Workshop 3 - Chapter 6

Solutions

November 14, 2006

1. Find approximations to two decimal places for the coordinates of the point Z in the figure below. [1]

See the figure on your worksheet.

Solution. $(r \cos \theta, r \sin \theta) = (4.94, -15.22).$

2. What angle in radians corresponds to the given number of rotations around the unit circle?

Solution.

- (a) 4 revolutions = 8π
- (b) -6 revolutions $= -12\pi$
- 3. If you start at the point (0, 1) on the unit circle and travel counterclockwise through a given angle (in radians), in which quadrant will you be? *Solution.*
 - (a) 2 is in quadrant II.
 - (b) 6 is in quadrant IV.

4. Without a calculator, match the graphs to the following functions:

(a) $y = \sin(2t)$	
Solution. This is graph $C(t)$.	
(b) $y = (\sin t) + 2$	
Solution. This is graph $D(t)$.	
(c) $y = 2\sin t$	
Solution. This is graph $A(t)$.	

- (d) $y = \sin(t+2)$ Solution. This is graph B(t).
- 5. State the amplitude, period, and horizontal shifts for the function. Without a calculator, graph the function on the given interval. [5]

$$y = \cos(2t + \frac{\pi}{4}), \ -\pi \le 5 \le 2\pi$$

Solution. The amplitude is 1. The period is π . the Horizontal shift is $\frac{\pi}{4}$ units to the left.

6. Find exact values without a calculator.

Solution.

- (a) $\cos 540^\circ = -1$
- (b) $\sin \frac{7\pi}{6} = \frac{-1}{2}$
- (c) $\sin(\frac{-2\pi}{3}) = \frac{-\sqrt{3}}{2}$

7. A weight is suspended from the ceiling by a spring. The figure below shows a graph of the distance from the ceiling to the weight, d = f(t), as a function of time. Find a possible formula for f(t).

Solution.
$$y = 4\sin(2\pi t) + 10.$$

8. Find the exact solution for x where $0 \le x \le 2\pi$ for $2\cos x = 1$. [2] Solution. $x = \frac{\pi}{3}, \frac{5\pi}{3}$

9. If $\cos \alpha = \frac{-\sqrt{3}}{5}$ and α is in the third quadrant, find exact values for $\sin \alpha$ and $\tan \alpha$. [2]

Solution.
$$\sin \alpha = \frac{-\sqrt{22}}{5}$$
 and $\tan \alpha = \frac{\sqrt{66}}{3}$.