In the previous section, we approximated functions wit n-degree polynomials called Taylor polynomials. Now we will extend that concept to actual representations of a function with a polynomial of infinite degree

Goal

1. Define Taylor series
2. Apply Taylor series to find new representations of common functions
3. Apply Taylor series to find binomial expansions of non-positive integer exponents

What is a Taylor series? A Taylor series is an extension of a Taylor polynomial of degree $n \rightarrow \infty$.

From our previous study we know the following Taylor series (about $x=0$):

1. $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$.
2. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$.
3. $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$

Because these functions are defined for all $x \in R$, this series equals the function for all values of x. However, not all functions are like this. Take the natural \log function about $x=1$:

$$
\ln x=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots
$$

The natural \log function is not defined for $x \leq 0$, so the series is only good for estimating values of $x>0$. Since we are centering the polynomial at $x=1$, it makes sense that the function will approximate values of x the same distance to the right as to the left. As the series only works for a length of 1 away from the center to the left, it stands to reason that the series only works for a length of 1 to the right as well.

We know from the binomial expansion theorem how to find $(1+x)^{p}$ when p is a positive integer. However, what if p is not a positive integer, maybe negative or a positive non-integer? We can use the same algebraic calculation using the nth derivatives to generate the following series:

$$
(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\frac{p(p-1)(p-2)(p-3)}{4!} x^{4}+\ldots
$$

Again, because we don't know what p is, the series will only work for values of $|x|<1$, because for some values of p, the function will not be defined for $x \leq-1$

Does this really work for a positive integer p ? Absolutely, for each term with degree greater than p, the coefficient is 0 because of the subtraction in the numerator.

How does this change if we have the function $(1-x)^{p}$? Everything is the same except the terms will alternate positive and negative based on whether the degree of the term is even or odd.

