

Memory Mapped I/O

• Basic idea: map a part of a file (or other object)
into your virtual address space.

• Accesses to the mapped part of your address
space converted into file reads and writes by the
OS.

• Why?
• May be faster than conventional file i/o.
• May lead to better, less error-prone, programming

style.

Mapping /dev/zero

• Can use special properties of /dev/zero to
create shared memory between related
processes

• /dev/zero
– On read, infinite source of 0
– On write, data ignored

• When mapped:
1. Unnamed region created with size given by second argument,

rounded to nearest page size
2. Region initialized to zero
3. Processes can share this region if common ancestor specifies

MAP_SHARED flag to mmap

Example*

• Transmit values between parent and
child

• In a loop:
1. Parent reads current value at addr;

increments value

2. Child reads current value at addr;
increments value

• With some synchronization

* From “Advanced Programming in the UNIX Environment”, W. Richard Stevens

static void
sig_usr(int signo)
{
 sigflag = 1;
 return;
}

• First, the synchronization:
– Parent/child set up handlers for USR1, USR2

• Handler sets value of global variable to 1
• Block USR1, USR2 (no premature reception)

– Child:
• While signal var is zero wait; handler sets signal var to one;

reset signal var to zero; update shared var; signal parent;

– Parent:
• Update shared var; signal child; unblock all; while signal var

is zero, wait; update signal var

void
TELL_WAIT()
{
 if (signal(SIGUSR1, sig_usr) == SIG_ERR)
 err_sys("signal(SIGINT) error");
 if (signal(SIGUSR2, sig_usr) == SIG_ERR)
 err_sys("signal(SIGQUIT) error");

 sigemptyset(&zeromask);

 sigemptyset(&newmask);
 sigaddset(&newmask, SIGUSR1);
 sigaddset(&newmask, SIGUSR2);

/* block SIGUSR1 and SIGUSR2, and save current signal mask */

 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
 err_sys("SIG_BLOCK error");
}

void
TELL_PARENT(pid_t pid)
{
 kill(pid, SIGUSR2); /* tell parent we're done */
}

void
WAIT_PARENT(void)
{
 while (sigflag == 0)
 sigsuspend(&zeromask); /* and wait for parent */

 sigflag = 0;
 /* reset signal mask to original value */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");
}

void
TELL_CHILD(pid_t pid)
{
 kill(pid, SIGUSR1); /* tell child we're done */
}

void
WAIT_CHILD(void)
{
 while (sigflag == 0)
 sigsuspend(&zeromask); /* and wait for child */

 sigflag = 0;
 /* reset signal mask to original value */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");
}

• Now the shared value update
– Map sizeof(long) bytes of /dev/zero
– Parent prints current value; increments
– Child prints current value; increments

 int main()
{
 int fd, i, counter;
 pid_t pid;
caddr_t area;

 if ((fd = open("/dev/zero", O_RDWR)) < 0)
 err_sys("open error");
 if ((area = mmap(0, SIZE, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0)) == (caddr_t) -1)
 err_sys("mmap error");
 close(fd); /* can close /dev/zero now that it's mapped */

 TELL_WAIT(); /* Initialize synchronization */

 if ((pid = fork()) < 0) {
 err_sys("fork error");
} else if (pid > 0) { /* parent */
 for (i = 0; i < NLOOPS; i += 2) {
 if ((counter = update((long *) area)) != i)
 err_quit("parent: expected %d got %d\n",i,counter);
 printf("<P> prior to update <%d>\n",counter);
 fflush(stdout);
 TELL_CHILD(pid);
 WAIT_CHILD();
 }

 } else { /* child */
 for (i = 1; i < NLOOPS + 1; i += 2) {
 WAIT_PARENT();
 if ((counter = update((long *) area)) != i)
 err_quit("child: expected %d, got %d\n",i,counter);
 printf("<C> prior to update <%d>\n",counter);
 fflush(stdout);
 TELL_PARENT(getppid());
 }
 }
 exit(0);

} /* end main */

static int
update(long *ptr)
{
 return((*ptr)++); /* return value before increment */
}

[jmayo@asimov advio]$./devzero
<P> prior to update <0>
<C> prior to update <1>
<P> prior to update <2>
<C> prior to update <3>
<P> prior to update <4>
<C> prior to update <5>
<P> prior to update <6>
<C> prior to update <7>
<P> prior to update <8>
<C> prior to update <9>

Locking Pages in Memory

• With virtual memory, pages may be swapped to disk
– Time consuming
– Remnants of process data left on disk

• Secure data may be revealed
– Unencrypted keys, passwords
– Will not save key from laptops with “suspend”, “hibernate”, etc.

• Real-time processes may miss deadlines
– Real-time processes have time constraints
– Commonly interact with physical world

• E.g., controllers, simulations

MLOCK(2) Linux Programmer's Manual MLOCK(2)

NAME
 mlock - disable paging for some parts of memory

SYNOPSIS
 #include <sys/mman.h>

 int mlock(const void *addr, size_t len);

DESCRIPTION
 mlock disables paging for the memory in the range starting at addr with
 length len bytes. All pages which contain a part of the specified mem-
 ory range are guaranteed be resident in RAM when the mlock system call
 returns successfully and they are guaranteed to stay in RAM until the
 pages are unlocked by munlock or munlockall, until the pages are
 unmapped via munmap, or until the process terminates or starts another
 program with exec. Child processes do not inherit page locks across a
 fork.

 Memory locks do not stack, i.e., pages which have been locked several
 times by calls to mlock or mlockall will be unlocked by a single call
 to munlock for the corresponding range or by munlockall. Pages which
 are mapped to several locations or by several processes stay locked
 into RAM as long as they are locked at least at one location or by at
 least one process.

 On POSIX systems on which mlock and munlock are available, _POSIX_MEM-
 LOCK_RANGE is defined in <unistd.h> and the value PAGESIZE from <lim-
 its.h> indicates the number of bytes per page.

NOTES
 With the Linux system call, addr is automatically rounded down to the
 nearest page boundary. However, POSIX 1003.1-2001 allows an implemen-
 tation to require that addr is page aligned, so portable applications
 should ensure this.

RETURN VALUE
 On success, mlock returns zero. On error, -1 is returned, errno is set
 appropriately, and no changes are made to any locks in the address
 space of the process.

MUNLOCK(2) Linux Programmer's Manual MUNLOCK(2)

NAME
 munlock - reenable paging for some parts of memory

SYNOPSIS
 #include <sys/mman.h>

 int munlock(const void *addr, size_t len);

DESCRIPTION
 munlock reenables paging for the memory in the range starting at addr
 with length len bytes. All pages which contain a part of the specified
 memory range can after calling munlock be moved to external swap space
 again by the kernel.

 Memory locks do not stack, i.e., pages which have been locked several
 times by calls to mlock or mlockall will be unlocked by a single call
 to munlock for the corresponding range or by munlockall. Pages which
 are mapped to several locations or by several processes stay locked
 into RAM as long as they are locked at least at one location or by at
 least one process.

 On POSIX systems on which mlock and munlock are available, _POSIX_MEM-
 LOCK_RANGE is defined in <unistd.h> and the value PAGESIZE from <lim-
 its.h> indicates the number of bytes per page.

RETURN VALUE
 On success, munlock returns zero. On error, -1 is returned, errno is
 set appropriately, and no changes are made to any locks in the address
 space of the process.

SYSCONF(3) Linux Programmer's Manual SYSCONF(3)

NAME
 sysconf - Get configuration information at runtime

SYNOPSIS
 #include <unistd.h>

 long sysconf(int name);

DESCRIPTION
 POSIX allows an application to test at compile- or run-time whether
 certain options are supported, or what the value is of certain config-
 urable constants or limits.

 At compile time this is done by including <unistd.h> and/or <limits.h>
 and testing the value of certain macros.

 At run time, one can ask for numerical values using the present func-
 tion sysconf(). On can ask for numerical values that may depend on the
 filesystem a file is in using the calls fpathconf(3) and pathconf(3).
 One can ask for string values using confstr(3).

 The values obtained from these functions are system configuration con-
 stants. They do not change during the lifetime of a process.

 For options, typically, there is a constant _POSIX_FOO that may be
 defined in <unistd.h>. If it is undefined, one should ask at run-time.
 If it is defined to -1, then the option is not supported. If it is
 defined to 0, then relevant functions and headers exist, but one has to
 ask at runtime what degree of support is available. If it is defined
 to a value other than -1 or 0, then the option is supported. Usually
 the value (such as 200112L) indicates the year and month of the POSIX
 revision describing the option. Glibc uses the value 1 to indicate sup-
 port as long as the POSIX revision has not been published yet. The
 sysconf() argument will be _SC_FOO. For a list of options, see
 posixoptions(7).

 For variables or limits, typically, there is a constant _FOO, maybe
 defined in <limits.h>, or _POSIX_FOO, maybe defined in <unistd.h>. The
 constant will not be defined if the limit is unspecified. If the con-
 stant is defined, it gives a guaranteed value, and more might actually
 be supported. If an application wants to take advantage of values
 which may change between systems, a call to sysconf() can be made. The
 sysconf() argument will be _SC_FOO.

POSIX.1 VARIABLES
 We give the name of the variable, the name of the sysconf() parameter
 used to inquire about its value, and a short description.

 First, the POSIX.1 compatible values.

 ARG_MAX - _SC_ARG_MAX
 The maximum length of the arguments to the exec() family of
 functions. Must not be less than _POSIX_ARG_MAX (4096).

 CHILD_MAX - _SC_CHILD_MAX
 The max number of simultaneous processes per user id. Must not
 be less than _POSIX_CHILD_MAX (25).

 HOST_NAME_MAX - _SC_HOST_NAME_MAX
 Max length of a hostname, not including the final NUL, as
 returned by gethostname(2). Must not be less than
 _POSIX_HOST_NAME_MAX (255).

 LOGIN_NAME_MAX - _SC_LOGIN_NAME_MAX
 Maximum length of a login name, including the final NUL. Must
 not be less than _POSIX_LOGIN_NAME_MAX (9).

 clock ticks - _SC_CLK_TCK
 The number of clock ticks per second. The corresponding vari-
 able is obsolete. It was of course called CLK_TCK. (Note: the
 macro CLOCKS_PER_SEC does not give information: it must equal
 1000000.)

 OPEN_MAX - _SC_OPEN_MAX
 The maximum number of files that a process can have open at any
 time. Must not be less than _POSIX_OPEN_MAX (20).

 PAGESIZE - _SC_PAGESIZE
 Size of a page in bytes. Must not be less than 1. (Some systems
 use PAGE_SIZE instead.)

 …. Many more …

Example

• Lock page associated with character array
into memory, then unlock
– Compute address of start of page containing

variable

– Compute length of segment to lock
– Lock

#include <unistd.h>
#include <sys/mman.h>
#define DATA_SIZE 2048

lock_memory(char *addr, size_t size) {

 unsigned long page_offset, page_size;

 page_size = sysconf(_SC_PAGE_SIZE);

 page_offset = (unsigned long) addr % page_size;

 addr -= page_offset; /*Adjust addr to pg boundary */

 size += page_offset; /*Adjust size w/page_offset */

 return (mlock(addr, size)); /* Lock the memory */
}

unlock_memory(char *addr, size_t size) {

 unsigned long page_offset, page_size;

 page_size = sysconf(_SC_PAGE_SIZE);

 page_offset = (unsigned long) addr % page_size;

 addr -= page_offset; /* Adjust addr to page boundary */

 size += page_offset; /* Adjust size with page_offset */

 return (munlock(addr, size)); /* Unlock the memory */
}

main() {

 char data[DATA_SIZE];

 if (lock_memory(data, DATA_SIZE) == -1)

 perror("lock_memory"); /* Do work here */

 if (unlock_memory(data, DATA_SIZE) == -1)

 perror("unlock_memory");

}

Example

• Read password
– Set terminal attributes so echo is off
– Lock page (containing password) in memory

– Read password
– Use password
– Clear password

– Unlock page

int main(void) {
 struct termios ts, ots;
 char passbuf[1024];

 /* get and save current termios settings */
 tcgetattr(STDIN_FILENO, &ts);
 ots = ts;

 /* change and set new termios settings */
 ts.c_lflag &= ~ECHO;
 ts.c_lflag |= ECHONL;
 tcsetattr(STDIN_FILENO, TCSAFLUSH, &ts);

 /* paranoia: check that the settings took effect */
 tcgetattr(STDIN_FILENO, &ts);
 if (ts.c_lflag & ECHO) {
 fprintf(stderr, "Failed to turn off echo\n");
 tcsetattr(STDIN_FILENO, TCSANOW, &ots);
 exit(1);
 }

 if (lock_memory(passbuf, 1024) == -1)
 perror("lock_memory");

 /* get and print the password */
 printf("enter password: ");
 fflush(stdout);
 fgets(passbuf, 1024, stdin);
 printf("read password: %s", passbuf);
 /* there was a terminal \n in passbuf */

 bzero(passbuf,1024);
 if (unlock_memory(passbuf, 1024) == -1)
 perror("unlock_memory");

 /* restore old termios settings */
 tcsetattr(STDIN_FILENO, TCSANOW, &ots);

 exit(0);
}

