Chapter 8 Section 2 MA1032 Data, Functions & Graphs Sidney Butler Michigan Technological University November 29, 2006 ### Exercise Let $$f_1(x)=x$$, $f_2(x)=\frac{1}{x}$, $f_3(x)=1-x$, $f_4(x)=\frac{1}{1-x}$, $f_5(x)=\frac{x-1}{x}$, and $f_6(x)=\frac{x}{x-1}$. Note that | 0 | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | |-------|----------------|-------|-------|-------|----------------|-------| | f_1 | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | | f_2 | f_2 | f_1 | f_4 | f_3 | f_6 | f_5 | | f_3 | f ₃ | f_5 | f_1 | f_6 | f_2 | f_4 | | f_4 | f ₄ | f_6 | f_2 | f_5 | f_1 | f_3 | | f_5 | f_5 | f_3 | f_6 | f_1 | f ₄ | f_2 | | f_6 | f_6 | f_4 | f_5 | f_2 | f_3 | f_1 | #### Inverse #### Definition Suppose Q = f(t) is a function with the property that each value of Q determines exactly one value of t. Then f has an inverse function, f^{-1} and $$f^{-1}(Q) = t$$ if and only if $Q = f(t)$. If a function has an inverse, it is said to be invertible. ## **Properties** If y = f(x) is an invertible function and $y = f^{-1}(x)$ is its inverse, then - $f^{-1}(f(x)) = x$ for all values of x for which f(x) is defined. - $f(f^{-1}(x)) = x$ for all values of x for which $f^{-1}(x)$ is defined. #### Example Check that $g(x) = 1 - \frac{1}{x-1}$ and $f(x) = 1 + \frac{1}{1-x}$ are inverses of each other. ## Finding an Inverse #### Example Find the inverse of $h(x) = \frac{\sqrt{x}}{\sqrt{x}+1}$. ### Non-Invertible Functions #### Example Does $f(x) = x^2$ have an inverse? #### Horizontal Line Test - Domain of f^{-1} = Range of f - Range of f^{-1} = Domain of f ## Restricting the Domain Could we make x^2 invertible? ## Summary - Definition - Properties - Finding an Inverse - Domain & Range #### Exercise Let $$f_1(x) = x$$, $f_2(x) = \frac{1}{x}$, $f_3(x) = 1 - x$, $f_4(x) = \frac{1}{1-x}$, $f_5(x) = \frac{x-1}{x}$, and $f_6(x) = \frac{x}{x-1}$. Note that | 0 | f_1 | f_2 | f ₃ | f_4 | f_5 | f_6 | |-------|-------|-------|----------------|-------|----------------|-------| | f_1 | f_1 | f_2 | f ₃ | f_4 | f_5 | f_6 | | f_2 | f_2 | f_1 | f_4 | f_3 | f_6 | f_5 | | f_3 | f_3 | f_5 | f_1 | f_6 | f_2 | f_4 | | f_4 | f_4 | f_6 | f_2 | f_5 | f_1 | f_3 | | f_5 | f_5 | f_3 | f_6 | f_1 | f ₄ | f_2 | | f_6 | f_6 | f_4 | f_5 | f_2 | f_3 | f_1 | Using the table above, find the following: - 1 f_6^{-1} - 2 $(f_3 \circ f_6)^{-1}$ - 3 F if $f_2 \circ f_5 \circ F = f_5$.