Sp2016 Practice Exam 3:

Name_____

Show polynomials etc. you enter in calculators and explain what you did.

No imaginary numbers in final answers.

Read the instructions. I am frequently trying to save you time. Use the back of a page to show more work if you need to.

4 questions - 25 points each.

1. Solve y''' - 8y = 0 with y[0] = 1, y'[0] = 2, y''[0] = 3

2. Solve
$$y'' + 4y = \sin(2t) + e^{2t}$$

Q1	Q2	Q3	Q4	Total

- **3.1.** Find the general solution of $y^{(7)} + y^{(6)} y^{(5)} 5y^{(4)} + 4y'' + 4y' 4y = 0$
- **3.2.** Write down the form you would use for undetermined coefficients for $y^{(7)} + y^{(6)} - y^{(5)} - 5y^{(4)} + 4y'' + 4y' - 4y = te^{t} + t\sin(3t) + t^{2}$

 $y^{(7)} + y^{(6)} - y^{(5)} - 5y^{(4)} + 4y^{(4)} + 4y^{(4)} - 4y = te^{t} + tsin(3t) + Do not solve for the constants.$

4. Solve
$$y''' - 4y'' + 13y' = t^2 + \cos(3t)$$

- **5.1.** Show that $y_1 = t^2$ is a solution of $t^2 y'' 4ty' + 6y = 0$.
- **5.2.** Solve $t^2 y'' 4ty' + 6y = t^3$.

Make sure you write down equations you are solving and explain your process and steps.

- **6.1.** Show that $y_1 = \cos[3 \ln[t]]$ and $y_2 = \sin[3 \ln[t]]$ are solutions of $t^2 y'' + t y' + 9 y = 0$.
- **6.2.** Solve $t^2 y'' + t y' + 9 y = \text{Log}[t]$. Make sure you write down equations you are solving and explain your process and steps.

Score / 25

with
$$y[0] = 2$$
 and $y'[0] = 4$

7. Solve
$$y'' + 4y' + 4y = 6te^{-2t}$$

- **8.1.** Verify that $\{x^2, 1/x, 1\}$ is a Fundamental Set for the ODE $x^3 y'''[x] + 2x^2 y''[x] 2x y'[x] == 0.$
- **8.2.** Find a particular solution of $x^3 y'''[x] + 2x^2 y''[x] - 2xy'[x] = x + 1$ by substituting a guess of the form $y_p = Ax + B \ln[x]$
- **8.3.** Write down the general solution of $x^3 y'''[x] + 2x^2 y''[x] 2xy'[x] = x + 1$