Today, we analyze the graph of the family of solutions. We call this graphing the slope field

Goal

1. Define a slope field
2. Generate a slope field
3. Graph possible solutions using a slope field.

What is a slope field? A slope field is a graph on a coordinate plane of the values of y^{\prime} given an equation for y^{\prime}. Given the differential equation $y^{\prime}=-\frac{x}{y}$, the slope field generated is the following graph:

How is this generated? By taking various points, we calculate the slope using the differential equation, and draw a line accordingly.

For the following differential equations, graph the corresponding slope fields.

1. $y^{\prime}=y$

2. $y^{\prime}=x$

3. $y^{\prime}=2-y$

What good are slope fields? They help us in two respects. One, we can see a graph of what potential solutions look like; two, if we have a starting point, we can trace the solution and possibly determine the equation for a particular solution. Take for example our original slope field.

It seems obvious that the solution to this equation is a circle, which when we differentiate $x^{2}+y^{2}=r^{2}$, we find $y^{\prime}=-\frac{x}{y}$.

With the following initial conditions, we can determine the actual equation:

1. $y(0)=4$; we get the graph of a circle with radius 4 ; hence the equation $x^{2}+y^{2}=16$
2. $y(2)=0$; we get the graph of a circle with radius 2 ; hence the equation $x^{2}+y^{2}=4$
3. $y(0)=-3$; we get the graph of a circle with radius 3 ; hence the equation $x^{2}+y^{2}=9$

On our three previous examples sketch the solution for the first when $y(0)=$ 1 , the second when $y(0)=0$, and the third when $y(0)=-1$

What about the following differential equation $y^{\prime}=\frac{x}{y}$ and its accompanying slope field:

If you think this looks like a hyperbola, you would be correct, as the solution of this equation is either $x^{2}-y^{2}=r^{2}$ or $y^{2}-x^{2}=r^{2}$.

Trace the solution which pass through each of the following points:

1. $(1,0)$
2. $(0,1)$
3. $(-3,1)$
4. $(2,-1)$
5. $(1,1)$
