Ching-Kuang Shene (冼鏡光), Professor Emeritus
Department of Computer Science
Michigan Technological University
Houghton, MI 49931
USA
Created September 18, 2025
As mentioned on other pages here, Loomis believed that all the fundamental formulae of trigonometry are themselves based upon the truth of the Pythagorean Theorem. However, we have shown that the angle difference and angle sum identities can be proved without using the Pythagorean Theorem and the Pythagorean Identity. On this short page and the next one we will talk more about this topic.
![]() |
From the angle sum identities for sine and cosine, we get the following: $$ \begin{eqnarray*} \sin(2\alpha) &=& 2\sin(\alpha)\cos(\alpha) \\ \cos(2\alpha) &=& \cos^2(\alpha) - \sin^2(\alpha) \end{eqnarray*} $$ and $$ \begin{eqnarray*} \sin(x) &=& 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \\ \cos(x) &=& \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \end{eqnarray*} $$ Then, from the above the following holds: \[ \sin^2(x) + \cos^2(x) = \left( \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) \right)^2 \] Repeating this process we have the following: $$ \begin{eqnarray*} \sin^2(x) + \cos^2(x) &=& \left( \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) \right)^2 \\ &=& \left( \cos^2\left(\frac{x}{4}\right) + \sin^2\left(\frac{x}{4}\right) \right)^4 \\ &\vdots& \\ &=& \left( \cos^2\left(\frac{x}{2^2}\right) + \sin^2\left(\frac{x}{2^n}\right) \right)^{2^n} \end{eqnarray*} $$ It is not difficult to prove the above using mathematical induction. Because all results on the right hand side are equal for every \( n \), what is the result when \( n \) approaches infinity? We shall prove the following using L'Hôpital's Rule: \[ \sin^2(x) + \cos^2(x) = \lim_{n\rightarrow\infty} \left( \cos^2\left(\frac{x}{2^2}\right) + \sin^2\left(\frac{x}{2^n}\right) \right)^{2^n} = 1\] We will also prove the same result with an elementary way without using L'Hôpital's Rule. Therefore, the Pythagorean Identity is established without using the Pythagorean Theorem and the Pythagorean Identiy
Go back to Home Page.