Scor	e:		/	150]	Na	m	e:	
· .		_							

Instructor:

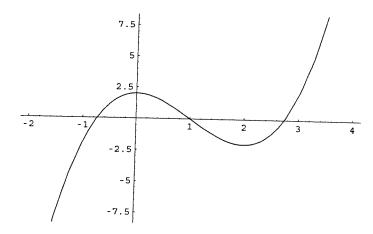
Final Exam Part I (Calculator Section)

MA1161 Spring 2006

Show sufficient work to justify all answers.

1. Let T(t) be the temperature (in ${}^{\circ}F$) in Dallas t hours after midnight June 2, 2005. The table shows values of this function recorded every two hours.

t	0	2	4	6	8	10	12	14
T	73	73	70	69	72	81	88	91


(a) What is the meaning of T'(10)?

T'(10) means	ſ.	41	
		41	

(b) Estimate the value of T'(10). Include units

$$T'(10) =$$
_____[4]

2. The graph of f(x) is shown below. Sketch a possible graph of f'(x) on the same set of axes.

3.	A ball is thrown straight down from the top of a building. Use the height function $h(t) = -16t^2 - 22t + 220$ ft. to answer the following:							
	(a) What is the average velocity of the ball during the first 3 seconds? Include units							
	Average Velocity =	_ [5]						
	(b) Find the exact instantaneous velocity of the ball at $t=3$ seconds. Include units							
	Instantaneous Velocity =	_ [5]						
	(c) What is the acceleration of the ball at $t=3$ seconds? Include units							
	$Acceleration = \underline{\hspace{1cm}}$	_ [5]						

4.	. Suppose we have an implicit function $x^2y + 4y^2 =$	3	
	(a) Find $\frac{dy}{dx}$		
		$\frac{dy}{dx} = $	[6]
	(b) Find the slope of the line tangent to the curv	we at the point $(1, -1)$	
		Slope =	[3]
	(c) Find the equation of the tangent line at (1, -	1)	

 $f(x) = \underline{\hspace{1cm}} [3]$

5. Use the table to answer the following questions

x	-1	0	1	2	3
f(x)	3	3	1	0	1
g(x)	1	2	2.5	3	4
$\int f'(x)$	-3	-2	-1.5	-1	1
g'(x)	2	3	2	2.5	3

(a) Find $\frac{d}{dx}(\frac{f(x)}{g(x)})$ at x = -1.

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \underline{\qquad} [5]$$

(b) Find $\frac{d}{dx}(f(g(x)))$ at x = 0.

$$\frac{d}{dx}(f(g(x))) = \underline{\qquad} [5]$$

6. Solve the initial value problem $\frac{dP}{dt} = -5e^{-t}$ when P(0) = 8.

7.	Con	sider th	ne functi	on $f(x) =$	x^3e^{-3x} , de	efined ove	er the interva	$1-1 \le x \le$	2.	
	(a)	Find a	ny critic	al points a	and classify	y each as to verify	a local maxir your solution	num, local r s.	minimum or ne	either.
		050 01.	10 150 01	Ziid doll		<i>j</i> .	,			
							Local Max:			[4]
	(b)	Identi	fy the gl	obal mini	mum and g	global ma	eximum, if th	ey exist.		
							Global Min:			[2]
							Global Max:	and the second s		[2]
	(c)	Give t	the best	possible b	ounds for	the funct	ion.			
							Bounds:			[2]

8.	You want to make a cylindrical can, capped at both ends, using 75 square inches of aluminum. What dimensions will maximize the volume of the can? Show your work to verify the solution is a maximum. Include units						
			Dimensions =	F-3			
			Dimensions =	[6]			

9. A raindrop is a perfect sphere. When the radius is 0.2 mm, the radius is increasing at .001 mm/second. At what rate is the volume of the raindrop changing at that moment? Include units

 $Rate = \underline{\hspace{1cm}} [e$

10. A car going 60 ft./sec brakes to a stop in 8 seconds. Its velocity is recorded every 2 seconds and is given in the following table

t seconds	0	2	4	6	8
v(t) ft./sec	60	38	20	8	0

(a) Find the LHS (left-hand sum) and the RHS (right-hand sum) of the distance traveled by the car during the 8 seconds (using $\Delta t = 2$). Include units

$$LHS = \underline{\hspace{1cm}} [4]$$

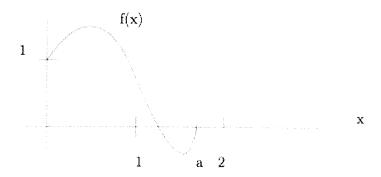
$$RHS = \underline{\hspace{1cm}} [4]$$

(b) Give your best estimate of the distance traveled by the car during the 8 seconds. **Include units**

11 (

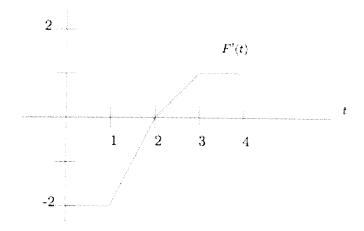
(a) $\int_0^2 f(x)dx$

$$\int_0^2 f(x)dx = ____[4]$$


(b) The average value of f(x) on [0,2].

$$Average\ Value = \underline{\hspace{1cm}} [4]$$

(c) $\int_{-2}^{2} f(x) dx$


$$\int_{-2}^{2} f(x)dx =$$
 [4]

- 12. Using the figure below, list from least to greatest,
 - (a) The area bounded by f(x) and the x-axis between x = 0 and x = a.
 - (b) The average value of f(x) on $0 \le x \le a$.
 - (c) $\int_0^a f(x)dx$

Least to Greatest: _____[3]

13. The figure below shows F'(t). If F(0) = 1, use the Fundamental Theorem of Calculus to find F(3).

Score: Name:	Instructor:	
Score: Name: Final Exam Part II (Non-Calculate	or Section)	MA1161 Spring 2006
Show sufficient work to justify	all answers.	
1. Find the derivatives of the fo	ollowing functions (Without simplifying t	the answer):
(a) $s(t) = \frac{1}{t} + \pi t$		
() ()		
	s'(t) =	[4]
	· (v)	t J
(b) $v = x^2 \arctan \sqrt{x}$		
	v' =	[4]
(c) $f(x) = \ln(e^{3x})$		
(c) $f(x) = m(c)$		
	£!/\	ſκĵ
	$f'(x) = \underline{\hspace{1cm}}$	[4]

(d) $g(x) = \frac{\cos x}{x^3 + 1}$

•	T					
2.	Lva	luate	each	of the	following	
			COOT.	OI UIIC	TOHOWING	

(a)
$$\int \cos x \ dx$$

$$\int \cos x \, dx = \underline{\qquad} [4]$$

(b)
$$\int_0^2 (2x^2 + 3x) dx$$

$$\int_0^2 (2x^2 + 3x) dx = \underline{\qquad} [6]$$

(c)
$$\int_1^e \left(\frac{1}{y}\right) dy$$

$$\int_1^e (\frac{1}{y}) dy = \underline{\qquad} [6]$$

(d)
$$\frac{d}{dx} \int_0^x \sin \sqrt{t} \ dt$$

$$\frac{d}{dx} \int_0^x \sin \sqrt{t} \ dt = \underline{\qquad} [6]$$