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Abstract

The parallel computation of the pseudospectrum is presented. The Parallel Path following

Algorithm using Triangles (PPAT) is based on the Path following Algorithm using Triangles

(PAT). This algorithm offers total reliability and can handle singular points along the level

curve without difficulty. Furthermore, PPAT offers a guarantee of termination even in the

presence of round-off errors and makes use of the large granularity for parallelism in PAT.

This results in large speedups and high efficiency. The PPAT is able to trace multiple level

curves simultaneously and takes into account the symmetry of the pseudospectrum in the case

of real matrices to reduce the total computational cost. � 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Many scientific applications require the localization of the eigenvalues of matrices
in some predefined region of the complex plane. Eigenvalues and spectra may reveal
information about the behavior of linear and non-linear systems, stability, resonance
and accessibility to matrix iterations and preconditioners.

Following an early idea from Landau, Godunov [10] and Trefethen [23] indepen-
dently defined the notion of pseudospectrum. For each � > 0, the pseudospectrum of
a matrix is the set in the complex plane defined by
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K�ðAÞ ¼ fz 2 C : z is an eigenvalue of Aþ E where jjEjj2 6 �g
¼ fz 2 C : jjðA	 zIÞ	1jj2 P �	1g:

When A is normal, the set K�ðAÞ is the union of the discs of radius � centered at every
eigenvalue; when A is non-normal, the pseudospectrum may be much bigger. The
determination of the pseudospectrum of a matrix A involves the evaluation of the
function

s : z ! rminðA	 zIÞ;
where rmin denotes the smallest singular value. A common way to compute the
pseudospectrum of a matrix A in a given region is to compute the function sðzÞ on a
discretization of the domain and feed the result to a contour plot routine. This is
a highly expensive approach since it requires the computation of sðzÞ for a large
number of points. In [15], Heuveline et al. develop a parallel code to compute the
pseudospectrum of matrices on a discretized domain. The main idea is to use dif-
ferent processors to compute sðzÞ for different grid nodes and to parallelize the
computation of sðzÞ.

It is now commonly accepted that path following algorithms which compute the
level curve corresponding to a given value of � are of much smaller complexity than
methods based on a grid discretization [24]. The first attempt in this direction was
done by Br€uuhl [6]. Based on continuation with a predictor–corrector scheme, the
process may fail in the case of angular discontinuities along the level curve [4,12–
14,22]. In [26], Wright and Trefethen use the upper Hessenberg matrix constructed
after successive iterations of the implicitly restarted Arnoldi algorithm to cheaply
compute an approximation of the pseudospectrum in a region near the interesting
eigenvalues. They show that for highly non-normal matrices the computed approx-
imation does not agree with the pseudospectrum. In the sequel, we develop a method
which computes the pseudospectrum at a higher cost than their method but it com-
putes the exact pseudospectrum and not an approximation of it.

The Parallel Path following Algorithm using Triangles (PPAT) presented in this
paper can handle singular points along the level without difficulty. Based on the Path
following Algorithm using Triangles (PAT) it is guaranteed to terminate even in the
presence of round-off errors [19] and provides large granularity for parallelism.

Section 2 introduces the PAT. In Section 3, the PPAT is derived. The numerical
algorithms used to compute rmin are presented in Section 4 and the corresponding
parallel implementations are described in Section 5. Finally, Section 6 reports some
numerical results showing the reliability and efficiency of the proposed algorithm.

2. PAT – a brief introduction

The PAT presented in [19] is a totally reliable path following algorithm. The PAT
is proven to be numerically stable and offers a guarantee of termination even in the
presence of round-off errors. Furthermore, the PAT is able to handle singular points
along the level curve of interest without difficulty. The main idea of the PAT is to line
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up a set of equilateral triangles along the level curve as presented in Fig. 1 and use
a bisection algorithm to compute a numerical approximation of the pseudospec-
trum. A technique to compute multiple connected components of the same level
curve having two sets of points fzi : sðziÞ6 �g and fze : sðzeÞ > �g is presented in
[19]. This is usually the case for small values of �.

The choice of the bisection algorithm is mainly due to its reliability and numerical
stability [25]. In terms of worst case analysis, it always yields a zero at the required
precision. The bisection method only requires the continuity of the function sðzÞ (but
not its differentiability). As a trade-off, it converges only linearly with the conver-
gence factor 1=2. In our case, it is guaranteed to converge since the function values
at the two starting points satisfy

sðz0Þ6 � < sðz1Þ:

If we were to consider another root finder, we would like to maintain the reliability
of the bisection. Therefore, the only possible way would be to consider a bisection
process combined with a fast root-finder. The procedure ZEROIN which is available
on Netlib combines efficiently the bisection, the secant method and even a qua-
dratic interpolation [5]. However, the tests performed for an acceptable precision
equal to 10	2s using ZEROIN and the bisection process proved that both algorithms
are equivalent (requiring seven evaluations of sðzÞ per segment).

Fig. 1. A level curve and the corresponding triangles for jpwh_991.
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Given an equilateral triangle Ti ¼ fx; y; zg in the complex plane C such that

sðxÞ6 � and sðyÞ > � ð1Þ
we compute the triangle Tiþ1

Tiþ1 ¼ F ðTiÞ ¼ RðpðTiÞ; hðTiÞÞðTiÞ;
where Rðx; aÞ is the rotation centered at x with angle a, pðT Þ and hðT Þ are chosen as
shown in Table 1.

Fig. 2 displays the four different possibilities for the transformation F where

C�ðsÞ ¼ fz 2 C : sðzÞ ¼ �g;

D�ðsÞ ¼ fz 2 C : sðzÞ < �g

Table 1

Values of pðT Þ and hðT Þ

sðxÞ sðyÞ sðzÞ pðTiÞ hðTiÞ

6 � > � > � x p
3

6 � > � 6 � y 	p
3

Fig. 2. The transformation F.
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and

K�ðsÞ ¼ fz 2 C : sðzÞ > �g:
In [19] is proven that for any given equilateral triangle T0 ¼ fx; y; zg satisfying
condition (1):

• F is a bijection, and the orbit OðT0Þ ¼ fT0; T1; . . . ; Ti; . . .g, where Ti ¼ F iðT0Þ, is a
finite set having F ðTn	1Þ ¼ T0 for some n (we assume that n is the smallest integer
which satisfies the condition).

• 8Ti ¼ fxi; yi; zig 2 OðT0Þ, such that sðxiÞ6 sðyiÞ6 sðziÞ, one of the two relations
holds

sðxiÞ6 sðyiÞ6 � < sðziÞ
or

sðxiÞ6 � < sðyiÞ6 sðziÞ:
• To compute a level curve of length l, we need n equilateral triangles of size s,

where n satisfies

l
s
6 n6

10ffiffiffi
3

p l
s
:

• The computed orbit is the exact orbit of a function ~ss close to s.
• The use of integer coordinates to identify the triangle vertices guarantees the ter-

mination of the process even in the presence of round-off errors.

Algorithm 1 displays the PAT and also presents the technique used to compute
the starting triangle T0. Given a complex value ~zz0 such that sð~zz0Þ6 � (~zz0 can be a nu-
merical approximation of an eigenvalue), we build the complex sequence

~zzk ¼ ~zz0 þ 2k	1seih;

where h is a random angle. We can easily prove that limk!1 sð~zzkÞ ¼ þ1. Therefore,
there exists a k0 2 N satisfying sð~zzk0Þ > �. The bisection algorithm run on the interval
½~zz0;~zzk0 � is used to compute two points zi and ze where

sðziÞ6 �; sðzeÞ > � and jzi 	 zej ¼ s:

The triangle T0 ¼ fzi; ze; zi þ ðze 	 ziÞeðipÞ=3g satisfies condition (1) and is used to
generate the set OðT0Þ.

Algorithm 1. The Path following Algorithm using Triangles (PAT).
a. Startup

Given �, s and ~zz0 such that sð~zz0Þ6 �
FOR k ¼ 1; 2; . . . DO

~zzk ¼ ~zz0 þ 2k	1seih

IF sð~zzkÞ > � break
END

Use a bisection algorithm over ~zz0 and ~zzk to compute zi and ze where
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sðziÞ6 � < sðzeÞ and jzi 	 zej ¼ s

Let T0 ¼ fzi; ze; zi þ ðze 	 ziÞeðipÞ=3g be an initial triangle
b. Compute the F-orbit
FOR i ¼ 0; 1; 2; . . . DO

Tiþ1 ¼ F ðTiÞ
IF Tiþ1 ¼ T0 break
use a bisection algorithm to approximate the pseudospectrum

END

2.1. Pseudospectrum of real matrices

In the particular case of real matrices, the pseudospectrum is symmetric with re-
spect to the real axis. Therefore, we compute only half of the pseudospectrum, with
either positive or negative imaginary part. Given a starting z0, such that sðz0Þ6 �, and
a triangle edge size s, then T0 ¼ fa; b; cg denotes the starting equilateral triangle,
where Table 2 can be used to determine a, b and c, where RðzÞ and IðzÞ are the real
part and imaginary part of z. If T0 has two vertices satisfying condition (1), it is used
to generate the set OðT0Þ. In this case, we can prove that for any triangle T 2 OðT0Þ,
there exists a triangle ~TT 2 OðT0Þ such that the vertices of ~TT are the complex conjugate
of the vertices of T. Using this technique we can limit the computation to the positive
or negative imaginary part of the complex plane. The rest of the curve is obtained by
a symmetry with respect to the real axis. The process is terminated when the triangles
Tiþ1 (or Ti	1) and Ti are symmetric with respect to the real axis. If T0 does not satisfy
condition (1), we define a smaller value of s or look for another starting point z0.

3. The parallel PAT (PPAT)

A clear difficulty in Algorithm 1 is that it requires for every triangle of OðT0Þ:

• one evaluation of rmin to choose the center and the angle of the rotation;
• q evaluations of rmin for the bisection process. We can easily show that q is given by

q ¼ lnðsÞ 	 lnðgÞ
lnð2Þ

� �
; ð2Þ

Table 2

Starting triangle for real matrices

Vertex Real part Imaginary part

a Rðz0Þ 	 s
2 Iðz0Þ

sð
ffiffiffi
3

p
=2Þ

$ %
� s

ffiffiffi
3

p

2

b Rðz0Þ þ s
2

IðaÞ

c Rðz0Þ IðaÞ þ s
ffiffi
3

p

2
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where s is the triangle edge size and g is the convergence threshold of the bisection
process.

Therefore, to compute a level curve of length l we need to evaluate sðzÞ at OðqlsÞ
complex points. If the matrix is a dense matrix of order N, then the computation
of sðzÞ costs OðN 3Þ floating point operations. If the matrix is sparse the cost will
be lower and depending on the number of non-zero entries in the triangular factors
of the matrix. Because of the high amount of computation, we consider parallel eval-
uations of rmin and even, for large cases, parallelism within the computation of the
singular value. The latter will only be considered in a special version of the code
which will be described in Section 5.

The PPAT shown in Algorithms 2 and 3, exploits the fact that we can perform the
following tasks in parallel:

1. compute multiple level curves (either different connected components for the same
value of � or different level curves for different values of �),

2. compute multiple slices of the same connected component,
3. use F and F 	1 to proceed in both directions on a single level curve slice,
4. run different bisections.

Algorithm 2. The Master algorithm.
Broadcast matrix A
Given z0, s and �, find zi and ze such that sðziÞ6 �, sðzeÞ > � and jzi 	 zej ¼ s
set z	i ¼ zi and z	e ¼ ze
set z�1 ¼ zi þ ðze 	 ziÞeiðp=3Þ
set z�	1 ¼ zi þ ðze 	 ziÞeið	p=3Þ

Add Compute(sðz�1Þ) and Compute(sðz�	1Þ) to Task List
WHILE not(Empty(Task List)) or a worker is busy DO

Look for an available worker
WHILE Found DO
IF Task List contains a task THEN
Send first task in Task List to worker
Remove first task from Task List

Look for an available worker
ELSE

break
END

END
Wait for incoming messages
IF received s ¼ sðz�1Þ THEN
IF s > � THEN ze ¼ z�1 ELSE zi ¼ z�1 END
Add Find(zi; ze; �) to Task List
set z�1 ¼ zi þ ðze 	 ziÞeiðp=3Þ
Add Compute(sðz�1Þ) to Task List

ELSE

IF received s ¼ sðz�	1Þ THEN
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IF s > � THEN z	e ¼ z�	1ELSE z	i ¼ z�	1 END

Add Find(z	i; z	e; �) to Task List
set z�	1 ¼ z	i þ ðz	e 	 z	iÞeið	p=3Þ

Add Compute(sðz�1Þ) to Task List
END

END

END

Clean Up and exit

Algorithm 3. The Worker algorithm.
Receive Matrix A
FOR k ¼ 1; 2; 3 . . . DO

Receive a message from Master
IF worker received z THEN

Compute s ¼ rminðA	 zIÞ
Send s to Master

ELSE

WHILEjzi 	 zej > g DO
z ¼ 0:5� ðzi þ zeÞ
s ¼ rminðA	 zIÞ
IF s6 � THEN
zi ¼ z

ELSE

ze ¼ z
END

END

Send z to Master
END

END
Clean Up and exit

Therefore, we use a set of working nodes capable of computing sðzÞ for a given
complex value z (referred to as Compute(sðzÞ) task) and finding z 2 ½zl; zg�, where
rminðA	 zIÞ ’ � given ðzl; zg; �Þ, such that, sðzlÞ6 � and sðzgÞ > � (referred to as
Find(zl; zg; �) task).

This can only be done if all workers have access to the matrix A. Therefore, A is
broadcast to all workers.

The workers are controlled by a master process as presented in Fig. 3. The master
generates computational tasks to be executed by idle workers. Additional tasks are
queued in a task list managed by the master. Given a triangle Ti ¼ fx; y; zg 2 OðT0Þ
such that sðxÞ6 � and sðyÞ > �, the master spawns a Compute(sðzÞ) task to determine
F ðTiÞ, or F 	1ðTiÞ if we are proceeding in the reverse direction, and a Find(x; y; �) task
to locate a new point on the level curve.
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Upon reception of a message, the master analyses the result. If the message re-
turns a complex z, where sðzÞ ’ �, then z is stored in the level curve memory space,
otherwise, the master determines Tiþ1 ¼ F ðTiÞ (or Ti	1 ¼ F 	1ðTiÞ) and generates the
corresponding Compute(sð�Þ) and Find(�; �; �) tasks. Finally, the master retrieves a
task from the task list and sends it to the idle worker. This dynamic task scheduling
allows better load balancing among the different processors of a heterogeneous net-
work of workstations.
Compute(sð�Þ) tasks are considered as urgent tasks and are inserted at the top of

the task-list while Find(�; �; �) tasks are appended to the end of the task list. This
technique assigns the highest priority to the Compute(sð�Þ) tasks. In case of a small
number of workers, Find(�; �; �) tasks will be stored in the task list while the Com-
pute(sð�Þ) tasks are being served by the master leading to a too large task list. To
limit the size of the task list, the high priority tasks are treated as low priority ones
whenever the task list size exceeds a fixed limit. In this case, the Compute(sð�Þ) tasks
are added at the end of the task list reducing the task creation process.

The startup of the PPAT is identical to the startup of the PAT. The main differ-
ence is the use of Compute(sðzÞ) tasks to compute sðzÞ.

3.1. Speedup and efficiency

Let n be the number of equilateral triangles built to compute an approximation of
a given level curve, p the number of processors, tr the time needed to compute rmin

and tcom the time to exchange a message. We can limit the number of generated tasks
to n Compute(sð�Þ) tasks to build the orbit and n Find(�; �; �) tasks to compute a
numerical approximation of the level curve.

Fig. 3. Parallel architecture.
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Since tr is so large that any effect of tcom is negligible, therefore the analysis is done
without concern for the communication costs. In the following, we consider tr to be
the time unit; therefore, each Find(�; �; �) task, requiring q evaluations of rmin, ac-
counts for q time units where q is given by Eq. (2).

The time needed to compute a level curve approximation using a single processor
is given by

t1 ¼ nþ nq;

whereas, for large values of p (pP qþ 1), the time to compute the level curve ap-
proximation would be

t1 ¼ nþ q:

Therefore, the upper bound of the speedup, achieved whenever pP qþ 1, is given
by

S1 ¼ t1
t1

¼ nþ nq
nþ q

< minð1þ q; nÞ:

On the other hand, when p < qþ 1, the computation of the level curve approxi-
mation is performed in three phases:

1. Reduced speedups are observed in the first p 	 1 time units where a new task is
spawned for each time unit,

2. peak performance is observed whenever the number of generated tasks exceeds
p 	 1,

3. the speedup drops in the final p 	 1 time units where no pending tasks are avail-
able to feed to idle workers.

In the startup and cleanup phases (steps 1 and 3), pðp 	 1Þ tasks are computed;
therefore, peak performance is observed for tpeak ¼ ðnðqþ 1Þ 	 pðp 	 1ÞÞ=p time
units. The total time needed to compute the level curve using p processors is given
by

tp ¼ 2ðp 	 1Þ þ tpeak ¼ p 	 1þ nðqþ 1Þ
p

:

In general, tp can be expressed as

tp ¼
nþ q if pP qþ 1;
p 	 1þ nðqþ1Þ

p if p < qþ 1:

�
ð3Þ

Since we proceed in both directions, we can assume that p=2 processors are used to
compute n=2 elements. Therefore, expression (3) yields

tp ¼
nþ2q
2

if pP 2qþ 2;
p	2
2
þ nðqþ1Þ

p if p < 2qþ 2:

(
ð4Þ

In this case, the speedup is given by
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Sp ¼
2nðqþ1Þ
nþ2q if pP 2qþ 2;
2npðqþ1Þ

p2	2pþ2nðqþ1Þ if p < 2qþ 2:

(
ð5Þ

For large values of n, the speedup and efficiency can be expressed as

Sp ¼ minðp; 2qþ 2Þ þOð1=nÞ ð6Þ
and

Ep ¼ min 1;
2qþ 2

p

� 	
þOð1=nÞ: ð7Þ

The upper bound of the speedup is given by Smax ¼ 2qþ 2. This upper limit is
achieved whenever pP 2qþ 2.

Higher speedups can be obtained when multiple slices of the same level curve are
computed simultaneously where each slice requires 2qþ 2 processors. Given a com-
plex value ~zz0 such that sð~zz0Þ6 � and a triangle edge size s, we use the startup proce-
dure shown in Algorithm 1 with different angles hj to compute multiple level curve
points. Each point can be used to start a level curve slice. To get through success-
fully, the triangles of the different computed slices should align perfectly (see Fig.
4). Therefore, a prefixed lattice is used for all level curve slices. If p is the number
of available processors, then l ¼ dp=ð2qþ 2Þe slices of the same level curve can be
computed, where l	 1 slices use 2qþ 2 processors and the last slice uses the remain-
ing processors.

Fig. 4. Computing multiple slices of the same level curve.
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4. Computing the smallest singular value

Given a large sparse matrix A 2 Cn�n, we consider the matrix B 2 C2n�2n

B ¼ 0 A	1

A	H 0

� 	
:

The eigenvalues of B are the singular values of A	1 and their negatives. Therefore the
largest eigenvalue of B is equal to 1=rminðAÞ. The corresponding eigenvector is
x ¼ xt1 x

t
2


 �t
, where x1 2 Cn and x2 2 Cn are the right and left singular vectors of A,

respectively. Therefore the evaluation of rminðA	 zIÞ can be done through an eval-
uation of 1=kmaxðBÞ with

B ¼ 0 ðA	 zIÞ	1

ðA	 zIÞ	H 0

� 	
¼ P 0

0 Q

� 	
0 R	1

R	H 0

� 	
P t 0
0 QH

� 	
; ð8Þ

where ðA	 zIÞP ¼ QR is a QR decomposition with column reordering of A	 zI and
P is a permutation matrix to reduce the fill-in during the QR decomposition of the
matrix A	 zI . The matrix P is built using a minimum degree algorithm [1,9].

We can restrict ourselves to the computation of the largest eigenvalue of the
matrix

~BB ¼ 0 R	1

R	H 0

� 	
;

where a multifrontal QR decomposition is used to compute R [2,20]. The Lanczos
algorithm is used to compute the largest eigenvalue [7,16].

Algorithm 4. Multifrontal QR decomposition.
Build the elimination tree to determine the dependencies between the columns of
the matrix
FOR k ¼ 1; . . . ; n DO
IF k is a leaf THEN

Fk is the set of all the rows of the original matrix having their leading ele-
ment in column k

ELSE

Fk is composed by appending the contribution blocks coming from the sons
to the rows of the original matrix having their leading element in column k

END

Perform a Householder reflection on Fk
The first row of Fk is the kth row of R
The remaining sub-matrix is the contribution
block to be sent to the father

END

We start by building a dependency graph, or elimination tree (see Fig. 6), that will
express the connections between successive steps involved in the Householder reflec-
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tions. The tree nodes in the elimination tree correspond to matrix columns where col-
umn a is a parent of column b if the application of the Householder reflection cor-
responding to column b alters column a. The multifrontal QR decomposition is
shown in Algorithm 4. Notice that the computations of the Householder reflections
are totally independent for separated leaves. Therefore, the reduction of independent
subtrees can be done in parallel.

The Lanczos algorithm is a method dedicated to the particular case of Hermitian
matrices [15,21]. Algorithm 5 shows an adapted version of the Lanczos algorithm to
compute the largest eigenvalue of the matrix ~BB.

Algorithm 5. Lanczos algorithm.
Choose v1 2 R2n

v1 ¼ v1=jjv1jj
b1 ¼ 0
v0 ¼ ½0�
FOR j ¼ 1; . . . ;m DO

vj;1
vj;2

� 

¼ vj where vj� 2 Rn

wj;1 ¼ R	1vj;2 	 bjvj	1;1

wj;2 ¼ R	Hvj;1 	 bjvj	1;2

wj ¼
wj;1

wj;2

� 

Hj;j ¼ aj ¼ wt

jvj

wj ¼ wj 	 ajvj
Hj;jþ1 ¼ bjþ1 ¼ jjwjjj2
vjþ1 ¼ wj=bjþ1

END

ðkmax; yÞ ¼ eigðHmÞ where Hmy ¼ kmaxy
x ¼ Vy with V ¼ ½v1; . . . ; vm�

5. Parallel computation of rmin

For larger matrix dimensions, parallel implementations of the multifrontal QR
decomposition and the Lanczos algorithm are needed [2,8,11,17,20]. Further-
more, the matrix R can be too large to fit in the memory of a single machine. There-
fore, we use a computational model based on a hierarchy of clusters where each
worker node is replaced by a set of machines offering the same functionalities as
shown in Fig. 5. The group master controls the set of slaves and responds to requests
of the main master. The slave nodes execute the operations ordered by the group
master.
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The multifrontal QR decomposition allows a large granularity for parallelism. In
[20], Puglisi developed a parallel multifrontal QR decomposition for shared memory
machines. Therefore, she uses the fact that a processor can access at low cost the
frontal matrix of any given leaf in the elimination tree. Unfortunately, this is not true
in our case since we are using a distributed memory virtual machine. To cope with
this difficulty we use the fact that the reduction of a given leaf only affects the parent
node. Therefore, we isolate independent subtrees of the elimination tree which can be
reduced in parallel (see Fig. 6). The group master needs to send the subtree nodes to
a given slave and retrieves the final contribution block. Notice that in our implemen-
tation, the group master reorders the subtree nodes in their reduction order. The slave
retrieves a set of nodes and operates the corresponding Householder reflections.

The group master builds the elimination tree and isolates the largest independent
subtrees having fewer than q nodes. An estimation of the reduction cost is used to
reorder the reduction tasks allowing better load balancing among the slaves. Each
slave retrieves a subtree, reduces all subtree nodes and returns the contribution block
to the group master. Upon reception of a contribution block for node i, the group
master checks the possibility of reducing the ancestors of node i. This is feasible if
and only if all the subtrees having i as a common ancestor have been reduced. Once
all the subtrees are reduced, the group master completes the decomposition by reduc-
ing the remaining tree leaving the rows of R scattered among the group processors
(master and slave processors).

Fig. 5. Parallel structure for very large matrices.
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The most expensive operations in the Lanczos algorithm are the solutions of the
two systems

wj;1 ¼ R	1vj;2 	 bjvj	1;1

and

wj;2 ¼ R	Hvj;1 	 bjvj	1;2:

The systems are solved at each iteration of the Lanczos algorithm. Therefore, par-
allel solvers must be used to enhance the performance [3]. In the present imple-
mentation, we use a parallel block substitution routine to solve the triangular
systems corresponding to R	1vj;2 and R	Hvj;1 efficiently. The columns of R are re-
ordered, as shown in Fig. 6, to allow larger block sizes and better performance.

Notice that for the Lanczos algorithm we have also considered the possibility of
gathering the R matrix on two slaves, where a slave solves the linear systems corre-
sponding to

Fig. 6. Parallel multifrontal QR decomposition.
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wj;1 ¼ R	1vj;2 	 bjvj	1;1

while the other performs

wj;2 ¼ R	Hvj;1 	 bjvj	1;2:

However this technique did not improve the performance of the code due to the lack
of physical memory and the use of the swap disk space.

6. Test problems and numerical results

The master process is considered as a lightweight process since it involves a
computational cost neglectible with respect to other processes. Therefore, the master
process and the first worker run on the same physical processor. Hence the most in-
teresting numerical tests are shown. All computations are performed using complex
double precision arithmetic on a set of low cost general purpose heterogeneous net-
work of workstations. The underlying hardware and network configurations are de-
scribed in Table 3. The source code which is written in C, is available via anonymous
ftp from the site ftp.irisa.fr/local/aladin/philippe/PPAT.

The investigation was limited to the worst scenario case, where a single level curve
slice is computed. This is done in order to evaluate a lower bound of the speedup and
efficiency of the PPAT. Additional speedups and better efficiencies are achieved when
multiple level curves or level curve slices are computed simultaneously.

6.1. Standard test matrices

The test matrices shown in Table 4 were selected from Netlib’s matrix market
suite (www.netlib.org). The application uses up to 20 single processor workers.
Figs. 7–9 show the wall-clock time, speedup and efficiency to compute 100 points
on a given level curve for the PAT and PPAT. The numerical constants are shown
in Table 5, where g is the bisection algorithm precision, gr is the error tolerance

Table 3

Description of the machine hardware configuration

Single processor Pentium III 600 MHz

RAM 128 MB

Internal cache 512 KB

Swap space 600 MB IDE Hard disk

Network card 3Com 10–100BaseT

HUB 3Com Super Stack 10BaseT

OS Linux Red Hat 6.0

Compiler gcc 2.95.2

Communications mpich 1.2

LAPACK f2c translated 1.2

BLAS lsblaspii1.2b_11.99.a http://www.cs.utk.edu/�ghe-

nry/distrib
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for the Lanczos algorithm, q is the total number of rmin evaluations per bisection,
Smax is the speedup upper bound and trmin

is the average time needed to compute
rminðA	 zIÞ.

The best performance was observed for the matrix Dw8192, that was the largest
of the set. This is explained by the fact that this would have the smallest expected
ratio of communication to computation. A speedup of 10.85 using 12 processors
with a 90% efficiency was achieved. The best observed speedup was bound by 11
whereas the theoretical limit reaches 14.03. Some level curves of the pseudospectrum
of Dw8192 are presented in Fig. 11.

The worst results where for the matrix Olm1000. The speedup is only 8.31 for 13
processors with an efficiency of 63%. In a more realistic approach, we have used a
graphical front-end, presented in [18], to drive the computation of the pseudospec-
trum with 20 processors used to compute simultaneously seven slices of the same
level curve � ¼ 0:4. A new slice was started whenever idle processors were observed.

Fig. 7. Seconds to compute 100 points on the level curve.

Table 4

Some test matrices chosen from the non-Hermitian eigenvalue problem collection (http://math.-

nist.gov/MatrixMarket/data/NEP/)

Matrix Collection Dimension Nz jjAjjF
Olm1000 NEP 1000 3996 1:3� 106

Rdb3200L NEP 3200 18 880 2:8� 103

Dw8192 NEP 8192 41 746 1:6� 103
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Fig. 8. Speedup of the PPAT.

Fig. 9. Efficiency of the PPAT.
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A total of 176 s were spent on the computation of the 4380 level points. A single pro-
cessor required 2944 s to compute the same level curve. The corresponding speedup
is 16.72 with an efficiency of 83%. Table 6 presents the numerical values and Fig. 10
shows the time diagram for each level curve slice.

6.2. Parallel computation of rmin

In this section, we describe a test of large dimension on which it is worth to con-
sider a parallel computation of rmin. Although, the test is obtained from a practical
situation, we do not discuss here the physical interpretation of the results. The prob-
lem has been defined and studied by Daube, Le Qu�eer�ee and Tuckermann (LIMSI,
Orsay). They consider the problem of a stability investigation of Navier–Stokes
equations.

For a given perturbation x, the problem consists of considering the stability of the
time dependent solution in a neighborhood of a steady solution. For this purpose,

Table 5

Numerical constants

Matrix Level curve s g gr q Smax trmin

Olm1000 6:1778� 10	2 0:01 10	4 10	4 7 16 0.27 s

Rdb3200L 2:0134 0:01 10	4 10	4 7 16 15.14 s

Dw8192 4:6352 0:01 10	4 10	4 7 16 114.36 s

Fig. 10. Time diagram for the different level curve slices – Matrix Olm1000.
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Fig. 11. Some level curves for Dw8192.
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the eigenvalues of largest real part of some Jacobian matrix are studied. Therefore
the pseudospectrum of the matrix in a the neighborhood of the origin is computed.
As shown in Table 7, we conducted three tests with matrices of different sizes. For
tests S1 and S2, each worker is assigned to a single processor while in S3, because
of the size of the matrix, three processors were assigned to the computation of each
rmin, as shown in Fig. 5.

Table 8 shows the wall-clock time needed to compute sðzÞ on a single processor.
Test S3 requires 3832 s to compute a single sðzÞ. Notice that for tests S1 and S2, the
Lanczos algorithm accounts for 10% of the total time, whereas in the case of S3, it
accounts for 40% of the total time. This increase is due to swap disk effects. This
is the main reason for considering parallelism within the singular value computation
for large matrices. Therefore, parallel implementations of the multifrontal QR de-
composition and the Lanczos algorithm should be considered.

Table 9 shows the computation time for the parallel versions of the multifrontal
QR, Lanczos algorithm and sðzÞ on a worker of three processors. The processors
were distributed into one group master and two slaves. It can be observed that par-
allelizing the computation of rmin is not beneficial for S1 and S2 since there is a slow-
down. For S3, a speedup of 1.66 and 2.29 were achieved in the QR decomposition
and Lanczos algorithm, respectively. The total speed up for sðzÞ is 1:85 and the cor-
responding efficiency is 61%.

We were able to compute 42 points of a level curve for the test S3 in about 12 h at
a progress rate of 1 point per 1040 s (17.3 min). Without the parallel implementa-
tions of the QR decomposition and the Lanczos algorithm, we would have been lim-
ited to a progress rate of 1 point per each 32 min.

Table 6

Computing multiple slices of the same matrix – Test matrix Olm1000

Matrix � s q t1 t20 S20 E20

Olm1000 0:4 0:1 7 2944 s 176 s 16:72 0:83

Table 7

The test matrix set

Test Dimension NzðAÞ NzðLÞ

S1 1890�1890 23 078 5514

S2 3906�3906 49 030 11 530

S3 32 130�32 130 411 590 95 754

Table 8

Seconds spent in the multifrontal QR decomposition and the Lanczos algorithm

Test Multifrontal QR Lanczos algorithm rminðA	 zIÞ

S1 3.7 (84%) 0.7 (16%) 4.4

S2 41.8 (95%) 2.1 (05%) 43.9

S3 2353 (61%) 1480 (39%) 3832
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7. Conclusion

The PPAT, just like its sequential predecessor, the PAT, offers total reliability. It
is shown that PPAT offers large grain parallelism. Based on a master–slave model,
the PPAT provides large speedups and high efficiency. Furthermore, the PPAT is
capable of following multiple level curves simultaneously and exploits the symmetry
of the level curve in the case of real matrices to reduce the total computational cost.

Parallel implementations of the Lanczos algorithm and the multifrontal QR de-
composition are used to compute the smallest singular value of large matrices (up
to 32130� 32130 in this paper). Coupled with the PPAT, these implementations
yield a highly parallel code. Although the observed performance numbers do not
allow the computation of a pseudospectrum of large matrices (order higher than
3� 104), the presented methods are promising.
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