/2 and β = (p−q)/2. Plugging p and q into the
above identity gives one of the sum-to-product identities:

sin(p)− sin(q) = 2cos
(

p+q
2

)
sin
(

p−q
2

)
Then, the derivative of sin() is computed as follows:

d sin(x)
dx

= lim
h→0

sin(x+h)− sin(x)
h

= lim
h→0

2cos
(2x+h

2

)
sin
(h

2

)
h

=

[
lim
h→0

cos
(

2x+h
2

)]
·
[

lim
h→0

sin(h/2)
h/2

]
= cos(x)

As h→ 0, the first term approaches cos(x) while the second approaches 1. Note that limh→0 sin(h)/h=
1 does not depend on the Pythagorean Identity. Because cos(x) = sin(π/2− x), by the Chain Rule
we have d cos(x)

dx = d sin(π/2−x)
dx = cos(π/2−x)d(π/2−x)

dx =−cos(π/2−x) =−sin(x) and the calcula-
tion of d sin(x)

dx and d sin(x)
dx is independent of the Pythagorean Theorem and the Pythagorean Identity.

A.6 Proving the Pythagorean Identity with L’Hôpital’s Rule

From Eqn (20), we shall prove the following :

lim
n→∞

[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= 1

The left-hand side of the above can be rewritten as[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= exp
(

2n ln
(

sin2
( x

2n

)
+ cos2

( x
2n

)))
= exp

(
ln
(
sin2 ( x

2n

)
+ cos2

( x
2n

))
1
2n

)

For convenience, let h = 1/2n. Therefore, as n→ ∞, h→ 0 and the above becomes[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= exp
(

ln(sin2(xh)+ cos2(xh))
h

)
As h→ 0, the numerator approaches ln(sin2(0)+ cos2(0)) = ln(1) = 0 and the denominator ap-
proaches 0. As a result, we have an indefinite form of 0/0 and L’Hôpital’s Rule is needed to

29



compute the limit. The derivative of ln(sin2(xh)+ cos2(xh)) with respect to h is

d(ln(sin2(xh)+ cos2(xh)))
dh

=
1

sin2(xh)+ cos2(xh)
d(sin2(xh)+ cos2(xh))

dh

=
1

sin2(xh)+ cos2(xh)
(2sin(xh)cos(xh)x+2cos(xh)(−sin(xh))x)

= 0

As a result, we have

lim
n→∞

[
sin2

( x
2n

)
+ cos2

( x
2n

)]2n

= exp(0) = 1

Consequently, sin2(x)+ cos2(x) = 1 holds.

A.7 f (x) = sin2(x)+ cos2(x) Is a Constant Function

Finally, we offer a very simple proof based on calculus. Let function f (x) be defined as follows:

f (x) = sin2(x)+ cos2(x)

Differentiate this function yields:

d f (x)
dx

=
d(sin2(x)+ cos2(x))

dx
= 2sin(x)cos(x)+2cos(x)(−sin(x)) = 0

Therefore, f (x) is a constant function for some c:

f (x) = sin2(x)+ cos2(x) = c

Because sin(0) = 0 and cos(0) = 1, we have

f (x) = sin2(x)+ cos2(x) = 1

This proves the Pythagorean Identity. Note that the computation of the derivatives of sin(x) and
cos(x) is independent of the Pythagorean Theorem and the Pythagorean Identity. Consequently,
the above proof is valid.

A.8 Integration and Products of Power Serie

We saw in the last section:

d sin2(x)
dx

= 2sin(x)cos(x) and
d cos2(x)

dx
=−2sin(x)cos(x)
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The following holds, where C1 and C2 are constants and g(x) is a function to be determined later:

sin2(x) =
∫

2sin(x)cos(x)dx =
∫

sin(2x)dx = g(x)+C1

cos2(x) = −
∫

2sin(x)cos(x)dx =−g(x)+C2

Adding these two together, we have

sin2(x)+ cos2(x) =C

where C is a new constant. Because sin(0) = 0 and cos(0) = 1, C = 1 and the Pythagorean Identity
is proved. This is a way of working the constant function approach in the previous section back-
ward. Bogomolny [1] shows a similar proof like this one; however, the proof here is for finding the
power series of sin2() and cos2().

What is the function g(x)? More precisely, what are sin2(x) and cos2(x)? We know the sin()
and cos() functions have power series representations as follows:

sin(x) =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
and cos(x) =

∞

∑
n=0

(−1)nx2n

(2n)!

Note that Taylor series expansion does not depend on the Pythagorean Identity and the Pythagorean
Theorem. Therefore, computing sin2(x) and cos2(x) using power series product and adding the
results together should provide another proof of the Pythagorean Identity. However, this can be
rather tedious. Fortunately, using integration we are able to bypass this tedious computation. From
sin2(x) obtained earlier, we have

sin2(x) =
∫

sin(2x)dx =
∫ ∞

∑
n=0

(
(−1)n(2x)2n+1

(2n+1)!

)
dx

=
∞

∑
n=0

(−1)n22n+1

(2n+1)!

∫
x2n+1dx =

∞

∑
n=0

(−1)n22n+1

(2n+1)!
· 1
(2n+1)+1

x(2n+1)+1 +C1

=
∞

∑
n=0

(−1)n22n+1

(2n+1)!2(n+1)
x2(n+1)+C1

Because sin(0) = 0, C1 = 0. Similarly, we have cos2(x) as follows:

cos2(x) =−
∞

∑
n=0

(−1)n22n+1

(2n+1)!2(n+1)
x2(n+1)+C2

Because cos(0) = 1, C2 = 1! Adding sin2(x) and cos2(x) together yields the Pythagorean Identity.
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A.9 Using Euler’s Formula

Euler’s formula is an important topic in a complex analysis course (Howie [6, p. 68]). There are
many ways to derive Euler’s formula. For example, by summing the power series of cos() and
isin(), where i =

√
−1 and z is a complex number, and rearranging terms we have

eiz = cos(z)+ isin(z)

Replacing z by −z in the above identity yields

e−iz = cos(z)− isin(z)

Multiplying the above two together and noting that eize−iz = eiz+(−iz) = e0 = 1 we have the PI
immediately.

B Who First Proved the Pythagorean Theorem Using Trigonometry?

Euclid’s The Elements (circa. 300 BC) includes a form of the Law of Cosines; however, due to the
fact that trigonometry was not invented in Euclid’s time, The Elements uses the areas of rectangles
instead of cos(). Euclid and his contemporaries expressed measures using lengths and areas. In
Heath’s translation [2, pp. 48–49] or [4, pp. 403–406] we find two propositions, Proposition 12
and Proposition 13. Proposition 12 is for obtuse triangles:

In obtuse-angled triangles the square on the side subtending the obtuse angle is greater
than the squares on the sides containing the obtuse angle by twice the rectangle con-
tained by one of the sides about the obtuse angle, namely that on which the perpendic-
ular falls, and the straight line cut off outside by the perpendicular towards the obtuse
angle [4, pp. 403–404].

Proposition 13 is for acute triangles:

In acute-angled triangles the square on the side subtending the acute angle is less than
the squares on the sides containing the acute angle by twice the rectangle contained by
one of the sides about the acute angle, namely that on which the perpendicular falls,
and the straight line cut off outside by the perpendicular towards the acute angle [4,
p. 406].

The differences between the obtuse case and the acute case is the greater than in the former
and the less than in the latter. Figure 22 illustrates what these two propositions state. From each
vertex drop a perpendicular to its opposite side (i.e., altitude). This line cuts the square on the
opposite side into two rectangles. If all angles are acute, each of the three squares are divided into
two smaller rectangles both being subsets of the containing square (Figure 22(a)). Furthermore,
the two rectangles sharing a common (triangle) vertex have the same area. If the triangle has an
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(a) The Acute Angle Case (b) The Obtuse Angle Case

Figure 22: Proposition 12 and Proposition 13 in Euclid’s The Elements

obtuse angle (Figure 22(b)), the situation is different. In this case, the perpendicular from a vertex
that is not obtuse to its opposite side is outside of the triangle, and the division of the square on the
opposite side is also outside of the square. However, the rectangles sharing a common (triangle)
vertex still have the same area. Note that each of these two rectangles has one side the same as the
square and the opposite vertex of this rectangle is the perpendicular foot from a triangle vertex to
the far side of the rectangle.

Consider first case of acute angle 6 A (i.e., Proposition 13). From each vertex drop a perpendic-
ular to its opposite side. Each perpendicular intersects the opposite side of the vertex and the far
side of the square (Figure 23). For example, from A drop a perpendicular to its opposite side

←→
BC

meeting it at D and the opposite side of the square on BC at DA. Do the same for B and C and name
the intersection points accordingly.

(a) (b) (c)

Figure 23: Acute Angle: Three Pairs of Scissors
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Each vertex has a pair of scissors of triangles. These two triangles share the same vertex of
the triangle and have one edge from each of its two adjacent squares. The two triangles in each
pair are congruent with each other. For example, for the scissors at B (Figure 23(a)), 6 CBBC of
4CBBC and 6 ABBA of 4ABBA is the sum of 6 B and 90◦. Because we have 6 CBBC = 6 ABBA,
BBC = AB = c and BC = BBA = a,4BBC and4ABBA are congruent and have the same area.

Because triangles 4ABBA and 4DBBA have the same base a and the same altitude BD, they
have the same area, and Area(4ABBA) =

1
2 Area(DBBADA). Similarly, we have Area(4CBBC) =

1
2 Area(FBBCFC). Hence, we have Area(DBBADA) = Area(FBBCFC). Applying the same tech-
nique to vertex C (Figure 23(b)) and to vertex A (Figure 23(c)) yields the following:

Area(DBBADA) = Area(FBBCFC)

Area(CDDACA) = Area(CEEBCB)

Area(AFFCAC) = Area(AEEBAB)

Then, the desired result is almost there:

a2 = Area(BCCABA)

= Area(DBBADA)+Area(CDDACA)

= Area(FBBCFC)+Area(CEEBFB)

=
(
c2−Area(AFFCAC)

)
+
(
b2−Area(AEEBAB)

)
= b2 + c2− (Area(AFFCAC)+Area(AEEBAB))

= b2 + c2−2 ·Area(AFFCAC)

or b2 + c2−2 ·Area(AEEBAB) (22)

This is what Proposition 13 states.
We next turn to the obtuse case (i.e., Proposition 12) (Figure 24). Again, there is a pair of

scissors at each vertex and the angles are still the sum of the angle at that vertex and 90◦. Therefore,
we still have

a2 = Area(BCCABA)

= Area(BDDABA)+Area(CDDACA)

= Area(FBBCFC)+Area(CEEBCB)

=
(
c2 +Area(AFFCAC)

)
+
(
b2 +Area(AEEBAB)

)
= b2 + c2 +(Area(AFFCAC)+Area(AEEBAB))

= b2 + c2 +2 ·Area(AFFCAC)

or b2 + c2 +2 ·Area(AEEBAB) (23)

This proves the obtuse angle case (Proposition 12).
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(a) (b) (c)

Figure 24: Obtuse Angle: Three Pairs of Scissors

What we have discussed so far is the Euclid version of the Law of Cosines. Let us introduce
trigonometry into these two identities. In Figure 23(a), we have AE = c ·cos(A) and AF = b ·cos(A)
and the following holds:

Area(AFFCAC) = AAC ·AF

= c ·AF

= b · c · cos(A)

Area(AEEBAB) = AAB ·AE

= b ·AE

= b · c · cos(A)

Hence, from Eqn (22) we have

a2 = b2 + c2−2 ·Area(AEEBAB) = b2 + c2−2b · c · cos(A)

This is the Law of Cosines for the acute angle case. The same holds for the obtuse angle case;
however, the involved angle is 180◦− 6 A and cos(A) =−cos(180◦−A). For example, in rectangle
AFFCAC we have

Area(AFFCAC) = AAC ·AF = c ·AF

From4AFC, we have

AF = b · cos(6 CAF) = b · cos(180◦−A) =−b · cos(A)

Similarly, from4AEB we have AE =−c · cos(A). As a result, the folllowing holds:

Area(AFFCAC) = −b · c · cos(A)

Area(AEEBAB) = −b · c · cos(A)
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Plugging these two into Eqn (23) gives us the Law of Cosines. In this way, we proved that Euclid’s
Proposition 12 and Proposition 13 are actually equivalent to the Law of Cosines.

It is obvious that if 6 A = 90◦ we have the Pythagorean Theorem. As a matter of fact, in The El-
ements Euclid proved the Pythagorean Theorem with the same mechanism, because if 6 A= 90◦ we
have Area(AFFCAC) = Area(AEEBAB) = 0! Because Euclid’s proof does not use the Pythagorean
Theorem nor the Pythagorean Identity, and because we only use the definition of cos() to establish
the Pythagorean Theorem, this is actually the first trigonometric proof of the Pythagorean Theo-
rem. Therefore, Loomis’ claim that the Pythagorean Theorem has no trigonometric proof is false
(Loomis [9, pp. 244-245]).

C Updating History

1. First Complete Draft: August 21, 2023

2. Typos Corrected and Abstract and Appendix Added: September 19, 2023

3. Typos/Diagrams Corrected + Images & New Material Added: November 3, 2023

4. Partially Rewritten: January 15, 2024.

5. A Minor Typo in Section A.5 Corrected: February 28, 2024.

6. A direct proof of the Pythagorean Identity is added even though one can collapse the triangle
4OQT so that OQ = OT = 1 in Figure 16: October 31, 2024.

7. There are several significant updates in this version as follows (March 20, 2025):

(a) The abstract and introduction were modified to reflect the changes

(b) Appendix A was greatly expended to include more trigonometric proofs of the Pythagorean
Identity. More specifically, a proof of the Pythagorean Identity that does not use calcu-
lus is added, the product of power series approach is included, and a simple proof using
Euler’s formula in complex analysis is added.

(c) Appendix B that presents the original proofs of the Law of Cosines in Euclid’s The
Elements is added. Because trigonometry was not available to Euclid, the proofs in The
Elements used lengths and areas, but these proofs can easily be modified using cos().

(d) Schur’s proof (1899), which is exactly the same as that of Zimba [18], is added to
Appendix A.1 along with an almost trivial proof of the Pythagorean Identity.

(e) Versluys’ proof (1914), which uses the angle sum identity of sin(α+ β), is added to
Appendix A.2.

No more updates will be added to this essay, because it is now very long and because
rewriting the whole essay would be very time consuming. Instead, I will perhaps create
new essays for new results on this topic.

36



References

[1] Alexander Bogomolny, More Trigonometric Proofs of the Pythagorean Theorem, available at
https://www.cut-the-knot.org/pythagoras/TrigProofs.shtml (retrieved March 17,
2025).

[2] Euclid, The Elements: All Thirteen Books Complete in One Volume, Translated by Sir Thomas
L. Heath, Green Lion Press, Santa Fe, New Mexico, 2002.

[3] William Gallatly, The Modern Geometry of the Triangle, 2nd edition, Francis Hodgson, Lon-
don, 1910.

[4] Sir Thomas L. Heath, The Thirteen Books of Euclid’s Elements, Translated from the Text of
Heiberg, Volume I, Second Edition (Dover Edition), Dover Publications, New York, 1956.

[5] Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, The
Mathematical Association of American, 1995.

[6] John M. Howie,, Complex Analysis, Springer, 2003.

[7] Ne’Kiya D. Jackson and Calcea Rujean Johnson, An Impossible Proof of Pythagoras, AMS
Spring Southeastern Sectional Meeting, March 18, 2023 (https://meetings.ams.org/
math/spring2023se/meetingapp.cgi/Paper/23621).
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