MA2160 Calculus IT with Technology Ch. 11-2

Today, we analyze the graph of the family of solutions. We call this graphing
the slope field

Goal

1. Define a slope field
2. Generate a slope field

3. Graph possible solutions using a slope field.

What is a slope field? A slope field is a graph on a coordinate plane of the
values of ¥/ given an equation for 3y/. Given the differential equation ¢y’ = —5,
the slope field generated is the following graph:

\

g oL 22 B SS Y SN

4/ v

X
§
y
%
v

gl //r/»\\\

/
i
QAL
S
\\\‘\A// 'S /
AN & S e's

"4 > 0 2 s

\5

AN S )6

ANS Sy
\\\\«/4//

\‘i

AR NN S S

A A ala0a

A

AR NN S E Sy
AN AN S E B S e Sy

A
XX

A

How is this generated? By taking various points, we calculate the slope using
the differential equation, and draw a line accordingly.



For the following differential equations, graph the corresponding slope fields.
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What good are slope fields? They help us in two respects. One, we can see a
graph of what potential solutions look like; two, if we have a starting point,
we can trace the solution and possibly determine the equation for a particular
solution. Take for example our original slope field.
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It seems obvious that the solution to this equation is a circle, which when we
differentiate 22 + y? = r?, we find 3y = —2.

With the following initial conditions, we can determine the actual equation:

1. y(0) = 4; we get the graph of a circle with radius 4; hence the equation
2? +y? =16

2. y(2) = 0; we get the graph of a circle with radius 2; hence the equation

3. y(0) = —3; we get the graph of a circle with radius 3; hence the equation
w2+ y? =9

On our three previous examples sketch the solution for the first when y(0) =
1, the second when y(0) = 0, and the third when y(0) = —1
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What about the following differential equation y’ =

slope field:

< and its accompanying
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If you think this looks like a hyperbola, you would be correct, as the solution

of this equation is either x> — y? = 72 or % — 2% = 2.
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Trace the solution which pass through each of the following points:

1. (1,0)
2. (0,1)
3. (-3,1)
4. (2-1)

5. (1,1)



