Helmholtz' Theorem

EE 141 Lecture Notes
 Topic 3

Professor K. E. Oughstun
School of Engineering
College of Engineering \& Mathematical Sciences
University of Vermont

Motivation

Helmholtz' Theorem

Because

$$
\begin{equation*}
\nabla^{2}\left(\frac{1}{R}\right)=-4 \pi \delta(\mathbf{R}) \tag{1}
\end{equation*}
$$

where $\mathbf{R}=\mathbf{r}-\mathbf{r}^{\prime}$ with magnitude $R=|\mathbf{R}|$ and where

$$
\delta(\mathbf{R})=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right) \delta\left(z-z^{\prime}\right)
$$

is the three-dimensional Dirac delta function, then any sufficiently well-behaved vector function $\mathbf{F}(\mathbf{r})=\mathbf{F}(x, y, z)$ can be represented as

$$
\begin{align*}
\mathbf{F}(\mathbf{r}) & =\int_{V} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) d^{3} r^{\prime}=-\frac{1}{4 \pi} \int_{V} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \nabla^{2}\left(\frac{1}{R}\right) d^{3} r^{\prime} \\
& =-\frac{1}{4 \pi} \nabla^{2} \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} \tag{2}
\end{align*}
$$

the integration extending over any region V that contains the point \mathbf{r}.

Helmholtz' Theorem

With the identity $\nabla \times \nabla \times=\nabla \nabla \cdot-\nabla^{2}$, Eq. (2) may be written as

$$
\begin{equation*}
\mathbf{F}(\mathbf{r})=\frac{1}{4 \pi} \nabla \times \nabla \times \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime}-\frac{1}{4 \pi} \nabla \nabla \cdot \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} . \tag{3}
\end{equation*}
$$

Consider first the divergence term appearing in this expression. Because the vector differential operator ∇ does not operate on the primed coordinates, then

$$
\begin{equation*}
\frac{1}{4 \pi} \nabla \cdot \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime}=\frac{1}{4 \pi} \int_{V} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \cdot \nabla\left(\frac{1}{R}\right) d^{3} r^{\prime} . \tag{4}
\end{equation*}
$$

Helmholtz' Theorem

The integrand appearing in this expression may be expressed as

$$
\begin{align*}
\mathbf{F}\left(\mathbf{r}^{\prime}\right) \cdot \nabla\left(\frac{1}{R}\right) & =-\mathbf{F}\left(\mathbf{r}^{\prime}\right) \cdot \nabla^{\prime}\left(\frac{1}{R}\right) \\
& =-\nabla^{\prime} \cdot\left(\frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R}\right)+\frac{1}{R} \nabla^{\prime} \cdot \mathbf{F}\left(\mathbf{r}^{\prime}\right) \tag{5}
\end{align*}
$$

where the prime on ∇^{\prime} denotes differentiation with respect to the primed coordinates alone, viz.

$$
\nabla^{\prime}=\hat{\mathbf{1}}_{x} \frac{\partial}{\partial x^{\prime}}+\hat{\mathbf{1}}_{y} \frac{\partial}{\partial y^{\prime}}+\hat{\mathbf{1}}_{z} \frac{\partial}{\partial z^{\prime}}
$$

when $\hat{\mathbf{1}}_{j^{\prime}}=\hat{\mathbf{1}}_{j}, j=x, y, z$.

Helmholtz' Theorem

Substitution of Eq. (5) into Eq. (4) and application of the divergence theorem to the first term then yields

$$
\begin{align*}
& \frac{1}{4 \pi} \nabla \cdot \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime}=-\frac{1}{4 \pi} \int_{V} \nabla^{\prime} \cdot\left(\frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R}\right) \\
& d^{3} r^{\prime} \\
&+\frac{1}{4 \pi} \int_{V} \frac{\nabla^{\prime} \cdot \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} \\
&=-\frac{1}{4 \pi} \oint_{S} \frac{1}{R} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \cdot \hat{\mathbf{n}} d^{2} r^{\prime} \\
&= \quad+\frac{1}{4 \pi} \int_{V} \frac{\nabla^{\prime} \cdot \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} \tag{6}\\
&=
\end{align*}
$$

which is the desired form of the scalar potential $\phi(\mathbf{r})$ for the vector field $\mathbf{F}(\mathbf{r})$. Here S is the surface that encloses the regular region V containing the point \mathbf{r}.

Helmholtz' Theorem

For the curl term appearing in Eq. (3) one has that

$$
\begin{align*}
\frac{1}{4 \pi} \nabla \times \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} & =-\frac{1}{4 \pi} \int_{V} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \times \nabla\left(\frac{1}{R}\right) d^{3} r^{\prime} \\
& =\frac{1}{4 \pi} \int_{V} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \times \nabla^{\prime}\left(\frac{1}{R}\right) d^{3} r^{\prime} \tag{7}
\end{align*}
$$

Moreover, the integrand appearing in the final form of the integral in Eq. (7) may be expressed as

$$
\begin{equation*}
\mathbf{F}\left(\mathbf{r}^{\prime}\right) \times \nabla^{\prime}\left(\frac{1}{R}\right)=\frac{\nabla^{\prime} \times \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R}-\nabla^{\prime} \times\left(\frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R}\right) \tag{8}
\end{equation*}
$$

so that

Helmholtz' Theorem

$$
\begin{align*}
\frac{1}{4 \pi} \nabla \times \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} & =\frac{1}{4 \pi} \int_{V} \frac{\nabla^{\prime} \times \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} \\
& =\frac{1}{4 \pi} \int_{V} \nabla^{\prime} \times\left(\frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R}\right) d^{3} r^{\prime} \\
& =\frac{1}{4 \pi} \int_{V} \frac{\nabla^{\prime} \times \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{R} d^{3} r^{\prime} \\
& \quad+\frac{1}{4 \pi} \oint_{S} \frac{1}{R} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \times \hat{\mathbf{n}} d^{2} r^{\prime} \\
& =\mathbf{a}(\mathbf{r}) \tag{9}
\end{align*}
$$

which is the desired form of the vector potential.

Helmholtz' Theorem

Equations (3), (6), and (9) then show that

$$
\begin{equation*}
\mathbf{F}(\mathbf{r})=-\nabla \phi(\mathbf{r})+\nabla \times \mathbf{a}(\mathbf{r}) \tag{10}
\end{equation*}
$$

where the scalar potential $\phi(\mathbf{r})$ is given by Eq. (6) and the vector potential $\mathbf{a}(\mathbf{r})$ by Eq. (9).

This expression may also be written as

$$
\begin{equation*}
\mathbf{F}(\mathbf{r})=\mathbf{F}_{\ell}(\mathbf{r})+\mathbf{F}_{t}(\mathbf{r}) \tag{11}
\end{equation*}
$$

known as the Helmholtz decomposition.

Helmholtz' Theorem

In the Helmholtz decomposition,

$$
\begin{align*}
\mathbf{F}_{\ell}(\mathbf{r}) & =-\nabla \phi(\mathbf{r}) \\
& =-\frac{1}{4 \pi} \nabla \int_{V} \frac{\nabla^{\prime} \cdot \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}+\frac{1}{4 \pi} \nabla \oint_{S} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \cdot \hat{\mathbf{n}} d^{2} r^{\prime} \tag{12}
\end{align*}
$$

is the longitudinal or irrotational part of the vector field (with $\left.\nabla \times \mathbf{F}_{\ell}\left(\mathbf{r}^{\prime}\right)=\mathbf{0}\right)$, and

$$
\begin{align*}
\mathbf{F}_{t}(\mathbf{r}) & =\nabla \times \mathbf{a}(\mathbf{r})=\frac{1}{4 \pi} \nabla \times \nabla \times \int_{V} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime} \\
& =\frac{1}{4 \pi} \nabla \times \int_{V} \frac{\nabla^{\prime} \times \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}+\frac{1}{4 \pi} \nabla \times \oint_{S} \frac{\mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \times \hat{\mathbf{n}} d^{2} r^{\prime} \tag{13}
\end{align*}
$$

is the transverse or solenoidal part of the vector field (with $\left.\nabla \cdot \mathbf{F}_{\ell}\left(\mathbf{r}^{\prime}\right)=0\right)$.

Helmholtz' Theorem

If the surface S recedes to infinity and if the vector field $\mathbf{F}(\mathbf{r})$ is regular at infinity, then the surface integrals appearing in Eqs. (12)-(13) become

$$
\begin{align*}
\mathbf{F}_{\ell}(\mathbf{r}) & =-\nabla \phi(\mathbf{r}) \\
& =-\frac{1}{4 \pi} \nabla \int_{V} \frac{\nabla^{\prime} \cdot \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime} \tag{14}\\
\mathbf{F}_{t}(\mathbf{r}) & =\nabla \times \mathbf{a}(\mathbf{r}) \\
& =\frac{1}{4 \pi} \nabla \times \int_{V} \frac{\nabla^{\prime} \times \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime} . \tag{15}
\end{align*}
$$

Taken together, the above results constitute what is known as Helmholtz' theorem or the Fundamental Theorem of Vector Calculus.

Helmholtz' Theorem

Theorem

Helmholtz' Theorem. Let $\mathbf{F}(\mathbf{r})$ be any continuous vector field with continuous first partial derivatives. Then $\mathbf{F}(\mathbf{r})$ can be uniquely expressed in terms of the negative gradient of a scalar potential $\phi(\mathbf{r})$ \& the curl of a vector potential $\mathbf{a}(\mathbf{r})$, as embodied in Eqs. (10)-(11).

Hermann Ludwig Ferdinand von Helmholtz (1821-1894)

