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Abstract-This paper discusses the full and reduced set one-, two- and three-dimensional p-version 
approximation functions based on Lagrange, Legendre and Chebyshev polynomials, and the criteria for 
their selection for linear as well as nonlinear problems. A study of the element conditioning number is 
presented for various aspect ratios and element distortions for various p-levels. Conditioning number 
studies are also presented for uniform as well as nonuniform meshes for various p-levels. The influence 
of the element and the mesh conditioning number on the accuracy of the computed solution as well as 
the convergence of the linear and nonlinear iterative solution procedures is discussed. A discussion of the 
ease of computation and recursive forms as well as the ease of describing boundary conditions is presented. 
Numerical examples are given to illustrate various aspects discussed and presented in the paper. Copyright 
0 1996 Elsevier Science Ltd. 

INTRODUCTION 

Among the various p-version approximations in 
current use, those based on Legendre, Lagrange and 
Chebyshev polynomials are most common. Babuska, 
Szabo and others have strictly employed Legendre 
polynomial-based approximations in their research 

work [l-4]. Surana and his co-workers have used 
Lagrange polynomial based p-version approximation 
functions [5-81. The authors of Refs [9] and [lo] and 
some other researchers have utilized Chebyshev 
polynomial based p-version approximation functions 
in their work. 

Babuska et al. [I l] are probably among the first 
ones to shed some light on the criteria for selecting 
p-version approximation functions. Their investi- 
gation focused on Legendre polynomial based p- 
version functions. The authors used the element 
conditioning number for a single element as a major 
criteria. Various studies of element conditioning 
numbers are presented for cases in which nodal, 
internal and side functions are selected in various 
combinations. The p-version functions, based on a 

reduced set with condensation, is advocated as a 
preferred strategy in conjunction with conjugate 
gradient and multilevel iteration methods as the 
solution procedures. Babuska and Elman [12] investi- 
gated the performance of the p-version square 
elements of type Q(p) (full set) and Q ‘(p) (reduced 
set) based on Legendre polynomials. The element 
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performance was analyzed theoretically and numeri- 
cal experiments were presented to confirm the theor- 
etical conclusions. The paper investigated the 
approximation properties (in If’-seminorm) of Q(p) 

and Q’(p) elements and their computational 
efficiency in achieving a prescribed accuracy for a 
specially designed problem over a square domain. 
The authors conclude that for a given p-level Q(p) 

yields better accuracy than Q ‘(p) for the test problem 
considered. Both Q(p) and Q’(p) elements exhibit 
just about the same convergence rates. The paper also 
investigates the performance of Q(p) and Q ‘(p) for 

distorted elements as well as triangular elements. 
Vijayakar et al. [9] advocated the use of Chebyshev 
polynomials in deriving p-version approximation 
functions which were used in finite elements designed 
specifically for quasi-prismatic bodies. They cited 
many properties of these polynomials which are well 
known and advocated these to be desirable. Yet we 
know that none of these properties are of any serious 
consequence for the elements or mesh conditioning 
numbers and their accuracy. Both of these important 
issues are not addressed in Ref. [9]. Devloo rf al. [IO] 

have used Chebyshev polynomials in h-p-adaptive 
finite element study of compressible flow. The proper- 
ties cited by these authors (economical to compute, 
bounded and hierarchical) are of little consequence in 
terms of constituting a criteria for selecting the 
p-version approximation functions. To our knowl- 
edge there are no other publications containing 
discussions of the criteria for selecting the p-version 
approximation functions. The investigations pre- 
sented by Babuska et al. [Ill and Babuska and 
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Elman [12] are too specific to either Q(p) or Q ‘(p) 
sets based on Legendre functions only, and are 
too narrowly focused for a specific numerical 
example. 

SCOPE OF PRESENT RESEARCH 

We ask the basic question: among the most 
commonly used p-version functions derived using 
Lagrange, Legendre and Chebyshev polynomials for 
full and reduced sets, which p-version functions are 
the base choice? The answer to this question requires 
a development of suitable criteria which can then be 
used to judge the performance of these approxi- 
mation functions. At this point we make some 
remarks which will help us toward establishing such 
criteria. 

Remarks 

(1) In this study we shall consider one-, two- and 
three-dimensional p-version functions based on 
Lagrange, Legendre and Chebyshev polynomials. 

(2) The approximation functions in set Q(p) are 
complete polynomials, thus the approximation power 
and the accuracy of the computed solution is 
invariant of the choice of p-version functions as long 
as the numerical round off is not influencing the 
computations. For example, in linear solid mechanics 
we can write 

WI{61 = u-1 + {PI. (1) 

The coefficients of [K] and {f } are different for 
different p-version functions and thus the computed 
solution (6) will also be different for each of the three 
types of functions. However, when the computed {Se} 
for an element e is substituted in the element 
approximation 

the solution {$} will be the same for all three types 
of functions. This conclusion stems from the fact that 
all three types of p-version functions are complete 
algebraic polynomials and hence they must produce 
the same { 4}, even though [K], {f} and {S} in the 
intermediate computational steps are different. Thus 
from the point of view of the accuracy of solution 
{ 4) (which is what we are interested in) all three 
types of Q(p) functions behave the same, i.e. no one 
type is superior over the others. 

(3) The argument presented in item (2) also applies 
to the p-version functions based on the reduced set 
Q ‘(p) as long as identical order polynomial terms are 
omitted from the Q(p) set in all three types of 
functions in generating the corresponding Q ‘(p) sets. 
Thus from the point of view of accuracy of solution 
{ r$}, all three types of Q ‘(p) functions behave the 
same, i.e. no one type is superior over the others. 

(4) We have seen from item (2) that different 

p-version functions yield different element matrices 
[K”]. Is this of any consequence? The ratio of the 
largest to smallest non zero eigenvalues of [K’] is 
known as the element conditioning number. The 
element conditioning number varies depending upon 
the type of functions, element aspect ratio (ratio of 
the largest to the smallest side) and the element 
distortion. The elements with bigger aspect ratios and 
more distortion generally result in a larger condition- 
ing number. The conditioning numbers of the 
individual elements in a discretization influence the 
conditioning number of the assembled matrix [K]. 
The assembled matrix [K] with a large conditioning 
number will generate more numerical round-off error 
and a slower convergence (in the case of iterative 
methods) in the process of solving for {S}. Thus the 
element conditioning number and perhaps the 
conditioning numbers of some representative meshes 
for the three types of functions may be one valid 
criterion for comparison. The functions resulting in a 
lower element conditioning number are superior and 
are preferred over those with a larger conditioning 
number. 

(5) The discussion presented in item (4) necessi- 
tates an investigation of the element conditioning 
numbers of Q(p) and Q’(p) sets of different aspect 
ratios as well as distortions and also perhaps the 
conditioning numbers of some representative meshes. 

(6) Since the conditioning number influences 
numerical round-off errors, investigations are needed 
for linear problems as well as for nonlinear problems. 
For linear problems we may utilize elimination 
methods or iterative methods to solve for {6}. On the 
other hand, for nonlinear problems iterative methods 
must be employed to solve for (6). How crucial is the 
conditioning number in elimination methods? How 
does the conditioning number influence the conver- 
gence of the iterative solution procedure? What 
orders of magnitude of the conditioning numbers can 
be tolerated without severely affecting the efficiency 
of computations? Answers to these questions need to 
be quantified. 

(7) The ease of computations, hierarchical 
structure and recursive forms are other desirable 
properties which to some extent all three types of 
functions possess. 

(8) An examination of the hierarchical degrees of 
freedoms for the three types of approximation 
functions reveals that for p-version functions based 
on Lagrange polynomials the hierarchical degrees of 
freedom are tangential derivatives of various orders 
at the midside nodes. In the case of p-version 
functions based on Legendre and Chebyshev poly- 
nomials, the hierarchical degrees of freedom are not 
physically meaningful quantities. Thus the element 
approximations based on these three types of poly- 
nomials may differ in their ability to represent the 
boundary conditions, which in turn may influence the 
accuracy of the computed results, convergence of the 
iterative solution procedure, etc. 
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This paper addresses all of the questions and issues 
raised and discussed in the above remarks. First 
we present a brief overview of one-dimensional p- 
version functions based on Lagrange, Legendre and 
Chebyshev polynomials. This is followed by a section 
containing a brief discussion of Q(p) and Q ‘(p) two- 
and three-dimensional approximation functions. 
Numerical studies of the conditioning numbers are 
presented for a single element one-dimensional case, 
two-dimensional cases with various aspect ratios 
and distortions and three-dimensional elements for 
Q(p) and Q’(p) sets using Lagrange, Legendre and 
Chebyshev polynomial approximation functions. 
Numerical studies are also presented for represen- 
tative two-dimensional meshes. These studies are 
followed by a discussion of the importance of the 
conditioning number for linear as well as nonlinear 
problems. The suitability of the various types of 
approximation functions in describing prescribed 
boundary conditions is discussed and illustrated. The 
last section of the paper contains summary and 
conclusions. 

Q(p) AND Q’(p) SETS 

The Q(p) set (full set) represents p-version 
approximation functions where the order of the 
polynomials is complete up to degree “‘p”. In the 
present study we consider three-node one-dimen- 
sional elements, nine-node two-dimensional quadri- 
lateral elements and 27 node three-dimensional solid 
elements. The elements in the Cartesian coordinate 
space can be distorted and their sides can be curved. 
Each element of the discretization is mapped into its 
own natural coordinate space 5, q, [, in a two unit 
length, square or cube with the origin of the coordi- 
nate system located at the center of the element [Fig. 
l(aac)]. The p-version hierarchical approximation 
functions Q(p) and Q ‘(p) are derived for the element 
map in the natural coordinate system. 

Consider the element of Fig. l(b). For this element, 
the p-version approximation functions belonging to 
set Q(p) are complete polynomials of degree p both 
in 5 and q. Nodes 1, 3, 5 and 7 are nonhierarchical 
nodes and involve the approximation functions N,, 
N,, N, and N, which are linear in 5 and q. Mid-side 
nodes 2, 4, 6 and 8 and the center node 9 are 
hierarchical nodes. The number of approximation 
functions belonging to these nodes depend upon the 
p-levels in < and g directions. For the sake of 
simplicity we consider p: =p,, =p, The mid-side 
nodes have 4(p - 1). p > 2 approximation functions 
whereas the center node 9 has (p - I) (p - 1); p > 2 
approximation functions. We note that as p-level 
increases the number of approximation functions at 
the center node increase tremendously. For example, 
at p = 10, there are a total of 121 approximation 
functions out of which 81 belong to the center node 
9. The obvious question is of course whether or not 
we can reduce the number of approximation 

functions at the center node without sacrificing 
accuracy significantly. A similar situation exists for 
three-dimensional elements. 

The set Q’(p) (reduced set, only for two- and 
three-dimensional elements) is similar to set Q(p) in 
that the approximation functions in the Q ‘(p) set for 
the corner and mid-side nodes are the same as those 
in Q(p), but the approximation functions at the 
center node are reduced significantly. This of course 
leads to incomplete polynomials in l, q and [. In 
other words, the set Q’(p) is derived from the set 
Q(p) by deleting certain polynomial terms and hence 
the name “reduced set”. In this study for two- 
dimensional elements (for example), we will consider 
a specific form of Q’(p) which contains 
(p - 2)(p - 3)/2; p > 4 approximation functions at 
the center node as opposed to (p - l)(p - 1) in the 
Q(p) set. This reduction in the number of approxi- 
mation functions at the center node is probably at the 
expense of accuracy and possibly the p-convergence 
rate. The concepts described for the nine-node two- 
dimensional element is similarly extended for the 27 
node p-version three-dimensional elements. 

For one-dimensional elements there is no concept 
of the Q’(p) set. For two- and three-dimensional 

(a) 

5- 

(b) 
rl . n--l-l 

L-i’ 

Fig. I. Element configurations in 5 q space: (a) 3-node 
one-dimensional element; (b) 9-node two-dimensional 

element; (c) 27-node three-dimensional element. 
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elements the Q(p) set functions are generated by 
taking tensor product of the one dimensional p- 
version functions in r, r) and r, PJ, t; directions. The 
Q ‘(p) set functions are generated by deleting certain 
polynomial terms (as described above). Thus the 
one-dimensional p-version functions are the basis for 
both the Q(p) and Q ‘(p) sets. Details of the tensor 
product procedure and the procedure for generating 
Q ‘(p) functions can be found in Ref. [13] and are 
omitted here for the sake of brevity. 

ONE DIMENSIONAL p-VERSION FUNCTIONS 

Consider a three-node configuration of length two 
units in the natural coordinate system 5 with the 
origin of the coordinate system located at the center 
of the element. In the following section we describe 
the p-version one dimensional approximation 
functions for this three-node configuration using 
Lagrange, Legendre and Chebyshev polynomials. 

1. p-Version Lagrange functions 

For (pe + 1) equally spaced nodes between 
- 1 < 5 < 1, the Lagrange interpolation functions, 
defined for each node along with the corresponding 
nodal values of the dependent variables, uniquely 
define an element approximation of order pr;. These 
(pc + 1) equally spaced nodes with Lagrange interp- 
olation functions and nodal variables can be reduced 
to a three-node configuration between - 1 < 5 < 1 
[Fig. l(a)] for which we can write the following for a 
field variable 4: 

where 

Nf=(t’-a); i=2,...,p,; 

a = 1, if i is even 

a = 5 if i is odd ’ 
(4) 

Equation (3) defines a p-version hierarchical approxi- 
mation of order pt for the one-dimensional three- 
node element in { space. Equation (4) defines the 
explicit form of the approximation functions. The 
nodal variable operators in the approximation 
defined by (1) are 1, 1 and a j/i ! a< ‘; i = 2, . . . , pc for 
nodes 1, 2 and 3, respectively. 

2. p-Version Legendre functions 

Legendre polynomials P,(t) are solutions of 
Legendre differential equation (Ref. [14]) for n = 0, 1, 
2 1***, and are given by 

PO’ 1, p,(r)= tv (5) 

(n + l)Pn+,(t)=(2n + lWn(5)-nPn-,(5) 

for n=l, 2,.... (6) 

The p-version one-dimensional approximation 
functions for the three node configuration of Fig. l(a) 
can be easily constructed using eqns (5) and (6) and 
are given by 

@=&) (pi(<)-P,-*(5)); i=2,3,... (7) 

Note that m$ are polynomials of degree i. We also 
note that if 4 is the field variable to be interpolated 
then 4, and & are the degrees of freedoms at nodes 
1 and 2. However, at node 3 (hierarchical node) the 
degrees of freedom are not physically meaningful 
quantities as they are in the case of Lagrange p- 
version functions. 

3. p-Version Chebyshev functions 

One-dimensional Chebyshev polynomials are 
defined by 

C,=l, C,=5, C,+,(5)=2G(O 

-C,_,(l); n 32. (8) 

Using the Chebyshev polynomials defined by eqn (8) 
the p-version approximation functions for the three- 
node configuration of Fig. l(a) can be defined as 

lii~=Ci(5)-~:5-(-l)i~ftC; i=2,3... (9) 

Here also we note that @ are polynomials of degree 
i. We also note that if 4 is the field variable to be 
interpolated, then 4r and & are the degrees of 
freedom at nodes 1 and 2. However at node 3 the 
degrees of freedom are not physically meaningful 
quantities unlike for the case of Lagrange functions. 

Remarks 

(1) All three one-dimensional p-version functions 
are complete polynomials, are hierarchical in nature, 
possess a recursive form and are equally easy to 
compute. 

(2) Functions R tC, I?:( and #$ based on Legendre 
polynomials have some important properties: 

mil(-l)=iVic(+l)=O; i=2,3,..., (10) 

s I d@ &if 1; i=j -- 
_, dr d< d5= 0; i #j’ 

(11) 
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Fig. 2. One element model for p-version radial heat 

conduction. 

(3) Hierarchical degrees of freedom for the 
Lagrange functions are physically meaningful 
quantities, whereas for Legendre and Chebyshev 
p-version functions this is not the case. 

(4) p-Version Lagrange and other functions for 
two- and three-dimensional Q(p) elements can be 
easily generated by taking the tensor product of the 
one-dimensional p-version functions in 5, q, [ 
directions. Corresponding degrees of freedom are 
generated by taking tensor products of the nodal 
variable operators. 

(5) Q’(p) two- and three-dimensional functions 
are generated by deleting selected polynomial 
product terms as described earlier [ 131. 

(6) It is important to note that the lack of specific 

(b) 

-‘Yr : . : T 
3 _.I 

v-0 ” I I * 1 
c.-.-.-.-._._.___._. 

* 

(c) 

I-200-P_t r r 

i:i : 
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z 

Fig. 3. Two-dimensional axisymmetric elements with vari- 
ous aspect ratios: (a) b/a = I; (b) b/a = IO; (c) b/a = 100. 

definitions of the hierarchical degrees of freedom for 
node 3 of the one-dimensional three-node configur- 

ation for Legendre and Chebyshev polynomials 

results in similar insignificant degrees of freedom for 
the midside and center hierarchical nodes for the 
two-dimensional elements and midside, or face and 
center nodes for the three-dimensional elements. This 
may have some serious consequences in terms of 
defining higher order, complex boundary conditions. 

INVESTIGATION OF ELEMENT CONDITIONING NUMBER 

In this section we present numerical studies for the 
element conditioning number for Lagrange, Legendre 
and Chebyshev polynomials based upon one-, two- 
and three-dimensional p-version approximation 
functions for regular and distorted elements with 
different aspect ratios. 

1. One-dimensional elements 

As an example, we consider one-dimensional radial 

heat conduction. Figure 2 shows a three-node p- 
version element with an inside radius of 1 and an 

outside radius of 3 (element length of 2 units). Figure 
5 shows plots of the element conditioning number as 
a function of p-level for Lagrange, Legendre and 

Chebyshev polynomials computed using one- 
dimensional p-version approximation functions. 

Legendrep-version functions yield the lowest element 
conditioning number which almost remains constant 

(a) 
L__~4_t * . 

i 
Ij--d/ . . i 

. I 
+44 I 

*-_-._.-._.-._._‘ J 
z 

Element 1 

@I 

+--4--W! 

1-.-.-._.-.-. J 
z 

Element 2 

Pig. 4. Distorted axisymmetric elements. (a) Element 1: 
b/a = 2 and 6; (b) element 2: b/a = 2 and 6. 
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2 3 4 5 6 7 8 9 10 I1 12 13 14 15 

p - Level 

Fig. 5. Element conditioning number vs p-levels for the 
one-dimensional case (Fig. 2). 

as p-level increases. Chebyshev polynomial-based 
functions have the second best performance. For 
Lagrange p-version functions, the element condition- 
ing number increases quite rapidly as the p-level 
increases. At p = 9, the element conditioning number 
climbs to 105. 

2. Two-dimensional element 

In this study we consider two-dimensional elements 
for axisymmetric heat conduction. Figure 3(ac) 
shows p-version nine-node square and rectangular 
elements with aspect ratios of 1, 10 and 100, respect- 
ively. The element conditioning numbers for these 
elements are computed for p = 2-15 for Q(p) and 
Q ‘(p) sets using Lagrange, Legendre and Chebyshev 
polynomials. The results are presented in Figs 68. 
First we consider Fig. 6 showing the results for a two 
unit square element. 

(a) Legendre functions yield the lowest element 
conditioning number. 

(b) Chebyshev functions yield the second lowest 
conditioning number. 

(c) Lagrange functions yield the highest element 
conditioning number. 

(d) The element conditioning number increases as 
the p-level increases. Legendre and Chebyshev func- 
tions exhibit about the same rate of increase as p-level 
increases, however the Lagrange functions exhibit a 

lo8 
a 
P 10’ 

‘: 
E 10~ 

d 

(2 - D; 2 x 2) 

Fig. 6. Element conditioning number vs p-levels for the 
two-dimensional case (Fig. 3(a), b/a = 1). 

I I I I I I I , , , 

2 3 4 5 6 7 9 9 10 11 12 13 

p - Level 

Fig. 7. Element conditioning number vs p-levels for the 
two-dimensional case (Fig. 3(b), b/a = IO). 

much faster rate of increase compared to Legendre 
and Chebyshev functions. 

(e) The functions based on the Q’(p) set yield 
lower conditioning numbers for all the three types of 
functions considered here. Again the rate of increase 
is most significant for the Lagrange functions. 

(f) From Fig. 6, we note that the Q ‘(p) Legendre 
functions yield the lowest element conditioning 
number. 
From the results presented in Figs 7 and 8 for aspect 
ratios (b/a) of 10 and 100, we can confirm the same 
observations as described above for Fig.’ 6. Some 
additional observations are: 

(a) As the element aspect ratio increases the el- 
ement conditioning number increases. The rate of 
increase of the element conditioning number as the 
p-level increases is approximately the same for 
b/a = 1 and 10 for Legendre and Chebyshev based 
functions. 

(b) For b/a = 100, the Legendre functions yield 
almost constant element conditioning numbers as the 
p-level increases. 

(c) Lagrange functions yield the most increase in 
the element conditioning number as element distor- 
tion increases. For b/a = 100, the element condition- 
ing number for the Lagrange set reaches a value of 
lo* at p = 67. For Chebyshev polynomials a similar 
value of element conditioning number is reached at 

.s 102 

2 Ill' __ 
2 3 4 5 6 7 8 9 10 I1 12 13 

p - Level 

Fig. 8. Element conditioning number vs p-levels for the 
two-dimensional case (Fig. 3(c), b/a = 100). 
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2 3 4 5 6 7 8 9 10 I1 12 13 

p - Level 

Fig. 9. Element conditioning number vs p-levels for the 
two-dimensional case (Fig. 4(a), element 1, b/a = 2). 

2 3 4 5 6 7 a 9 10 I1 12 13 

p - Level 

Fig. Il. Element conditioning number vs p-levels for the 
two-dimensional case (Fig. 4(b), element 2, b/a = 2). 

p = 10 for the Q(p) set and at p = 13 for the Q’(p) 
set, whereas both Q(p) and Q’(p) sets based on 
Legendre functions yield almost a constant value of 
the element conditioning number, approximately 104, 
for the entire range of p-levels (2-13) considered. 

Figure 4 shows two two-dimensional distorted 
axisymmetric elements. The elements of Fig. 4(a) and 
(b) are considered for b/a = 2 and 6. The element 
conditioning numbers as a function of p-level for the 
element of Fig. 4(a) for b/a = 2 and 6 for the three 
types of functions are shown in Figs 9 and 10. Similar 
results for the element of Fig. 4(b) for b/a = 6 are 
shown in Figs 11 and 12. We make the following 
observation from the results presented in Figs 9-12: 

(a) The element conditioning number is the lowest 
for Legendre functions. Chebyshev and Lagrange 
functions rank second and third, respectively. 

(b) The element conditioning numbers increase 
slightly as b/a increases for the distorted elements. 

(c) Element orientation seems to have very little 
effect on the element conditioning number. 

Q(p) and Q ‘(p) sets for pc = p,, = pc = p = 2-10, for 
Lagrange, Legendre and Chebyshev functions. 

(a) In general, the observation noted for the two- 
dimensional cases holds here as well. p-Version 
Q ‘(p) Legendre functions yield the lowest element 
conditioning numbers. 

(b) Q(p) Legendre set yields a substantially higher 
conditioning number than the Q’(p) set as p-levels 
are increased. 

(c) We observe similar behavior as described in (b) 
for Lagrange and Chebyshev functions as well. 

(d) For elements with larger aspect ratios and 
distortion, the element conditioning number increases 
just like it does for the two-dimensional elements 
(results not presented for the sake of brevity). 

(e) The Lagrange Q(p) set yields excessively large 
conditioning number even for p-levels as low as 4 
or 5. 

CONDITIONING NUMBERS OF REGULAR AND 
GRADED MESHES 

3. Three-dimensional elements 

We now consider three-dimensional heat conduc- 
tion. Figure l(c) shows a twenty seven-node three- 
dimensional p-version element (2 x 2 x 2 cube) used 
for computing the conditioning number. Figure 13 
shows plots of the element conditioning number for 

Even though the element conditioning number is 
an important criterion for judging the performance of 
the various types of elements, in actual application it 
is the conditioning number of the discretization. The 
elements that exhibit the largest and smallest 
conditioning numbers often define the bounds of the 

k 
E lo5 

; 

g lo4 
‘G 
s 
g 10’ 
v 

Fig. 10. Element conditioning number vs p-levels for the Fig. 12. Element conditioning number vs p-levels for the 
two-dimensional case (Fig. 4(a), element 1, b/a = 6). two-dimensional case (Fig. 4(b), element 2, b/a = 6). 

b/a = 2.0 
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Fig. 13. Element conditioning number vs p-levels for the 
three-dimensional case (Fig. I(c)). 

conditioning number of the discretization. Uniform 
discretization yields a better conditioning number. 
More severely graded meshes result in progressively 
higher conditioning numbers for higher p-levels and 
thus are more likely to suffer from round-off errors. 
These findings have been confirmed with specific 
numerical studies (not presented here for the sake of 
brevity). Legendre functions yield the lowest 
conditioning number. Chebyshev and Lagrange 
functions rank second and third, respectively. 

ACCURACY OF THE COMPUTED SOLUTION FOR LINEAR 
PROBLEMS 

A large number of numerical studies have been 
conducted for linear problems in solid mechanics and 
linear heat conduction for one-, two- and three- 
dimensional problems using Lagrange, Legendre and 
Chebyshev functions with uniform as well as severely 
graded meshes. In each case the assembled equations 
were solved using the wavefront solution method. In 
all studies p-levels were varied from 2 to 15. The 
results are summarized in the following: 

(1) The computed values of the primary variables 
from all three functions agree almost to the last 
decimal place in all cases. 

(2) The sum of the secondary variables at the 
nodes without specified essential boundary con- 
ditions was always of the order of IO-’ or lower, 
indicating that the equilibrium of forces, moments, 
etc. is satisfied within lo-’ or better. The compu- 
tations were performed on a 32 bit computer in 
double precision. 

(3) Thus we note that even though Lagrange 
elements have excessively high conditioning number 
compared to Legendre elements, the numerical values 
of the solution are not affected at all when elimin- 
ation methods are employed to solve the resulting 
assembled algebraic equations. 

(4) Some other researchers [15] have reported 
slightly different findings when iterative methods are 
employed in solving the system of linear algebraic 
equation: 

(a) as the conditioning number of the mesh 
increases the number of iterations increase signifi- 
cantly; 

(b) for excessively large mesh conditioning number 
the iterative solution procedure may even fail to 
converge; 

(c) failure of the convergence of the iterative 
solution procedure is directly related to the round-off 
errors. 

CONDITIONING NUMBER AND ACCURACY OF THE 
SOLUTION FOR NONLINEAR PROBLEMS 

The situation for nonlinear problems is more 
complex than for linear problems. First of all the 
assembled matrix coefficients are nonlinear functions 
of the unknown solution and thus iterative methods 
must be employed to find the solution. Since the 
solution is continuously changing during the iterative 
solution procedure so are the coefficients of the 
assembled matrix and the conditioning number. The 
mesh conditioning number for a null starting solution 
({a} = (0)) is perhaps only a vague indicator of what 
really happens during the actual iterative ‘solution 
procedure. 

As for linear problems, a significant number of 
studies using all three types of functions for a number 
of nonlinear problems in fluid dynamics (steady state 
as well as transient) have been conducted. In all 
numerical studies, Newton’s method with line search 
was utilized to find the solution vector. The resulting 
linear equations during each iteration were solved 
using the Gaussian elimination method (wavefront 
solution method). In all numerical studies, p-levels 
ranged from 2 to 15. We make the following specific 
remarks based on our findings: 

(a) The numerical results from the three types of 
functions showed similar agreement as for the linear 
problems. 

(b) The number of iterations required by Newton’s 
method with line search was also the same when the 
three types of functions were used. 

(c) Studies reported by other researchers [15] 
indicate that when the preconditioned conjugate 
gradient methods are employed to find the solution 
vector, the convergence slows down significantly as 
the mesh conditioning number increases. Thus when 
using such solution methods Legendre p-version 
functions are preferable over the others. 

SPECIFYING BOUNDARY CONDITIONS 

As discussed in an earlier section of the paper, the 
hierarchical degrees of freedoms for the p-version 
Lagrange elements are second and higher order 
tangential derivatives at the midside and face nodes, 
whereas for Legendre and Chebyshev functions these 
degrees of freedom are not meaningful quantities. 
This fact may have some consequences in prescribing 
complex and varying boundary conditions. This in 
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turn may influence the convergence of the iterative 
processes and the computed results especially when 
the meshes are coarse, which usually is the case when 
using p-version elements. This occurs even though 
in general, any set of complex boundary conditions 
can also be accurately represented by both Legendre 
and Chebyshev functions by using a sufficient number 
of conditions which would permit the computations 
of the corresponding hierarchical degrees of freedom. 
This procedure will require the inverse of a matrix, 
the size of which will depend upon the p-levels. A 
failure to do so will only permit linear boundary 
conditions which may influence the computed results. 
We present the following example to illustrate 
this point. 

We consider a two-dimensional lid driven cavity as 
shown in Fig. 14(a). We assume Newtonian fluid and 
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Fig. 14. Lid driven cavity: (a) schematic; (b) 16 element 
graded mesh; (c) cubic boundary conditions at the top 
corners; (d) linear boundary conditions at the top corners. 

laminar flow. The two upper corners of the cavity 
represent points of singularity. Figure 14(b) shows a 
sixteen element graded mesh (a = 0.1, b = 0.4, 
c = 0.2). The velocity field at the upper two corners 
is assumed to be zero. Thus the velocity must increase 
from zero at the upper two corners to - 1 (the 
velocity of the moving lid). This is accomplished 
within the small lengths a of the two elements at the 
upper corners. Figure 14(c) shows a cubic distri- 
bution of the specified velocity field at the two top 
comer elements. Figure 14(d) shows the linear 
velocity distribution. 

Numerical computations were performed (with 
the Q(p) set) using the velocity distribution of 
Fig. 14(c) for Lagrange and that of Fig. 14(d) for 
Legendre and Chebyshev p-version functions. The 
maximum of the absolute value of stream function 
and the recirculation zones in the bottom left and 
right corners were monitored. l$ Imax = 0.1364 was 
obtained using Lagrange functions for boundary 
conditions of Fig. 14(c) at p = 5. Legendre and 
Chebyshev functions predicted It++ lmaX = 0.1020 and 
0.1009 for the boundary conditions of Fig. 14(d) for 
p = 5. In the case of Legendre and Chebyshev 
functions p-levels were increased up to 8 resulting in 
I$ lmax = 0.1237 and 0.1122. In all cases, the computed 
results predicted recirculation zones in the bottom 
corners. 

The studies with Legendre and Chebyshev func- 
tions do not predict a correct value of I$l,,,. This is 
due to the linear boundary conditions at the upper 
two corners. This situation can be corrected either by 
performing local mesh refinement in the vicinity of 
the upper two corners, such that element lengths 
containing linear distribution become very small or 
by computing correct values of the hierarchical 
variables though the inverse process. We use a 36 
element mesh with the upper two corner element 
lengths of 0.05. Numerical computations with this 
mesh yield [+I,,, = 0.1361 and 0.1359 for Legendre 
and Chebyshev polynomials at p = 6. 

SUMMARY AND CONCLUSIONS 

p-Versions of full and reduced sets with one-, two- 
and three-dimensional approximation functions 
based on Lagrange, Legendre and Chebyshev 
polynomials have been presented, and the criteria for 
their selections for linear as well as nonlinear 
problems have been discussed. Element conditioning 
number studies have been presented for different 
aspect ratios and element distortions. The results of 
the conditioning number studies for uniform as well 
as nonuniform meshes have also been discussed. The 
influence of the element and the mesh conditioning 
number on the accuracy of the solution and the 
convergence of the linear and nonlinear iterative 
solution procedure have been discussed. Based on the 
numerical studies and the results presented in the 
paper, we can draw the following specific conclusions: 
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(1) Legendre functions yield the lowest condition- 
ing number. Chebyshev functions yield the second 
lowest conditioning number and the Lagrange 
functions yield the highest conditioning number. 

(2) The element conditioning number increases as 
the p-levels increase. For the cases studied, Legendre 
and Chebyshev functions exhibit just about the same 
rate of increase as the p-levels increase. However, the 
Lagrange functions exhibit a much faster rate of 
increase compared to Legendre and Chebyshev 
functions. 

(3) The functions based on the Q ‘(p) set yields a 
lower conditioning number than those of the Q(p) 
set. The conditioning number of the Q ‘(p) Legendre 
set is the lowest out of all the studies conducted 
during this investigation. 

(4) In general, as the element aspect ratio in- 
creases, the element conditioning number also 
increases. The increase is most significant for 
Lagrange functions. 

(5) The element distortion also increases the 
conditioning number. Thus the distorted element 
with a high aspect ratio would yield the highest 
conditioning number. 

(6) From our numerical studies we confirm the fact 
that all three p-version functions produce identical 
results and no one type exhibits superiority over the 
others in terms of accuracy as long as numerical 
round-off does not influence the computations. In 
other words, for a given mesh and p-level all three 
functions will produce an identical solution (depen- 
dent on variables and secondary variables) as long as 
the results are not influenced by round-off. 

(7) The elements exhibiting the highest and the 
lowest conditioning numbers usually defines the 
bounds of the conditioning number of the discretiza- 
tion. Uniform meshes yield the best conditioning 
number. Severely graded meshes result in progress- 
ively higher conditioning numbers and are more 
likely to suffer from round-off errors. 

(8) Numerical studies with linear problems using 
elimination methods (wavefront) for p-levels up to 15 
show that the solution from all three functions agree 
up to the last decimal place even though the con- 
ditioning number of the Lagrange p-version elements 
is O(l0’) compared to O(lO’-104) for Legendre. 

(9) In non-linear problems, the solution accuracy, 
number of iterations, etc. also remains unaffected by 
the choice of functions when Newton’s method with 
line search is utilized to find the solution iteratively. 

(10) Lagrange functions have some advantage 
over the others in terms of defining the boundary 
conditions. 

In case of Lagrange functions, instead of using high 
p-levels (p > 8) one should undertake local mesh 
refinement and utilize lower p-levels. This will yield 
reasonable conditioning number without unduly 
diminishing the accuracy of the local approximation. 
There are, however, exceptions to this, such as 
problems with strong singularities. 

In summary, Legendre Q ‘(p) sets yield the lowest 
conditioning numbers for the elements and the dis- 
cretizations. Computed numerical results are not 
influenced by the conditioning number (at least up to 
p-levels of 15) when using elimination methods for 
linear problems and Newton’s method with line 
search and elimination methods for nonlinear 
problems. If iterative solution methods are employed, 
such as GMRES or any preconditioned gradient 
based solvers, it is critical that the conditioning 
number of the discretization remains as low as 
possible. Therefore, Legendre based functions would 
be most appealing in this situation. 
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