Numerical PDE HW 9

Mesh refinement and convergence

- 1. Create a mesh refiner that takes in a 2D triangular mesh and splits every edge into 2. Use this tool to generate a sequence of meshes for the square domain $0 \le x_1 \le 1$ and $0 \le x_2 \le 1$. Plot the coarsest and finest meshes you created and report the minimum/maximum angles, minimum/maximum edge lengths, and the number of vertices for all your meshes.
- **2.** Verify that the solution of the PDE $\partial^{\{2,0\}}u + \partial^{\{0,2\}}u = \operatorname{Sin}[\pi x_1/2] \operatorname{Cos}[2\pi x_2]$ with homogeneous Dirichlet conditions at $x_1 = 0$ and Homogeneous Neumann on the other sides is a multiple of $\operatorname{Sin}[\pi x_1/2] \operatorname{Cos}[2\pi x_2]$. Show your computation and report the solution.
- **3.** Verify that your solver produces appropriate convergence for the test problem in #2 for the meshes you created in #1. Show labelled graphs of the errors measures discussed in Chpt 4 as function of h on appropriate scales.