Memory Mapped I/O

* Basic idea: map a part of a file (or other object)
into your virtual address space.

* Accesses to the mapped part of your address
space converted into file reads and writes by the
OS.

* Why?

« May be faster than conventional file i/o.

» May lead to better, less error-prone, programming
style.

Memory-Mapped 1/0
MMAP (2) Linux Programmer’s Manual MMAP (2)

NAME
mmap, munmap - map or unmap files or devices into memory

SYNOPSIS
#include <sys/mman.h>

#ifdef _POSIX_MAPPED_FILES
void #mmap(void #start, size_t length, int prot , int flags, int fd, off_t offset);
int munmap(veid #*start, size_t length);

#endif

DESCRIPTION
The mmap function asks to map length bytes starting at offset offset
from the file (or other object) specified by the file descriptor fd
into memory, preferably at address start. This latter address 1is a
hint only, and is usually specified as 0. The actual place where the
object is mapped is returned by mmap, and is never O.

start

Stack

len

. S,

Mapped Portion
of File

Heap

Initialized Data

Uninitialized Data

Text

Memory-Mapped |/O

=— Offset —

fd

len

Memory-Mapped 1/0

The prot argument describes the desired memory protection (and must not
conflict with the open mode of the file). It is either PROT_NONE or is
the bitwise OR of one or more of the other PROT_* flags.

PROT_EXEC Pages
PROT_READ Pages
PROT_WRITE Pages

PROT_NONE Pages

may be executed.
may be read.
may be written.

may not be accessed.

PROT_NONE seems a bit strange. But basically means that if we attempt to reference
the mapped region, we get a SIGSEGV. We can then change the protection dynamically

(will see later).

Memory-Mapped 1/0

The flags parameter specifies the type of the mapped object, mapping
options and whether modifications made to the mapped copy of the page
are private to the process or are to be shared with other references.
It has bits

MAP_FIXED Do mnot select a different address than the one specified.
If the specified address cannot be used, mmap will fail. If
MAP_FIXED 1is specified, start must be a multiple of the
pagesize. Use of this option is discouraged.

MAP_SHARED Share this mapping with all other processes that map this
object. Storing to the region is equivalent to writing to
the file. The file may not actually be updated until
msync(2) or munmap(2) are called.

MAP_PRIVATE
Create a private copy-on-write mapping. Stores to the
region do not affect the original file. It 1is wunspecified
whether changes made to the file after the mmap call are
visible in the mapped region.

You must specify exactly one of MAP_SHARED and MAP_PRIVATE.

Basically forget about MAP_FIXED.

Memory-Mapped 1/0
Also some non-standard flogs known to Linux. Most significant one:

MAP_ANONYMOUS
The mapping is not backed by any file; the fd and offset argu-

ments are ignored. This flag in conjunction with MAP_SHARED is
implemented since Linux 2.4.

Allows for a block of virtual addresses to be mapped into your process' address space
. no file association (f£d ignored in the call to mmap()).

Back to the manual page:

fd should be a valid file descriptor, unless MAP_ANONYMOUS is set, in
which case the argument is ignored.

offset should be a multiple of the page size as returned by getpage-
size(2).

Memory mapped by mmap is preserved across fork(2), with the same
attributes.

Note that the memory mapped region is not preserved across an execve().

Memory-Mapped 1/0

A file is mapped in multiples of the page size. For a file that is not
a multiple of the page size, the remaining memory is zeroed when
mapped, and writes to that region are not written out to the file. The
effect of changing the size of the underlying file of a mapping on the
pages that correspond to added or removed regions of the file is
unspecified.

Interpretation: don't change the size of a mmap-ed file.

The munmap system call deletes the mappings for the specified address
range, and causes further references to addresses within the range to
generate 1invalid memory references. The region is also automatically
unmapped when the process is terminated. On the other hand, closing
the file descriptor does not unmap the region.

The address start must be a multiple of the page size. All pages con-
taining a part of the indicated range are unmapped, and subsequent ref-
erences to these pages will generate SIGSEGV. It is not an error if the
indicated range does not contain any mapped pages.

Memory-Mapped 1/0

RETURN VALUE
On success, mmap returns a pointer to the mapped area. On error,
MAP_FATLED (-1) is returned, and errnc is set appropriately. On suc-

cess, munmap returns O, on failure -1, and errno is set (probably to
EINVAL).

ERRORS
EBADF fd is not a valid file descriptor (and MAP_ANONYMOUS was not
set) .

EACCES A file descriptor refers to a non-regular file. Or MAP_PRIVATE
was Trequested, but fd is not open for reading. Or MAP_SHARED
was requested and PROT_WRITE is set, but fd 1is not open in
read/write (O_RDWR) mode. Or PROT_WRITE is set, but the file is
append-only.

EINVAL We don’t like start or length or offset. (E.g., they are too
large, or not aligned on a PAGESIZE boundary.)

ETXTBSY
MAP_DENYWRITE was set but the object specified by fd is open for

Memory-Mapped 1/0

writing.
EAGAIN The file has been locked, or too much memory has been locked.

ENOMEM No memory is available, or the process’s maximum number of map-
pings would have been exceeded.

ENODEV The underlying filesystem of the specified file does not support
memory mapping.

Use of a mapped region can result in these signals:

SIGSEGV
Attempted write into a region specified to mmap as read-only.

SIGBUS Attempted access to a portion of the buffer that does not corre-
spond to the file (for example, beyond the end of the file,
including the case where another process has truncated the
file).

An Example: File Copying

// Memory-mapped file copy. Adapted from Stevens.
#include <sys/types.h>

#include <sys/stat.h>

#include <sys/mman.h>/# mmap() */

#include <fcntl.h>

#include <stdio.h>

int
main(int argc, char *argv[])
{

int fdin, fdout;

char *src, *dst;

struct stat statbuf;

if (arge !'= 3) {
fprintf (stderr,"usage: a.out <fromfile> <tofile>");
exit(1);

+

if ((fdin = open(argv([1], O_RDONLY)) < 0) {
fprintf(stderr,"can’t open %s for reading", argv[1]);

Memory-Mapped 1/0

10

exit(1);
1

Memory-Mapped 1/0

if ((fdout = open(argv[2], O_RDWR | O_CREAT | O_TRUNC, 0644)) < 0) {

fprintf(stderr, "can’t creat %s for writing", argv[i]);
exit(1);

+

if (fstat(fdin, &statbuf) < 0) { /* need size of input file */
fprintf (stderr,"fstat error");
exit(2);

+

//set size of output file
if (1seek(fdout, statbuf.st_size - 1, SEEK_SET) == -1) {
fprintf (stderr,"lseek error");
exit (2);
+
if (write(fdout, "", 1) '= 1) {
fprintf (stderr,"write error");
exit (2);
+
if ((src¢ = mmap(0, statbuf.st_size, PROT_READ,
MAP_FILE | MAP_SHARED, fdin, 0)) == (caddr_t) -1) {

11

Memory-Mapped 1/0

fprintf (stderr,"mmap error for input");
exit(2);
1
if ((dst = mmap(0, statbuf.st_size, PROT_READ | PROT_WRITE,
MAP_FILE | MAP_SHARED, fdout, 0)) == (caddr_t) -1) {
fprintf (stderr,"mmap error for output");
exit (2);
+

memcpy (dst, src, statbuf.st_size); // does the file copy

exit (0);

Compare performance against standard file copy which reads and writes 8k blocks of
the file.

while (1) {
num = read(fdin, buffer, 8192);
write(fdout, buffer, num);
if (num < 8192) exit(0);

+

12

Memory-Mapped 1/0
dingo’% pwd
~/tmp
dingo’% perl -e ’print "a" x 40000000’ > infilel
dingo’% perl -e ’print "a" x 40000000’ > infile2
dingo’% ls -1 infile?

-Irw-r--r-- 1 mayo root 40000000 Nov 3 10:29 infilel
SEW—E ==L 1 mayo root 40000000 Nov 3 10:29 infile2
dingo’% time ./mcopy infilel outfilel

0.030u 0.150s 0:02.40 7.5Y% 0+0k 0+0io 19618pf+0w

dingo¥% time ./copy infile2 outfile?2

0.010u 0.160s 0:04.23 4.0Y% 0+0k 0+0io 83pf+0w

Not dramatic performance differences on ix86 Linux. Certainly dramatic differences in
programming style.

13

Memory-Mapped 1/0
Related Syscall: mprotect

NAME
mprotect - control allowable accesses to a region of memory

SYNOPSIS
#include <sys/mman.h>

int mprotect(const void *addr, size_t len, int prot);
DESCRIPTION
mprotect controls how a section of memory may be accessed. If an
access is disallowed by the protection given it, the program receives a
SIGSEGV.
prot is a bitwise-or of the following values:
PROT_NONE The memory cannot be accessed at all.

PROT_READ The memory can be read.

PROT_WRITE The memory can be written to.

14

Memory-Mapped 1/0

PROT_EXEC The memory can contain executing code.

The new protection replaces any existing protection. For example, if
the memory had previously been marked PROT_READ, and mprotect 1s then
called with prot PROT_WRITE, it will no longer be readable.

Example mased on mprotect () manual page:

int main(void)
{

char *p; char c; int psize;
psize = getpagesize(); printf("Pagesize is %d\n", psize); fflush(stdout);

/* Allocate a buffer; it will have the default protection
of PROT_READ|PROT_WRITE. #*/

p = malloc(1024+psize-1);

if (!'p) { perror("Couldn’t malloc(1024)"); exit(errno);}

/* Align to a multiple of PAGESIZE, assumed to be a power of two */
p = (char *)(((int) p + psize-1) & ~“(psize-1));

15

Memory-Mapped 1/0

c = pl666]; /* Read; ok */
pl666] = 42; /* Write; ok */

/* Mark the buffer read-only. */

if (mprotect(p, 1024, PROT_READ)) {
perror ("Couldn’t mprotect");
exit (errno);

+

c = pl666]; /* Read; ok #*/

printf ("READ OK\n"); fflush(stdout);

ple66] = 42; /* Write; program dies on SIGSEGV */
printf ("WRITE OK\n"); fflush(stdout);

exit (0);

16

Memory-Mapped 1/0
Using mmap () to the same effect (but easier):
/* Allocate a buffer; it will have the default

protection of PROT_READ|PROT_WRITE. */
// p = malloc(1024+psize-1);

//7if (p) {

/7 perror ("Couldn’t malloc(1024)");
// exit (errno);

i

///* Align to a multiple of PAGESIZE, assumed to be a power of two */
//p = (char *) (((int) p + psize-1) & " (psize-1));

p = (char *) mmap(0, 1024, PROT_READ|PROT_WRITE,

MAP_ANONYMOUS |[MAP_PRIVATE, 0, 0);
printf ("p is %x\n", (unsigned) p); fflush(stdout);

17

Mapping /dev/zero

* (Can use special properties of /dev/zero to
create shared memory between related
processes

* /dev/zero

— On read, infinite source of 0
— On write, data ignored

* When mapped:

1. Unnamed region created with size given by second argument,
rounded to nearest page size

2. Region initialized to zero

3. Processes can share this region if common ancestor specifies
MAP_SHARED flag to mmap

Example®

* Transmit values between parent and
child

* Inaloop:

1. Parent reads current value at addr:
Increments value

2. Child reads current value at addr;
Increments value

* With some synchronization

* From “Advanced Programming in the UNIX Environment”, W. Richard Stevens

* First, the synchronization:
— Parent/child set up handlers for USR1, USR2

* Handler sets value of global variable to 1
* Block USR1, USR2 (no premature reception)
— Child:

* While signal var is zero wait; handler sets signal var to one;
reset signal var to zero; update shared var; signal parent;

— Parent:

* Update shared var; signal child; unblock all; while signal var
is zero, walit; update signal var

static void

sig usr(int signo)

{
sigflag = 1;
return;

void

TELL WAIT ()
{
1f (signal (SIGUSR1l, sig usr) == SIG ERR)
err sys("signal (SIGINT) error");
1f (signal (SIGUSR2, sig usr) == SIG ERR)

err sys("signal (SIGQUIT) error");
slgemptyset (&zeromask) ;
sigemptyset (&newmask) ;
sigaddset (&newmask, SIGUSRI1);
sigaddset (&newmask, SIGUSRZ2);

/* block SIGUSR1 and SIGUSR2, and save current signal mask */

1f (sigprocmask (SIG BLOCK, &newmask, &oldmask) < 0)
err sys("SIG BLOCK error");

volid
TELL_PARENT(pid_t pid)
{

kill (pid, SIGUSR2) ; /* tell parent we're done */
}

voild
WAIT_PARENT(Void)
{
while (sigflag == 0)

sigsuspend (&zeromask); /* and wait for parent */

sigflag = 0;

/* reset signal mask to original value */
1f (sigprocmask (SIG SETMASK, &oldmask, NULL) < 0)

err sys("SIG SETMASK error");

volid
TELL_CHILD(pid_t pid)
{

kill (pid, SIGUSRI1) ; /* tell child we're done */
}

volid
WAIT_CHILD(VOid)
{

while (sigflag == 0)

sigsuspend(&zeromask); /* and wait for child */

sigflag = 0;

/* reset signal mask to original value */
1f (sigprocmask (SIG SETMASK, &oldmask, NULL) < 0)

err sys("SIG SETMASK error");

* Now the shared value update
—Map sizeof (1long) bytes of /dev/zero
— Parent prints current value; increments
— Child prints current value; increments

int main ()
{
int fd, 1, counter;
pid t pid;
caddr t area;

if ((fd = open("/dev/zero", O RDWR)) < 0)
err sys("open error");
if ((area = mmap (0, SIZE, PROT READ | PROT WRITE,
MAP SHARED, fd, 0)) == (caddr t) -1)
err sys("mmap error");
close (fd) ; /* can close /dev/zero now that it's mapped */

TELL WAIT(); /* Initialize synchronization */

if ((pid = fork()) < 0) {
err sys("fork error");

} else if (pid > 0) { /* parent */
for (1 = 0; 1 < NLOOPS; i += 2) {
if ((counter = update((long *) area)) != 1)

err quit ("parent: expected %d got %d\n",1i,counter);
printf ("<P> prior to update <%d>\n",counter);
fflush (stdout) ;
TELL CHILD (pid);
WAIT CHILDC() ;

} else { /* child */
for (1 = 1; 1 < NLOOPS + 1; 1 += 2) {
WAIT PARENT () ;
1f ((counter = update((long *) area)) != 1)
err quit("child: expected %d, got %d\n",i,counter);

printf ("<C> prior to update <%d>\n",counter);
fflush (stdout) ;
TELL PARENT (getppid()) ;

}
exit (0) ;

} /* end main */

static int
update (long *ptr)
{

return((*ptr)++); /* return value before increment

[Jmayo@asimov advio]$./devzero

<P>
<C>
<P>
<C>
<P>
<C>
<P>
<C>
<P>
<C>

prior
prior
prior
prior
prior
prior
prior
prior
prior
prior

to
to
to
to
to
to
to
to
to
to

update
update
update
update
update
update
update
update
update
update

<0>
<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>

Memory-Mapped 1/0

Final Example, mmap and mprotect

unsigned pagebase;
int 1i;

void
segvhandler ()
{
fprintf(stderr, "Segfaulted at %d\n", 1i);
mprotect ((void *)pagebase, 4096, PROT_READ | PROT_WRITE);
+

int
main(int argc, char *argv[])
{

int fdin, fdout;

char *src, *dst;

struct stat statbuf;

signal (SIGSEGV, segvhandler); // Get ready for the segfault.

18

Memory-Mapped 1/0

if ((dst = mmap(0, statbuf.st_size, PROT_READ | PROT_WRITE,
MAP_FILE | MAP_SHARED, fdout, 0)) == (caddr_t) -1) {
fprintf (stderr,"mmap error for output");
exit (2);
¥

// Want confirmation before clobbering byte 13271 of destination.
// Note granularity.

printf ("dst is %x\n", (unsigned) dst); fflush(stdout);

pagebase = (((unsigned)dst + 13271) / 4096) * 4096;

printf ("pagebase is %x\n", pagebase); fflush(stdout);

if (mprotect((void *) pagebase, 4096, PROT_NONE) < 0) {
fprintf (stderr,"protect failure\n");
exit (2);

+

for (i=0; i<statbuf.st_size; i++)
memcpy (dst++, src++, 1); // does the file copy

exit (0);

19

Locking Pages in Memory

* With virtual memory, pages may be swapped to disk
— Time consuming
— Remnants of process data left on disk

* Secure data may be revealed

— Unencrypted keys, passwords

— Will not save key from laptops with “suspend
* Real-time processes may miss deadlines

— Real-time processes have time constraints

— Commonly interact with physical world
* E.g., controllers, simulations

7 (13

. “hibernate”, etc.

MLOCK(2) Linux Programmer's Manual MLOCK(2)

NAME
mlock - disable paging for some parts of memory

SYNOPSIS
#include <sys/mman.h>

int mlock(const void *addr, size_t len);

DESCRIPTION
mlock disables paging for the memory in the range starting at addr with
length len bytes. All pages which contain a part of the specified mem-
ory range are guaranteed be resident in RAM when the mlock system call
returns successfully and they are guaranteed to stay in RAM until the
pages are unlocked by munlock or munlockall, until the pages are
unmapped via munmap, or until the process terminates or starts another
program with exec. Child processes do not inherit page locks across a
fork.

Memory locks do not stack, i.e., pages which have been locked several
times by calls to mlock or mlockall will be unlocked by a single call

to munlock for the corresponding range or by munlockall. Pages which
are mapped to several locations or by several processes stay locked
into RAM as long as they are locked at least at one location or by at
least one process.

On POSIX systems on which mlock and munlock are available, POSIX MEM-
LOCK RANGE is defined in <unistd.h> and the value PAGESIZE from <Ilim-
its.h> indicates the number of bytes per page.

NOTES
With the Linux system call, addr is automatically rounded down to the
nearest page boundary. However, POSIX 1003.1-2001 allows an implemen-
tation to require that addr is page aligned, so portable applications
should ensure this.

RETURN VALUE
On success, mlock returns zero. On error, -1 is returned, errno is set
appropriately, and no changes are made to any locks in the address
space of the process.

MUNLOCK(2) Linux Programmer's Manual MUNLOCK(2)

NAME
munlock - reenable paging for some parts of memory

SYNOPSIS
#include <sys/mman.h>

int munlock(const void *addr, size_t len);

DESCRIPTION
munlock reenables paging for the memory in the range starting at addr
with length len bytes. All pages which contain a part of the specified
memory range can after calling munlock be moved to external swap space
again by the kernel.

Memory locks do not stack, i.e., pages which have been locked several
times by calls to mlock or mlockall will be unlocked by a single call

to munlock for the corresponding range or by munlockall. Pages which
are mapped to several locations or by several processes stay locked
into RAM as long as they are locked at least at one location or by at
least one process.

On POSIX systems on which mlock and munlock are available, POSIX_ MEM-
LOCK_RANGE is defined in <unistd.h> and the value PAGESIZE from <lim-
its.h> indicates the number of bytes per page.

RETURN VALUE
On success, munlock returns zero. On error, -1 is returned, errno is
set appropriately, and no changes are made to any locks in the address
space of the process.

SYSCONF(3) Linux Programmer's Manual SYSCONF(3)

NAME
sysconf - Get configuration information at runtime

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
POSIX allows an application to test at compile- or run-time whether
certain options are supported, or what the value is of certain config-
urable constants or limits.

At compile time this is done by including <unistd.h> and/or <limits.h>
and testing the value of certain macros.

At run time, one can ask for numerical values using the present func-
tion sysconf(). On can ask for numerical values that may depend on the
filesystem a file is in using the calls fpathconf(3) and pathconf(3).

One can ask for string values using confstr(3).

The values obtained from these functions are system configuration con-
stants. They do not change during the lifetime of a process.

For options, typically, there is a constant POSIX FOO that may be
defined in <unistd.h>. If it is undefined, one should ask at run-time.

If it is defined to -1, then the option is not supported. If it is

defined to O, then relevant functions and headers exist, but one has to
ask at runtime what degree of support is available. Ifit is defined

to a value other than -1 or 0, then the option is supported. Usually
the value (such as 200112L) indicates the year and month of the POSIX
revision describing the option. Glibc uses the value 1 to indicate sup-
port as long as the POSIX revision has not been published yet. The
sysconf() argument will be _SC FOO. For a list of options, see
posixoptions(7).

For variables or limits, typically, there is a constant _FOO, maybe
defined in <limits.h>, or _POSIX FOO, maybe defined in <unistd.h>. The
constant will not be defined if the limit is unspecified. If the con-

stant is defined, it gives a guaranteed value, and more might actually

be supported. If an application wants to take advantage of values
which may change between systems, a call to sysconf() can be made. The
sysconf() argument will be _SC_FOO.

POSIX.1 VARIABLES
We give the name of the variable, the name of the sysconf() parameter
used to inquire about its value, and a short description.

First, the POSIX.1 compatible values.

ARG _MAX - SC ARG _MAX
The maximum length of the arguments to the exec() family of
functions. Must not be less than POSIX_ARG_MAX (4096).

CHILD MAX - _SC CHILD MAX
The max number of simultaneous processes per user id. Must not
be less than POSIX CHILD MAX (25).

HOST_NAME_MAX - SC HOST _NAME_MAX
Max length of a hostname, not including the final NUL, as

returned by gethostname(2). Must not be less than
_POSIX_HOST_NAME_MAX (255).

LOGIN_NAME_MAX - _SC LOGIN_NAME_MAX
Maximum length of a login name, including the final NUL. Must
not be less than POSIX LOGIN _NAME_MAX (9).

clock ticks - SC CLK TCK
The number of clock ticks per second. The corresponding vari-
able is obsolete. It was of course called CLK_TCK. (Note: the
macro CLOCKS PER_SEC does not give information: it must equal
1000000.)

OPEN_MAX - SC OPEN_MAX
The maximum number of files that a process can have open at any
time. Must not be less than _POSIX OPEN_MAX (20).

PAGESIZE - SC_PAGESIZE

Size of a page in bytes. Must not be less than 1. (Some systems
use PAGE_SIZE instead.)

.... Many more ...

Example

Lock page associated with character array
into memory, then unlock

— Compute address of start of page containing
variable

— Compute length of segment to lock
— Lock

#include <unistd.h>
#include <sys/mman.h>
fdefine DATA SIZE 2048
lock memory(char *addr, size t size) {
unsigned long page offset, page size;
page size = sysconf(SC PAGE SIZE);
page offset = (unsigned long) addr $ page size;
addr -= page offset; /*Adjust addr to pg boundary */

size += page offset; /*Adjust size w/page offset */

return (mlock(addr, size)); /* Lock the memory */

unlock memory (char *addr, size t size) {
unsigned long page offset, page size;

page size = sysconf(SC PAGE SIZE);

page offset = (unsigned long) addr $ page size;
addr -= page offset; /* Adjust addr to page boundary */

size += page offset; /* Adjust size with page offset */

return (munlock (addr, size)); /* Unlock the memory */

main () {
char data[DATA SIZE];
if (lock memory(data, DATA SIZE) == -1)
perror ("lock memory"); /* Do work here */
if (unlock memory(data, DATA SIZE) == -1)

perror ("unlock memory");

Example

* Read password
— Set terminal attributes so echo is off
— Lock page (containing password) in memory
— Read password
— Use password
— Clear password
— Unlock page

int main (void) {
struct termios ts, ots;
char passbuf[1024];

/* get and save current termios settings */
tcgetattr (STDIN FILENO, &ts);
ots = ts;

/* change and set new termios settings */
ts.c 1flag &= ~ECHO;

ts.c 1flag |= ECHONL;
tcsetattr (STDIN FILENO, TCSAFLUSH, &ts);

/* paranoia: check that the settings took effect */
tcgetattr (STDIN FILENO, &ts);
i1f (ts.c 1lflag & ECHO) {
fprintf (stderr, "Failed to turn off echo\n");
tcsetattr (STDIN FILENO, TCSANOW, &ots);
exit (1)

1f (lock memory(passbuf, 1024) == -1)
perror ("lock memory");

/* get and print the password */

printf ("enter password: ");

fflush (stdout) ;

fgets (passbuf, 1024, stdin);

printf ("read password: %s", passbuf);

/* there was a terminal \n in passbuf */

bzero (passbuf,1024) ;
1f (unlock memory(passbuf, 1024) == -1)
perror ("unlock memory");

/* restore old termios settings */
tcsetattr (STDIN FILENO, TCSANOW, &ots);

exit (0) ;

