
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ULRICH NOWAK, SUSANNA GEBAUER

A New Test Frame for
Ordinary Differential Equation Solvers

Preprint SC 97-68 (December 1997)

A New Test Frame for

Ordinary Differential Equation Solvers

Ulrich Nowak, Susanna Gebauer

10th February 1998

Abstract

Benchmarking of ODE methods has a long tradition. Several sets of
test problems have been developed and new problems are still collected.
So, a whole variety of problems can be used to check the efficiency of
a method under investigation. In general, efficiency is measured by the
amount of work which is necessary to get a reliable solution for a pre-
scribed accuracy. In order to quantify the term “amount of work” usually
not only the computing time is measured but also the number of calls of
functional units. To quantify the term “quality of a numerical solution”
usually the l2–norm of the true error at the final point of the integration
interval is used. In our contribution we first discuss some general aspects
of benchmarking. Then we present a new test frame which allows to solve
typical benchmark problems with some of the state of the art integrators
within a unified framework. Finally we show some results of our bench-
mark tests. Part of the test frame can be used interactively in the World
Wide Web.

1 Introduction

During the last thirty years or so there has been a great deal of interest in
developing efficient methods and computer codes for the numerical solution of
initial value problems (IVPs) in ordinary differential equations (ODEs)

y′ = f(t, y) , y(t0) = y0 ∈ R
n , t ∈ [t0, tF] . (1)

A quite natural question, at least from an users point of view, is the following.
Which method is the best one for my problem? Probably never there will be an
ultimate answer. Not only because the answer is problem dependent but also
because there will never be a consistent use (and understanding) of the term
“best”.

Despite these problems great efforts were made to develop a methodology for
fair benchmarking. An early paper which strongly influenced the field of testing
and benchmarking is [13]. It deals with non–stiff problems and methods and
introduces the famous DETEST set of test problems. This test set consists of 25
problems subdivided into 5 classes. A continuation is the paper of [5] which deals
with stiff problems and methods and introduces the STIFF DETEST set of test
problems. A refined and extended version of these benchmarking techniques is
presented in [6, 7].

1

Over the years new test classes and individual test problems were proposed,
see e.g. [8, 16, 9, 10]. And the process of collecting new interesting and chal-
lenging test problem is still ongoing, cf. [15].

Our new development aims in presenting all these test problems, and some
new ones, together with a whole bunch of methods within a unified test frame-
work, which is easy to use and easy to access. Therefore we are implementing a
graphical user interface which can be accessed via the World Wide Web using a
standard internet browser. We should mention that the test frame is part of a
larger project of the Scientific Software group of the ZIB, namely the develop-
ment of an electronic laboratory for ordinary differential equations, ODELab.

2 Specifications

In the basic paper [13] is stated that three ingredients are needed for a fair
comparison of methods. A set of problems to be solved, P = {p1, . . . , }. A
set of methods to be compared, M = {m1, . . . , }, and a set of comparison
criteria, {c1(p,m), C1(P,m), . . .} . Assume that c, C are monotonic decreasing
with increasing “goodness” of the method. Then one can say a method mi is
better than a method mj , relative to problem class P and according to criterion
Cl, if Cl(P,mi) < Cl(P,mj).

We follow this basic approach and discuss advantages and drawbacks of some
specifications which were used to compare methods throughout the years.

2.1 Problems

In [13] a particular problem is specified in terms of six items, namely
p =< f, t0, y0, tF , tol, hmax >. In [5], where stiff IVPs are considered, this list is
extended by the items ∂f/∂y and h0.

The first four items are out of discussion as they appear in the usual mathe-
matical problem description, cf. (1). To efficiently solve stiff problems informa-
tion on the Jacobian is needed and this indicates the ∂f/∂y term. The matrix
must not necessarily be explicitly available, as most implementations of stiff
methods are equipped with an internal numerical differentiation device. Some-
how suspicious are the terms hmax (maximum stepsize) and h0 (initial stepsize).
For different reasons we drop them both.

The really hard item to specify is tol, the “prescribed tolerance”. The first
question which arises is, where do we want to get (check) the solution. From a
mathematical point of view we would like to have the L2–norm of the difference
between the numerical and the true solution below the bound tol. As not all
methods have a natural continuous solution representation, the typical require-
ment is that the l2–norm of the difference at all integration points should be
below tol. In order to equilibrate different scales (e.g. units) in different solu-
tion components and to eliminate the influence of the dimension n, the standard
l2–norm is replaced by the so–called weighted root mean square norm

(

n∑

j=1

(
ynumj (ti)− ytruej (ti)

ywj (yi)
)2)1/2

!≤ tol , (2)

where yj are the individual solution components and ywj are weighting values.
With ywj (ti) = |y(ti)|, (2) is then a pure relative error requirement. For compo-

2

nents with yj(t) ≈ 0 this simple setting causes trouble and is usually replaced
by

ywj (ti) := max{|yj(ti)|, ythreshj } . (3)

The threshold values ythreshj must be part of our problem specification.
In the literature there was a long discussion on that topic. In most of the

problems of the testsets DETEST and STIFF DETEST all the components
are well scaled. So, for a long time an absolute error criterion was used to
check the results in comparison tests. At best, a criterion like (2) but with
ythreshj = 1 in (3) was used. This type of weighting was also very popular in
the first generation of ODE software. It is not surprising, that applied to more
realistic problems, these methods often ”failed” or gave unsatisfying results.

In the test frames NSTTST and STDTST [7] all error tests use an absolute
error criterion. To improve this situation one may (automatically) solve the
transformed problem

z′ = D−1f(t,Dz) (4)

where
z = D−1y , D = diag(ymax

j , . . . , ymax
n) (5)

and ymax
j is the maximum absolute value of component j over [t0, tF]. This

modification helps for some problems but is not sufficient for the general case.
The importance of prescribing appropriate threshold values is illustrated

in Fig. 1. Here we solve the well known Oregonator test problem, see e.g.
[10] for a description, over the interval [0., 700.]. As an integrator we use the
extrapolated linearly implicit Euler discretization in the implementation due to
[10], but the effects are reproduceable with other stiff integrators as well. The
prescribed relative tolerance (in the sense of (2,3)) is tol = 10−4. We compare
the results for 3 sets of threshold values: ythreshj = 105. This choice mimics

the transformation (4,eq:trafo2). ythreshj = 102. This is, somehow, a next trial

value. Finally, ythreshj = 10−3. With the first choice (dotted lines) numerical
solution and true solution have nothing in common. The second choice (dashed
lines) allows the simulation of one oscillation, but with a wrong period. With
the last values (solid lines) the problem can be integrated over more than one
period.

In our test frame we have incorporated 23 problems. This includes – except
for the discretized PDE problems – all the examples from [15, 9, 10].

Within our WWW–interface we allow the users to set up new examples.
However, the Oregonator problem shows that some skill may be needed.

2.2 Methods

Concerning the term method there was, very early, a general agreement that
a method should incorporate the following essential parts. A formula for com-
puting the next approximaton, i.e. a discretization. A formula for estimating
the error of the step and a strategy for accepting/rejecting the current step and
choosing a new stepsize (and order).

In our test frame we have included some “oldies” as well as more recent
methods. Currently the following codes are available. The multistep methods
LSODE [11], LSODA [12, 18] and VODE [1] and the extrapolation methods
EULSIM [4] and DIFEX1 [4]. The more recent Runge-Kutta and extrapolation

3

1.e-2

1

1.e2

1.e4

0 200 400 600 700

Figure 1: Three solution approximations for the Oregonator problem

codes from [9, 10], i.e. the explicit methods DOPRI5, DOP853 and ODEX and
the stiff methods SDIRK4, RODAS, SEULEX, RADAU5 and RADAUP. Finally,
there is access to MEBDF [2], DASSL [17] and GAM [14]. We have incorporated
DAE–methods as we think it is interesting to study their performance on pure
ODE problems also. In any case, we continue to incorporate further codes.

In the general test frame we use the default settings of the codes for internal
numerical parameters which may be modified by the user. Most of the codes
use a Rtol/Atol pair of values (vectors) to control the error according to

(

n∑

j=1

(
Δyj(ti)

Atoli +Rtoli|yj(ti)|)
2)1/2

!≤ 1 . (6)

By setting Atolj = ythreshj × tol the accuracy requirement (2,3) and the internal
accuracy check coincide very well.

2.3 Comparison Criteria

The comparison criteria should be chosen such that both the efficiency and the
reliability of a method are reflected. The costs are usually measured by the total
CPU time needed to solve a problem. A more detailed understanding allows
the counting of the number of calls of the main functional units of a method,
i.e. NFCN – evaluations of the right hand side of (1), NJAC – evaluations of
the Jacobian matrix, NDEC – decomposition of matrices NSOL – linear system
solves. Typically the number of overall integration steps is also monitored. A
distinction of successful and rejected steps can help to judge the performance of
the method. Note that counting calls to functional units has the advantage to
describe efficiency without being effected by the special (fast/slow) implemen-
tation of the units.

The hard part is the attempt to check for reliability. One may distinguish
two philosophies. First, one may check the true error (in a meaningful norm).
Alternatively, one may check what the solvers control, i.e. check if the approx-
imation error of one step is below the prescribed tolerance. This approach,
counting deceptions, is advocated in [13, 5], but was not widely accepted. In

4

[6, 7] both approaches are offered, including sophisticated statistical devices,
e.g. an estimation of the expected work for a specific prescribed tolerance. Al-
though used, e.g. in [3], the drawback of using at best an absolute l2 or l∞
norm, hindered a general acceptance.

In our test frame we follow the current tendency in benchmarking and of-
fer only some simple tools to display error over time and work over achieved
precision. As the type of the norm may strongly influence the results we offer
several, always weighted, norms for selection, e.g. local l2 and l∞ as well as
global (in time) l2, l∞ and a discretized L2 norm.

Figure 2: Web GUI form for error output selection

3 Example

For the Oregonator problem the errors at the integration points are computed
and displayed in printable form by filling out the WWW–form presented in Fig.
2. Part of the header and trailer of the generated data file are:

Error Data in Printable Form

Problem = Oregon

Integrator = SEULEX

......

Maximum Maximum (L-infinity) Error: 1.406E+00

(at t = 6.28879E+02 for j = 1)

l2-l2 Error: 7.591E-02

l2 of integrated Error**2 (=L2-Error): 9.572E-03

Note that for this specific example the different norms vary over two orders
of magnitude.

Comparison runs over a range of tolerances can be automatically performed
also. The results are then arranged in a work precision diagram. A typical
example is given in Fig. 3. Herein, the results for the required tolerances
Rtol = 10−2, 10−3, . . . , 10−8 are depicted.

5

1

2

3

4

1.e-6 1.e-4 1.e-2 1.e-0

RADAU5

SEULEX

LSODA

GAM

Figure 3: CPU time over achieved precision for the Oregonator problem

4 Conclusion

In the field of testing ODEs there was, very early, a general acceptance of some
essential points. A problem should be reasonably realistic and should not exhibit
special features like occurence of singularities. A whole set of test problems
should be used which covers a broad spectrum of problem types. A solution
method should consist of a discretization and an associated control strategy.
Benchmarking with optimization by hand was not viewed as being helpful.

The comparison criteria used and advocated were quite different. Never-
theless, the comparison of methods accompanied the method development in a
fruitful way. Users of ODE software had and have the chance to inform them-
selves on merits and drawbacks of methods in a comparable way.

A decade after invention of the public test domain software NSTTST and
STDTST we try to set up a new test frame where we concentrate on the im-
plementation of a large set of problems, the embedding of many methods and
the proper computation of some widely accepted indicators for efficiency and
reliability. To minimize the amount of human efforts using the frame we offer a
WWW access. Try http://galois.zib.de:8001/public/odelab/ to see the
first experimental version.

References

[1] P. N. Brown, G. D. Byrne, A. C. Hindmarsh: VODE: A Variable Coefficient
ODE Solver. SIAM J. Sci. Stat. Comput. 10, 1039–1051, (1989)

[2] J. R. Cash, S. Considine: An MEBDF Code for Stiff Initial Value Problems.
ACM Trans. Math. Softw. 18, 2, 142–155, (1992)

[3] J. R. Cash, S. Semnani: A Modified Adams Method for NonStiff and Mildly
Stiff Initial Value Problems. ACM Trans. Math. Softw. 19, 1, 63–80, (1993)

[4] P. Deuflhard: Recent Progress in Extrapolation Methods for ODEs. SIAM
Review 27, 505–535, (1985)

[5] W. H. Enright, T. E. Hull, B. Lindberg: Comparing Numerical Methods
for Stiff Systems of ODEs. BIT 15, 10–48, (1975)

6

[6] W. H. Enright, J. D. Pryce: Two FORTRAN Packages for Assessing Initial
Value Methods. ACM Trans. Math. Softw. 13, 1, 1–27, (1987)

[7] W. H. Enright, J. D. Pryce: ALGORITHM 648, NSDTST and STDTST:
Routines for Assessing the Performance of IV Solvers. ACM Trans. Math.
Softw. 13, 1, 28–34, (1987)

[8] B.A. Gottwald, G. Wanner: A Reliable Rosenbrock Integrator for Stiff
Differential Equations. Computing 26, 2, (1981), 355–360

[9] E. Hairer, S. P. Nørset, G. Wanner: Solving Ordinary Differential Equations
I: Nonstiff Problems. Springer Verlag, (1987)

[10] E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and
Differential–algebraic Problems. Second Revised Edition, Springer Verlag,
(1996)

[11] A. C. Hindmarsh: LSODE and LSODI, Two New Initial Value Ordinary
Differential Equation Solvers. ACM SIGNUM Newsletter 15, 10–11, (1980)

[12] A. C. Hindmarsh: ODEPACK, a Systematized Collection of ODE Solvers.
In Scientific Computing, R.S. Stepelman et al. (eds.) North–Holland, Am-
sterdam, 55–64, (1983)

[13] T. E. Hull, W. H. Enright, B. M. Felen, A. E. Sedgewick: Comparing
Numerical Methods for Ordinary Differential Equations. SIAM J. Numer.
Anal.9, 4, 603–637, (1972)

[14] F. Iavernaro, F. Mazzia: Solving Ordinary Differential Equations by Gen-
eralized Adams Methods: properties and implementation techniques. Proc.
of NumDiff8, Appl. Numer. Math. (to appear)

[15] Parallel IVP Solvers Group of CWI: Test Set for IVP Solvers. URL:
http://www.cwi.nl/cwi/projects/IVPtestset.shtm

[16] P. Kaps, S. W. H. Poon, T.D. Bui: Rosenbrock Methods for Stiff ODEs:
A Comparison of Richardsen Extrapolation and Embedding Techniques.
Computing 34, 1, (1985), 17–40

[17] L. R. Petzold: A Description of DASSL: a differential–algebraic system
solver. Proc. IMACS World Congress, Montreal, Canada (1982)

[18] L. R. Petzold: Automatic Selection of Methods for Solving Stiff and Nons-
tiff Systems of Ordinary Differential Equations. SIAM J. Sci. Stat. Comput.
4, 136–148, (1983)

[19] L.F. Shampine: Evaluation of a Test Set for Stiff ODE Solvers. ACM Trans.
Math. Softw. 7, 409–420, (1981)

7

