We can show from algebra that $.\overline{9} = 1$. But what is $.\overline{9}$? It is a geometric series, and its value is determined by the limit as the number of terms approaches infinity.

Goal

- 1. Define geometric series and partial sums
- 2. Identify the means and conditions to find the finite value of a geometric series.

What is a geometric series? It is the sum of an infinite set of numbers such that the ratio of any two consecutive numbers is constant. Using summation notation, where a is the first term, and n approaches ∞ :

$$\sum_{i=1}^{n} ar^{i-1}$$

We define a partial sum as the sum of a consecutive finite set of the infinite set.

How do we find the value of the partial sum? Letting x equal the partial sum and performing some algebraic manipulation, we find the value:

$$x = \frac{a(1-r^n)}{1-r}$$

What if we want to find the sum of the entire series? We need to find the limit of the partial sum as $n \to \infty$:

$$\lim_{n\to\infty}\, \Sigma_{_{i=1}}^n\, ar^{i-1}$$

It is quite obvious that if $|r| \ge 1$, there is no limit. However, if 0 < r < 1, then the limit exists and the value of the sum is:

$$\sum_{i=1}^{n} ar^{i-1} = \frac{a}{1-r}$$

You would think that if r < 0, we may have to modify the formula, but it doesn't matter. As long as |r| < 1, the formula works.

Utilizing this method, we can further establish the fact that $.\overline{9} = 1$, as $a = \frac{9}{10}$ and $r = \frac{1}{10}$

Find the value of the geometric series given the following conditions:

1.
$$a = 1, r = \frac{1}{2}$$

2. $a = \frac{2}{5}, r = \frac{1}{4}$
3. $a = 15, r = \frac{1}{3}$
4. $a = -16, r = \frac{2}{7}$
5. $a = 1, r = -\frac{3}{5}$