Chapter 3 Section 3 MA1032 Data, Functions & Graphs

Sidney Butler

Michigan Technological University

October 10, 2006

Characteristics of $Q = ab^t$

$$f(t) = 20(1.4)^{t}$$
$$g(t) = 28(1.2)^{t}$$
$$h(t) = 15(0.6)^{t}$$
$$k(t) = 10(0.8)^{t}$$

- Changing initial values
- Changing growth factor

t	9	12	15	18	21
h(t)	120	216	389	700	1260

Problems #21 & #22

- For which value(s) of a and b is y = ab^x an increasing function? A decreasing function? Concave up?
- Compare f(x) = a^x where a > 1 and g(x) = b^x where 0 < b < 1. Include graphs in your answer.

Let $P = f(t) = 1000(1.04)^t$ be the population of a community in the year t.

- Evaluate f(0) and f(10). What do these expressions represent in terms of the population?
- If the percentage growth rate remains constant, approximately when will the population reach 2500 people?

Summary

- Initial value & graph
- I Growth factor & graph
- Interview Boundary Horizontal Asymptotes