Exponential Derivatives Worksheet

Name _____

February 20, 2007

1. Find the derivatives of the given functions.

(a)	$y = 5^x + 2$	
	Solution. $y' = (\ln 5)5^x$	
(b)	$y = 5t^2 + 4e^t$	
	Solution. $y' = 10t + 4e^t$	
(c)	$f(x) = 12e^x + 11^x$	
	Solution. $f'(x) = 12e^x + (\ln 11)11^x$	
(d)	$y = 3x - 2 \cdot 4^x$	
	Solution. $y' = 3 - 2(\ln 4)4^x$	
(e)	$y = \frac{3^x}{3} + \frac{33}{\sqrt{x}}$	
	Solution. y may be rewritten as $y = \frac{3^x}{3} + 33x^{(-1/2)}$.	
	$y' = \frac{(\ln 3)3^x}{3} - \frac{33}{2x^{3/2}}$	
(f)	$f(t) = (\ln 3)^t$	
	Solution. $f'(t) = (\ln(\ln 3))(\ln 3)^t$	
(g)	$y = 5 \cdot 5^x + 6 \cdot 6^x$	
	Solution. $y' = 5(\ln 5)5^x + 6(\ln 6)6^x$	
(h)	$f(x) = e^k + k^x$	
	Solution. $f'(x) = (\ln k)k^x$	
(i)	$f(x) = e^{1+x}$	
	Solution. $f(x)$ may be rewritten as $f(x) = e(e^x)$.	_
(.)	$f'(x) = e(e^x) = e^{x+1}$	\Box
(j)	$y = \pi^2 + \pi^x$	_
	Solution. $y' = (\ln \pi)\pi^{*}$	\square

2. Find the equation of the tangent line to $f(x) = 3^x$ at the point where x = 2. Solution.

$$f'(x) = (\ln 3)3^x$$

The tangent line has slope $m = f'(2) = 9 \ln 3$. A point on the tangent line is (2, f(2)) = (2, 9). Using the point-slope form of a line, we get

$$y - 9 = 9\ln 3(x - 2).$$

That is, the equation of a tangent line to f(x) at the point x = 2 is $y = (9 \ln 3)x - 18 \ln 3 + 9$.