Sp2016 Practice Exam 3:
 Name

Show polynomials etc. you enter in calculators and explain what you did.
No imaginary numbers in final answers.
Read the instructions. I am frequently trying to save you time. Use the back of a page to show more work if you need to. 4 questions - 25 points each.

1. Solve $y^{\prime \prime \prime}-8 y=0$ with $y[0]=1, y^{\prime}[0]=2, y^{\prime \prime}[0]=3$
2. Solve $y^{\prime \prime}+4 y=\sin (2 t)+e^{2 t}$

Q1	Q2	Q3	Q4	Total

3.

3.1. Find the general solution of
$y^{(7)}+y^{(6)}-y^{(5)}-5 y^{(4)}+4 y^{\prime \prime}+4 y^{\prime}-4 y=0$
3.2. Write down the form you would use for undetermined coefficients for
$y^{(7)}+y^{(6)}-y^{(5)}-5 y^{(4)}+4 y^{\prime \prime}+4 y^{\prime}-4 y=t e^{t}+t \sin (3 t)+t^{2}$ Do not solve for the constants.
4. Solve $y^{\prime \prime \prime}-4 y^{\prime \prime}+13 y^{\prime}=t^{2}+\cos (3 t)$
5.
5.1. Show that $y_{1}=t^{2}$ is a solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0$.
5.2. Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=t^{3}$.

Make sure you write down equations you are solving and explain your process and steps.
6.
6.1. Show that $y_{1}=\cos [3 \ln [t]]$ and $y_{2}=\sin [3 \ln [t]]$ are solutions of $t^{2} y^{\prime \prime}+t y^{\prime}+9 y=0$.
6.2. Solve $t^{2} y^{\prime \prime}+t y^{\prime}+9 y=\log [t]$.

Make sure you write down equations you are solving and explain your process and steps.
7. Solve $y^{\prime \prime}+4 y^{\prime}+4 y=6 t e^{-2 t} \quad$ with $y[0]=2$ and $y^{\prime}[0]=4$
8.
8.1. Verify that $\left\{x^{2}, 1 / x, 1\right\}$ is a Fundamental Set for the ODE $x^{3} y^{\prime \prime \prime}[x]+2 x^{2} y^{\prime \prime}[x]-2 x y^{\prime}[x]=0$.
8.2. Find a particular solution of

$$
x^{3} y^{\prime \prime \prime}[x]+2 x^{2} y^{\prime \prime}[x]-2 x y^{\prime}[x]=x+1
$$

by substituting a guess of the form $y_{p}=A x+B \ln [x]$
8.3. Write down the general solution of $x^{3} y^{\prime \prime \prime}[x]+2 x^{2} y^{\prime \prime}[x]-2 x y^{\prime}[x]==x+1$

