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General solution for the Couette flow profile
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A general solution for the Couette velocity profile is reported. Taylor’s classical one-dimensional profile is
shown to be a special case of this solution for configurations whose aspect ratio is large. Numerical evaluation
indicates that error between the two profiles is a logarithmic function of the aspect ratio and provides data to
estimate when Taylor’s profile should be replaced with the present sol{iB&063-651X%99)15111-(

PACS numbeps): 47.15.Rq, 02.30.Jr

I. INTRODUCTION Cell dimensiongFig. 1) are the gap widtla, cell sparb, and
rotor radiusry, and the rotor is assumed to turn at a constant

The Taylor-Couette cell has served as an important sheagate . The corresponding dimensionless geometric param-
flow model since Taylor's seminal work in 1923]. Inves-  eters are the aspect ratip=b/a and the radius ratidR
tigators have studied its flow spectrum extensively, helping=ry/a. Usinga andaw as length and velocity scales, the
to elucidate many phenomena in fluid physics, especiallypoundary conditions can be stated nondimensionally as
laminar transition. The cell is typically run in its fundamental
mode, the so-called “Couette” mode, and the system'’s re- u=0 at z=0, z=¢, r=R+1 (2a)
sponse to prescribed disturbances is examined. Numerically,
this is accomplished by employing a Couette velocity profileand
as an initial conditioru(x,0), perturbing it, and computing
the nonstationary flow evolution(x,t). However, an exact u=R at r=R. (2b)
solution for the general case has never been published. In
most instance§2—4], the span dimension of the cell is as- This system can be solved using an integral transform
sumed to be large enough relative to the gap dimension sudRethod[8]. An appropriate integral transform pair is given
that the problem can be modeled one-dimensionally. Thi®Y
results in the well-known solution attributed to Tayldir],
which has long been accepted as the standard theoretical
model[5]. Variation vanishes along the axial span of the cell
and end effects from the stator walls are neglected.

However, there exist important classes of problems whergnd
the one-dimensional assumption is not justified, for example
when the span and gap dimensions are comparable or when “ Z(Bm,2)Ulr, By
local effects of the endwalls are of interest. While profiles u(r,z)= E 3 .
can be computed numerically, this is generally not favored m=1 f Z%(Bm,2")dz'
since it introduces an additional component of truncation er- 0
ror, may exceed reasonable computational effort for high
resolution grids, and requires recomputation whenever palhe overbar notation represents a transform inzieeordi-
rameters or grids are altered. Alternatively, approximatenate direction, 8, are corresponding eigenvalues, and
Couette solutions are sometimes u$é{ but resulting nu-
merical simulations fot>0 cannot, in the strictest sense, be
considered true Navier-Stokes solutidid$ A general exact
solution for the profile is required for such cases, i.e., one
that is independent of restrictions upon the geometric param-
eters. Such results are derived in this Brief Report.

o ¢
u(r,ﬁm>=f0 Z(Bms2 )U(r,2)dZ (39

(3b)

II. SOLUTION PROCEDURE

An equation describing the Couette profilér,z) can be
obtained by simplifying the azimuthal component of the cy-
lindrical Navier-Stokes equations via the unidirectional Cou-
ette flow model. In dimensionless form, this yields

FIG. 1. Finite span Taylor-Couette cell shown in dimensional
(1) coordinates. Flow occurs in the cavity represented by cross-
hatching.
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Z(Bm,z) are corresponding eigenfunctions. All eigen-relatedAn auxiliary Sturm-Liouville equation and integration by-

guantities can be derived from standard talpis parts have been used to evaluate various terms. The general
Application of transform(3a) to Eq.(1) yields an ordinary solution of Eq. (4) has the form u=cql(Bmr)
differential equation of the Bessel type, +c,K1(Bmr), wherec,; andc, are constants of integration

andl; andK; are the first order modifiethyperbolig Bessel
functions of the first and second kind, respectively. Using the
”— _ transformed boundary conditions=0 atr=R+1 andu
d_“+ E E—(ﬁ T i)— (4) =¢R[1—-(—1)")/m=m at r=R, the transformed solution
dr® " r dr m can be expressed as

W )= — RI(—1)"=1]{11[ Bn(R+ 1) IK1( Bl ) = Ka[ Bm(R+ 1) ]11( Brr )}
o Bl 11l Bm(R+ 1) IK1(BmR) = K[ Bm( R+ 1) J11(BmR) } '
Inverse transform(3b) is applied to Eq.(5) to obtain the physical solution inr(z) space. Even-order eigenmodes,

=2,4,6,..., are not relevant to the solution; therefore, retaining only the participating odd-order modes and applying appropriate
simplification, the final solution is found to be

(5

u(r.z)= 4R i {11l Bm(R+1)JK1(Brml) = Kal Bn(R+1)]11( Bl ) }SIn( Bmz) ©
’ 7 =1 {11l Bn(R+1)JK1(BmR) = Ki[ Bm(R+ D) J11(BmR) H2m—1)
|
where B,=(2m—1)7/ ¢. definition, this is the location whose distance to the nearest
end wall is a maximum.Results show that the error is al-
Il. TAYLOR'S SOLUTION: A SPECIAL CASE most logarithmically related to the aspect ratio over a large

spectrum of radius ratios. One-dimensionality becomes more
Taylor's classical solutiofi1] can be shown to be a spe- (difficult to maintain asR is increased. For example, assum-

cial case of Eq(6) when the aspect ratio is large. Becauseing an acceptable rms error of 1§) Taylor's solution accu-
¢~ ' is a parameter in the set of all eigenvalygs, small  rately models the Couette profile for cells of 3:1 aspect ratio
argument approximations for the Bessel functions can b@nd higher aR=0.1. However, for large values &such as
employed wheny is suitably large. That id,(r) andKy(r) 1000, cells must have slightly greater than 10:1 in order to
behave respectively a2 and 1f for small values ofr.  pe modeled one-dimensionally. Trends in Fig. 2 suggest that
Substituting these expressions into E8). yields the difference between the two solutions is not boundeRl in
However, the issue is essentially irrelevant fee1000

2 _
— ARTR+DI(R+D/r—r/(R+1)] since simpler results based upon the “thin gap” approxima-

u(r.2) (2R+1)m tion are valid and are usually used instéad].
o . Cell aspect ratios are often much greater than 10:1 and for
> sin(2m—1)mz/¢] _ (77 these configurations the Taylor solution appears to be a valid
m=1 2m—1 Couette profile. The one exception is if local effects near the
Making use of a summation identifyL0], the dependence 100 — — ]
uponz vanishes and Eq7) can be simplified to
R2 [(R+1)2 211
= oRT T r)’ ® ° L
- ° Q.
which is Taylor’s classical one-dimensional solution. Z0.1p 'R @
This of course invites the question of how smalican ~ ® &
become before the one-dimensional assumption is violated. 0.01f X,
Previous work [5] has emphasized the view that one- @
dimensional modeling of the Taylor-Couette cell is not 000 e,
physically valid. Nevertheless, for the purpose of represent- N
ing initial conditions in a numerical simulation, a limit fef 12 3 ‘;szctﬁ ratiot 210

can be established for which the two profiles differ by less

than an acceptable value. Figure 2 shows the rms difference FIG. 2. RMS error between one-dimensional and two-
between Eq(6) and Eq.(8) as a function ofp andR, where  dimensional profiles. Datur® represents the configuration studied
the profile representing Eq6) is computed at¢/2. (By by Huaet al.[3].



6194 BRIEF REPORTS PRE 60

end walls are to be studied, in which case Hj.should be IV. CONCLUSION

employed. For smaller aspect ratios the two profiles should

first be compared to confirm the validity of one-dimensional A general solution for the Couette flow profile is reported.
modeling, if this simplification is being considered. In many Our result is independent of geometric restrictions. Taylor’s
instances it may not be justified; for example, Haal.[3],  one-dimensional solution is shown to be a special case of
repeating the work of Jong¢42], used Taylor’s profile for a this profile for large aspect ratio cells. Error between the two
cell having a 2:1 aspect ratio arR=7.039. However, ac- profiles is approximately a logarithmic function of the aspect
cording to Fig. 2(see daturthis has an associated rms error ratio for a wide range of radius ratios. Corresponding data
on the order of 0.26. The aspect ratio would have to benay be used to estimate which profile is appropriate for a

increased to about 7:1 to realize an rms error of40 given case.
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