MA1032 – Workshop – Chapters 3 & 4

Sidney Butler

October 17, 2006

- 1. A town has a population of 3000 people at year t = 0. Write a formula for the population, P, in year t if the town
 - (a) grows by 200 people per year. Solution. P = f(t) = 3000 + 200t
 (b) grows at a continuous rate of 6% per year. Solution. P = f(t) = 3000e^{0.06t}
 - (c) shrinks by 4% per year. Solution. $P = f(t) = 3000(0.96)^t$
- 2. One of the functions in the table below is linear and the other is exponential. Find formulas of these functions.

x	-2	-1	0	1
f(x)	48	12	3	$\frac{3}{4}$
g(x)	$\frac{20}{3}$	$\frac{16}{3}$	4	$\frac{8}{3}$

Solution. $f(x) = 3\left(\frac{1}{4}\right)^x$ and $g(x) = 4 - \frac{4}{3}x$.

- 3. Find a formula for the exponential function. (See worksheet for the graph.) Solution. $P = f(x) = 50(0.8326)^x$
- 4. World poultry production was 69 million tons in the year 2001 and increasing at a continuous rate of 3% per year. Assume that this growth rate continues.
 - (a) Write an exponential formula for world poultry production, P, in million tons, as a function of the number of years, t, since 2001. Solution. $P = f(t) = 69e^{0.03t}$
 - (b) Use the formula to estimate world poultry production in the year 2005.
 Solution. 77.8 million tons

- (c) In what year does the world poultry production go over 90 million tons? Solution. 2010 $\hfill \Box$
- 5. If $\ln 2 = a$ and $\ln 3 = b$, use properties of logarithms to write each logarithm in terms of a and b.

(a)	$\ln 6$	
	Solution. $a + b$	
(b)	$\ln \frac{2}{3}$	_
	Solution. $a - b$	
(c)	$\ln 24$	
	Solution. $3a + b$	
(d)	$\ln(2e)$	
	Solution. $a+1$	

6. The half-life of radioactive potassium is 1.3 billion years. If 10 grams is present now, how much will be present in 100 years?

Solution. 9.99 grams

- 7. Solve for x:
 - (a) $3^x = 14$ Solution. $x = \frac{\ln 14}{\ln 3} \approx 2.402$
 - (b) $\log x + \log(x + 15) = 2$ Solution. x = 5 Notice that x = -20 is not a solution because then you would have to take the log of a negative number which is not possible.