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Motivation
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Because

∇2

(

1

R

)

= −4πδ(R) (1)

where R = r − r′ with magnitude R = |R| and where

δ(R) = δ(r − r
′) = δ(x − x ′)δ(y − y ′)δ(z − z ′)

is the three-dimensional Dirac delta function, then any sufficiently
well-behaved vector function F(r) = F(x , y , z) can be represented as

F(r) =

∫

V

F(r′)δ(r − r
′) d3r ′ = −

1

4π

∫

V

F(r′)∇2

(

1

R

)

d3r ′

= −
1

4π
∇2

∫

V

F(r′)

R
d3r ′, (2)

the integration extending over any region V that contains the point r.
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With the identity ∇×∇× = ∇∇ · −∇2, Eq. (2) may be written as

F(r) =
1

4π
∇×∇×

∫

V

F(r′)

R
d3r ′ −

1

4π
∇∇ ·

∫

V

F(r′)

R
d3r ′. (3)

Consider first the divergence term appearing in this expression.
Because the vector differential operator ∇ does not operate on the
primed coordinates, then

1

4π
∇ ·

∫

V

F(r′)

R
d3r ′ =

1

4π

∫

V

F(r′) · ∇

(

1

R

)

d3r ′. (4)
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The integrand appearing in this expression may be expressed as

F(r′) · ∇

(

1

R

)

= −F(r′) · ∇′

(

1

R

)

= −∇′ ·

(

F(r′)

R

)

+
1

R
∇′ · F(r′), (5)

where the prime on ∇′ denotes differentiation with respect to the
primed coordinates alone, viz.

∇′ = 1̂x

∂

∂x ′
+ 1̂y

∂

∂y ′
+ 1̂z

∂

∂z ′

when 1̂j ′ = 1̂j , j = x , y , z .
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Substitution of Eq. (5) into Eq. (4) and application of the divergence
theorem to the first term then yields

1

4π
∇ ·

∫

V

F(r′)

R
d3r ′ = −

1

4π

∫

V

∇′ ·

(

F(r′)

R

)

d3r ′

+
1

4π

∫

V

∇′ · F(r′)

R
d3r ′

= −
1

4π

∮

S

1

R
F(r′) · n̂d2r ′

+
1

4π

∫

V

∇′ · F(r′)

R
d3r ′

= φ(r), (6)

which is the desired form of the scalar potential φ(r) for the vector
field F(r). Here S is the surface that encloses the regular region V
containing the point r.
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For the curl term appearing in Eq. (3) one has that

1

4π
∇×

∫

V

F(r′)

R
d3r ′ = −

1

4π

∫

V

F(r′) ×∇

(

1

R

)

d3r ′

=
1

4π

∫

V

F(r′) ×∇′

(

1

R

)

d3r ′. (7)

Moreover, the integrand appearing in the final form of the integral in
Eq. (7) may be expressed as

F(r′) ×∇′

(

1

R

)

=
∇′ × F(r′)

R
−∇′ ×

(

F(r′)

R

)

, (8)

so that
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1

4π
∇×

∫

V

F(r′)

R
d3r ′ =

1

4π

∫

V

∇′ × F(r′)

R
d3r ′

−
1

4π

∫

V

∇′ ×

(

F(r′)

R

)

d3r ′

=
1

4π

∫

V

∇′ × F(r′)

R
d3r ′

+
1

4π

∮

S

1

R
F(r′) × n̂d2r ′

= a(r), (9)

which is the desired form of the vector potential.
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Equations (3), (6), and (9) then show that

F(r) = −∇φ(r) + ∇× a(r) (10)

where the scalar potential φ(r) is given by Eq. (6) and the vector
potential a(r) by Eq. (9).

This expression may also be written as

F(r) = Fℓ(r) + Ft(r) (11)

known as the Helmholtz decomposition.
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In the Helmholtz decomposition,

Fℓ(r) = −∇φ(r)

= −
1

4π
∇

∫

V

∇′ · F(r′)

|r − r′|
d3r ′ +

1

4π
∇

∮

S

F(r′)

|r − r′|
· n̂d2r ′

(12)

is the longitudinal or irrotational part of the vector field (with
∇× Fℓ(r

′) = 0), and

Ft(r) = ∇× a(r) =
1

4π
∇×∇×

∫

V

F(r′)

|r − r′|
d3r ′

=
1

4π
∇×

∫

V

∇′ × F(r′)

|r − r′|
d3r ′ +

1

4π
∇×

∮

S

F(r′)

|r − r′|
× n̂d2r ′

(13)

is the transverse or solenoidal part of the vector field (with
∇ · Fℓ(r

′) = 0).
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If the surface S recedes to infinity and if the vector field F(r) is
regular at infinity, then the surface integrals appearing in Eqs.
(12)–(13) become

Fℓ(r) = −∇φ(r)

= −
1

4π
∇

∫

V

∇′ · F(r′)

|r − r′|
d3r ′, (14)

Ft(r) = ∇× a(r)

=
1

4π
∇×

∫

V

∇′ × F(r′)

|r − r′|
d3r ′. (15)

Taken together, the above results constitute what is known as
Helmholtz’ theorem or the Fundamental Theorem of Vector Calculus.
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Theorem

Helmholtz’ Theorem. Let F(r) be any continuous vector field with
continuous first partial derivatives. Then F(r) can be uniquely
expressed in terms of the negative gradient of a scalar potential φ(r)
& the curl of a vector potential a(r), as embodied in Eqs. (10)–(11).

Hermann Ludwig Ferdinand von Helmholtz (1821–1894)


