
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
General solution for the Couette flow profile

Michael C. Wendl
Washington University, 4444 Forest Park Boulevard, Box 8501, Saint Louis, Missouri 63108

~Received 2 June 1999!

A general solution for the Couette velocity profile is reported. Taylor’s classical one-dimensional profile is
shown to be a special case of this solution for configurations whose aspect ratio is large. Numerical evaluation
indicates that error between the two profiles is a logarithmic function of the aspect ratio and provides data to
estimate when Taylor’s profile should be replaced with the present solution.@S1063-651X~99!15111-0#

PACS number~s!: 47.15.Rq, 02.30.Jr
e

in
al
a
re
al
file

t
.

s-
u
h

ti
e

e
p
h

es
re
e
ig
p
at

be

n
am

y
u

ant
m-

e

rm
n

nd

al
ss-
I. INTRODUCTION

The Taylor-Couette cell has served as an important sh
flow model since Taylor’s seminal work in 1923@1#. Inves-
tigators have studied its flow spectrum extensively, help
to elucidate many phenomena in fluid physics, especi
laminar transition. The cell is typically run in its fundament
mode, the so-called ‘‘Couette’’ mode, and the system’s
sponse to prescribed disturbances is examined. Numeric
this is accomplished by employing a Couette velocity pro
as an initial conditionu(x,0), perturbing it, and computing
the nonstationary flow evolutionu(x,t). However, an exac
solution for the general case has never been published
most instances@2–4#, the span dimension of the cell is a
sumed to be large enough relative to the gap dimension s
that the problem can be modeled one-dimensionally. T
results in the well-known solution attributed to Taylor@1#,
which has long been accepted as the standard theore
model@5#. Variation vanishes along the axial span of the c
and end effects from the stator walls are neglected.

However, there exist important classes of problems wh
the one-dimensional assumption is not justified, for exam
when the span and gap dimensions are comparable or w
local effects of the endwalls are of interest. While profil
can be computed numerically, this is generally not favo
since it introduces an additional component of truncation
ror, may exceed reasonable computational effort for h
resolution grids, and requires recomputation whenever
rameters or grids are altered. Alternatively, approxim
Couette solutions are sometimes used@6#, but resulting nu-
merical simulations fort.0 cannot, in the strictest sense,
considered true Navier-Stokes solutions@7#. A general exact
solution for the profile is required for such cases, i.e., o
that is independent of restrictions upon the geometric par
eters. Such results are derived in this Brief Report.

II. SOLUTION PROCEDURE

An equation describing the Couette profileu(r ,z) can be
obtained by simplifying the azimuthal component of the c
lindrical Navier-Stokes equations via the unidirectional Co
ette flow model. In dimensionless form, this yields
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Cell dimensions~Fig. 1! are the gap widtha, cell spanb, and
rotor radiusr 0 , and the rotor is assumed to turn at a const
rate v. The corresponding dimensionless geometric para
eters are the aspect ratiof5b/a and the radius ratioR
5r 0 /a. Using a and av as length and velocity scales, th
boundary conditions can be stated nondimensionally as

u50 at z50, z5f, r 5R11 ~2a!

and

u5R at r 5R. ~2b!

This system can be solved using an integral transfo
method@8#. An appropriate integral transform pair is give
by

ū~r ,bm!5E
0

f

Z~bm ,z8!u~r ,z8!dz8 ~3a!

and

u~r ,z!5 (
m51

`
Z~bm ,z!ū~r ,bm!

E
0

f

Z2~bm ,z8!dz8

. ~3b!

The overbar notation represents a transform in thez coordi-
nate direction, bm are corresponding eigenvalues, a

FIG. 1. Finite span Taylor-Couette cell shown in dimension
coordinates. Flow occurs in the cavity represented by cro
hatching.
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Z(bm ,z) are corresponding eigenfunctions. All eigen-relat
quantities can be derived from standard tables@9#.

Application of transform~3a! to Eq.~1! yields an ordinary
differential equation of the Bessel type,

d2ū

dr2 1
1

r

dū

dr
2S bm1

1

r 2D ū50. ~4!
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dAn auxiliary Sturm-Liouville equation and integration by
parts have been used to evaluate various terms. The ge
solution of Eq. ~4! has the form ū5c1I 1(bmr )
1c2K1(bmr ), wherec1 andc2 are constants of integratio
andI 1 andK1 are the first order modified~hyperbolic! Bessel
functions of the first and second kind, respectively. Using
transformed boundary conditionsū50 at r 5R11 and ū
5fR@12(21)m#/mp at r 5R, the transformed solution
can be expressed as
ropriate
ū~r ,bm!52
R@~21!m21#$I 1@bm~R11!#K1~bmr !2K1@bm~R11!#I 1~bmr !%

bm$I 1@bm~R11!#K1~bmR!2K1@bm~R11!#I 1~bmR!%
. ~5!

Inverse transform~3b! is applied to Eq.~5! to obtain the physical solution in (r ,z) space. Even-order eigenmodes,m
52,4,6,..., are not relevant to the solution; therefore, retaining only the participating odd-order modes and applying app
simplification, the final solution is found to be

u~r ,z!5
4R

p (
m51

`
$I 1@bm~R11!#K1~bmr !2K1@bm~R11!#I 1~bmr !%sin~bmz!

$I 1@bm~R11!#K1~bmR!2K1@bm~R11!#I 1~bmR!%~2m21!
, ~6!
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III. TAYLOR’S SOLUTION: A SPECIAL CASE

Taylor’s classical solution@1# can be shown to be a spe
cial case of Eq.~6! when the aspect ratio is large. Becau
f21 is a parameter in the set of all eigenvaluesbm , small
argument approximations for the Bessel functions can
employed whenf is suitably large. That is,I 1(r ) andK1(r )
behave respectively asr /2 and 1/r for small values ofr.
Substituting these expressions into Eq.~6! yields

u~r ,z!5
4R2~R11!@~R11!/r 2r /~R11!#

~2R11!p

3 (
m51

`
sin@~2m21!pz/f#

2m21
. ~7!

Making use of a summation identity@10#, the dependence
uponz vanishes and Eq.~7! can be simplified to

u~r !5
R2

2R11 S ~R11!2

r
2r D , ~8!

which is Taylor’s classical one-dimensional solution.
This of course invites the question of how smallf can

become before the one-dimensional assumption is viola
Previous work @5# has emphasized the view that on
dimensional modeling of the Taylor-Couette cell is n
physically valid. Nevertheless, for the purpose of represe
ing initial conditions in a numerical simulation, a limit forf
can be established for which the two profiles differ by le
than an acceptable value. Figure 2 shows the rms differe
between Eq.~6! and Eq.~8! as a function off andR, where
the profile representing Eq.~6! is computed atf/2. ~By
e

d.

t
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definition, this is the location whose distance to the nea
end wall is a maximum.! Results show that the error is a
most logarithmically related to the aspect ratio over a la
spectrum of radius ratios. One-dimensionality becomes m
difficult to maintain asR is increased. For example, assum
ing an acceptable rms error of 1024, Taylor’s solution accu-
rately models the Couette profile for cells of 3:1 aspect ra
and higher atR50.1. However, for large values ofR such as
1000, cells must havef slightly greater than 10:1 in order t
be modeled one-dimensionally. Trends in Fig. 2 suggest
the difference between the two solutions is not bounded inR.
However, the issue is essentially irrelevant forR@1000
since simpler results based upon the ‘‘thin gap’’ approxim
tion are valid and are usually used instead@11#.

Cell aspect ratios are often much greater than 10:1 and
these configurations the Taylor solution appears to be a v
Couette profile. The one exception is if local effects near

FIG. 2. RMS error between one-dimensional and tw
dimensional profiles. Datumd represents the configuration studie
by Huaet al. @3#.
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end walls are to be studied, in which case Eq.~6! should be
employed. For smaller aspect ratios the two profiles sho
first be compared to confirm the validity of one-dimension
modeling, if this simplification is being considered. In ma
instances it may not be justified; for example, Huaet al. @3#,
repeating the work of Jones@12#, used Taylor’s profile for a
cell having a 2:1 aspect ratio andR57.039. However, ac-
cording to Fig. 2~see datum! this has an associated rms err
on the order of 0.26. The aspect ratio would have to
increased to about 7:1 to realize an rms error of 1024.
D

R

ld
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e

IV. CONCLUSION

A general solution for the Couette flow profile is reporte
Our result is independent of geometric restrictions. Taylo
one-dimensional solution is shown to be a special case
this profile for large aspect ratio cells. Error between the t
profiles is approximately a logarithmic function of the aspe
ratio for a wide range of radius ratios. Corresponding d
may be used to estimate which profile is appropriate fo
given case.
d
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