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To study Delaunay mesh generation algorithms that
are both provably good (with theoretical guarantees)
and useful in practice.

algorithms, and all quadrilateral/hexahedral meshing.

Goal

I omit the huge literature on heuristic meshing

Vavasis
Steven

Mesh
courtesy

Marshall Bern, David Eppstein, and John Gilbert.
‘‘Provably Good Mesh Generation,’’ Journal of
Computer and System Sciences

Scott Mitchell and Steven Vavasis, ‘‘Quality Mesh
Generation in Higher Dimensions,’’ SIAM Journal

48 (3):384−409, 1994. on Computing 29 (4):1334−1370, 2000.

Software courtesy
Scott Mitchell

I omit provably good quadtree/octree meshing.
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How Meshes Affect Solution

Small angles cause poor conditioning.

Skinny elements cause problems.

The number of elements matters.

& big errors in interpolated derivatives.
Large angles cause discretization error

For tetrahedra, this applies to the dihedral angles.

Fewer elements faster solution.

More elements more accurate solution.

(Not the plane angles!)
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Properties of a Good Mesh Generator

one with relatively few elements.
Ability to generate a small mesh −

(Refinement is easy; coarsening is hard.)

No poorly−shaped elements
(triangles or tetrahedra).

where higher accuracy is needed, and to
exhibit good grading from small to large
elements.

Ability to generate more elements in regions
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No minimum angle
518 elements

5° minimum angle
593 elements

34.2° minimum angle
4,886 elements

25° minimum angle
1,427 elements

15° minimum angle
917 elements

Well−Shaped Elements vs. Few Elements
somewhat contradictory goals

Lake Superior

These meshes generated by Ruppert’s Delaunay refinement algorithm.
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(2):147−168, 1988.3
‘‘Nonobtuse Triangulation of Polygons,’’ Discrete &
Computational Geometry

1988: Brenda S. Baker, Eric Grosse, and C. S.

William H. Frey introduces circumcenter

Engineering 24 (11):2183−2200, November 1987.

insertion.

Rafferty introduce first provably good mesh
generation algorithm.

1987:

1993: Jim Ruppert introduces first Delaunay
refinement algorithm with good grading &
size−optimality.

1990: Marshall Bern, David Eppstein, and John R.

1989: L. Paul Chew introduces first provably good

Technical Report TR−89−983, Department of Computer Science, Cornell University, 1989.

Delaunay refinement algorithm.

Gilbert introduce first algorithm with provably
good grading & size−optimality.

‘‘Selective Refinement:  A New Strategy for Automatic Node Placement in
Graded Triangular Meshes,’’ International Journal for Numerical Methods in

‘‘Guaranteed−Quality
Triangular Meshes,’’

In 31st Foundations of CS.

In Fourth Symposium on Discrete Algorithms.

Great Moments in Theoretical Meshing

Journal version cited page 2.

Journal version cited page 30.
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Delaunay Triangulation Review

Ruppert’s 2D Delaunay Refinement Algorithm
Analysis of Ruppert’s Algorithm

3D Domains with Small Angles

3D Delaunay Refinement
2D Domains with Small Angles
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Conclusions:  Other Stuff & Open Problems

Delaunay Refinement Mesh Generation
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Delaunay Review
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The Delaunay Triangulation

Every point set has a Delaunay triangulation.  Think of
it as a function that takes a set of points and outputs a
triangulation.

(Some point sets have more than one Delaunay triangulation.  Just pick one.)
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3D2D

edge/triangle/tetrahedron.
through all the vertices of the
Any circle/sphere that passes

Circumcircle = Circumscribing Circle
Circumsphere = Circumscribing Sphere
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...is a triangulation whose edges and triangles are all

The Delaunay Triangulation

Delaunay.

An edge/triangle is Delaunay if it has an empty
circumcircle − one that encloses no vertex.
(There can be any number of vertices on the circumcircle.)
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The circumcircle of every Delaunay triangle is empty.

The Delaunay Triangulation
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The Delaunay Triangulation

...generalizes to higher dimensions.  In 3D, every edge,

circumsphere.
triangular face, and tetrahedron of the DT has an empty

Boris Nikolaevich Delaunay, ‘‘Sur la Sphère Vide,’’
Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie

Nauk 7:793−800, 1934.
Matematicheskii i Estestvennykat

Delaunay was a Russian
mathematician whose name
transliterates to ‘‘Delaunay’’ in
French, and ‘‘Delone’’ in English.

under ‘‘Boris Nikolaevich Delone.’’
His name allegedly came from an

His biographies are mostly found

Irish ancestor named ‘‘Deloney.’’
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24 (2):162−166, 1981.

2:133−144, 1970.

1970: C. O. Frederick, Y. C. Wong, and F. W. Edge

‘‘Two−Dimensional Automatic Mesh Generation for Structural Analysis,’’ International Journal for
Numerical Methods in Engineering

1975:
first O(

1977:

n log

DT maximizes the minimum angle. ‘‘Software for C¹
Surface Interpolation,’’

1981: Adrian Bowyer and David F. Watson publish

Bowyer:  ‘‘Computing Dirichlet Tessellations,’’ Computer Journal
Watson:  ‘‘Computing the
Polytopes,’’ Computer Journal 24

n

16th Symposium on Foundations of Computer Science, pp. 151−162, October 1975.

1989: Kenneth L. Clarkson and Peter W. Shor give
optimal n

−dimensional incremental insertion alg.

−dimensional insertion alg.
in Computational Geometry, II,’’ Discrete & Computational Geometry 4(1):387−421, 1989.

Great Moments in DT Construction Algorithms

Random Sampling
‘‘Applications of

Charles L. Lawson introduces 2D flip & incre−

unknowingly publish first 2D DT algorithm.

(2):167−172, 1981.  (Independent papers, published side by side!)

Michael Ian Shamos and Dan Hoey publish 
n) 2D DT algorithm. ‘‘Closest−Point Problems,’’

n−dimensional Delaunay Tessellation with Application to Voronoi

mental insertion algorithms; proves that

Mathematical Software III (John R. Rice, editor), pages 161−194, Academic Press, New York, 1977.

2D
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3D:

Daniel K. Blandford, Guy E. Blelloch, David E.
Cardoze, and Clemens Kadow.

Good Choices for Implementation

Computer Journal 24

Nina Amenta, Sunghee Choi, and Günter Rote.
‘‘Incremental Constructions con BRIO,’’ Proceedings of the Nineteenth Annual Symposium on
Computational Geometry, pages 211−219, June 2003.

‘‘Compact Representations of Simplicial Meshes in Two and Three Dimensions,’’ Twelfth International
Meshing Roundtable, pages 135−146, September 2003.

2D: Leonidas J. Guibas and Jorge Stolfi’s elabo−
ration of Shamos−Hoey divide−and−conquer.
‘‘Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams,’’
ACM Transactions on Graphics 4(2):74−123, April 1985.  Includes data structures & detailed pseudocode.

(2):162−172, 1981.  (See full citations on previous page.)

and much less bug−prone, even if you don’t implement the compaction that is the subject of the paper.
Because the data structure has no pointers between tetrahedra, programming on top of it is much easier

Shows how to order the vertex insertions in a way that is friendly to the memory hierarchy, gives very fast
point location in practice, and is theoretically optimal like Clarkson−Shor.

Use Bowyer−Watson incremental insertion alg.

But, use insertion ordering & point location of

And, use the mesh dictionary data structure of
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Retriangulate the cavity with a fan around the new vertex.
Remove all triangles/tetrahedra that are no longer Delaunay.
Insert one vertex at a time.

Algorithm for Delaunay Triangulation
The Bowyer−Watson Incremental Insertion
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Why the Delaunay Triangulation Alone
Doesn’t Solve the Problems of Meshing

angle, but the minimum angle may still be too small.
The Delaunay triangulation maximizes the minimum

The Delaunay triangulation might not conform to the
domain boundaries.
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Solution:  Add more vertices

The Big Question:  Where?
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Delaunay Refinement
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In 3D, it’s not a perfect quality measure, but it’s the best we can
prove things about.

θmin

θmin
θmin

d

r r d

In two dimensions,

Circumradius−to−shortest edge ratio is r/d.

r
d

= 2 sin
1 .  Small ratio big

In 2D or 3D, the smaller the ratio, the better.

.

A Quality Measure for Simplices
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edge lengths)
(disparate

Skinny Triangles

CapsNeedles
(angle near 180°)
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edge lengths)
(disparate (large

solid angle)
(slivers are evil; they
can have very small
circumradius−to−

shortest edge ratios,
but awful dihedrals)

Skinny Tetrahedra

Needles SliversCaps
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All new edges are at least as long as circumradius of
(because is at center of empty circumcircle).

Kill each skinny triangle by inserting vertex at circumcenter.
(Bowyer−Watson algorithm.)

Delaunay Refinement

v
t

v

v

[Alert:  here comes the MAIN IDEA behind all Delaunay refinement algorithms]

t
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circumradius−to−shortest edge ratio > 1.
Call a triangle or tetrahedron ‘‘skinny’’ only if

You never create an edge shorter than the shortest
pre−existing edge.  Therefore, the algorithm must terminate!

Then all new edges are longer than shortest edge of t.

v
t

v

Paul Chew’s Idea
L. Paul Chew, ‘‘Guaranteed−Quality Triangular Meshes,’’ Technical Report TR−89−983, Department of Computer
Science, Cornell University, 1989.
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survive.

Skinny Triangles

CapsNeedles

circumradius is much bigger than its shortest edge cannot
proportional to the shortest nearby edge.  A triangle whose
Delaunay refinement scatters vertices with spacing
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can survive.

Skinny Tetrahedra

Needles Caps Slivers

Same goes for tetrahedra with big circumspheres.

Alas, slivers with small circumradius−to−shortest edge ratios
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What if a circumcenter is outside the domain?

Domain boundaries are responsible for all the complications
of Delaunay refinement algorithms, and the differences
between them.
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Cannot produce graded meshes.

Chew’s First Delaunay Refinement Algorithm
L. Paul Chew, ‘‘Guaranteed−Quality Triangular Meshes,’’ Technical Report TR−89−983, Department of Computer
Science, Cornell University, 1989.

Subdivides boundary segments into roughly equal edges
before applying Delaunay refinement.

Uses constrained Delaunay triangulations.

Generates mesh with no angle smaller than 30°.

Courtesy Paul Chew
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Ruppert’s Algorithm
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Jim Ruppert’s Delaunay Refinement Algorithm
‘‘A Delaunay Refinement Algorithm for Quality 2−Dimensional Mesh Generation,’’ Journal of Algorithms
May 1995.

The input is a planar straight line graph (PSLG):
a set of vertices and non−crossing segments.

PSLG

20° mesh

, up toθYou choose the minimum acceptable angle
20.7°.  (Up to ~33° in practice.)  Implies 180°− 2θ

is ‘‘skinny.’’θmaximum.  Any triangle with angle <

18 (3):548−585,
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18 (3):548−585,

This side has a thin
vertical layer to mesh.

>−

Jim Ruppert’s Delaunay Refinement Algorithm
‘‘A Delaunay Refinement Algorithm for Quality 2−Dimensional Mesh Generation,’’ Journal of Algorithms
May 1995.

Provably good grading:  all edge lengths are
C times the ‘‘local feature size.’’ C is reasonable

(e.g. 1/9 for θ =15° minimum angle).  Theoretical
grading guarantee deteriorates as

‘‘Size−optimal’’:  number of triangles is within a
constant factor of the smallest possible mesh with
minimum angle θ.  (The constant is too large to give
a meaningful guarantee in practice.)

θ 20.7°.
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Vertex Insertion Rule 1

An input segment is said to be 

Any encroached segment is

encroached if there is

split into subsegments
by inserting a new vertex at its midpoint.

a vertex inside its diametral circle. (Its smallest circumcircle.)
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Missing segments and subsegments are encroached.
Split them at their midpoints until no subsegment is
missing.

(by Rule #1)
Segment Recovery by ‘‘Stitching’’
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Vertex Insertion Rule 2

v
t

v

Insert vertices at circumcenters of triangles with small
angles (e.g., < 20.7°).

Triangles that are too large are treated likewise.
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Encroached Subsegments Have
Priority over Skinny Triangles

If the circumcenter of a skinny triangle encroaches
upon a subsegment, reject the circumcenter.
Split the subsegment instead.
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What if a circumcenter is outside the domain?

Then a boundary segment is encroached.  Split it.
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Final Mesh 

Ruppert’s Algorithm in Action
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‘‘Off−Centers:  A New Type of Steiner Points for Computing Size−Optimal Quality−Guaranteed Delaunay

edge of will be skinny, place new vertex off−center so new

angle. Warning:  to get benefits, you must experiment with how far to move the off−center toward the

Triangulations,’’ LATIN 2004:  Theoretical Informatics, 6th Latin American Symposium, Lecture Notes in Computer
Science volume 2976, Springer, April 2004.

If circumcircle is so big that new triangle adjoining shortest

short edge.  Note:  off−centers turn Delaunay refinement into an advancing front algorithm!

triangle will be a few degrees better than minimum acceptable

Alper Üngör’s ‘‘Off−Centers’’

t Angle too
small

Off−center

Slightly greater
than minimum
acceptable angle

t
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Alper Üngör’s ‘‘Off−Centers’’
‘‘Off−Centers:  A New Type of Steiner Points for Computing Size−Optimal Quality−Guaranteed Delaunay
Triangulations,’’ LATIN 2004:  Theoretical Informatics, 6th Latin American Symposium, Lecture Notes in Computer
Science volume 2976, Springer, April 2004.

Meshes with 33° minimum angle.

Produced by Triangle v. 1.4.
(Ruppert−Chew hybrid.)
894 triangles.

Produced by Triangle v. 1.5.
(Ruppert−Chew hybrid with
off−centers.)  557 triangles.



40

Analysis
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Analysis of Ruppert’s Algorithm

Goal: Show that if we attack every skinny triangle,
the algorithm eventually terminates.  (It terminates

Restriction: Input domain has no angle < 90°.
(We’ll fix this later.)

if and only if there are no skinny triangles left.)
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...is the length of the shortest edge adjoining a vertex
immediately after the vertex appears in the mesh.

(Note:  in a Delaunay triangulation, the insertion radius of a vertex is the distance to its nearest neighbor when it is
inserted.  In a constrained Delaunay triangulation, however, it’s the distance to its nearest visible neighbor.)

triangle
circumcenter midpoint midpoint

segmentsegment

rv

rv

rv

The Insertion Radius of a Vertex

v vv
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>
rv

Insertion Radii of Circumcenters

v

p

(

rp
Brprv

causesp v‘‘ ’’

Say a triangle is ‘‘skinny’’ if its circumradius−to−shortest edge
ratio > .  Then its circumcenter has insertion radius at least

times greater than that of some other vertex .
v

p
B

B
p is whichever endpoint of the short edge appeared in the mesh last.  The inequality holds for off−centers too.)
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>

has insertion radius at least times that
of the rejected circumcenter .
(This is the only step where the insertion radius can shrink.  Fortunately, it can’t shrink much.)

rp

rv 2

p

v

p causes‘‘ ’’p v

The midpoint 1/

r

2v

v

Insertion Radii of Subsegment Midpoints

r

p

position)
rejected circumcenter (in worst−case
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v

t

v

Goal:  Avoid Cycle of Diminishing Edge Lengths

Circumcenters

Midpoints
Subsegment

Triangle

not possible

×

B

For citation, see the Small Angles section.

×

Miller, Pav, and Walkington improve this analysis to 26.4°.

Multipliers (right) reflect
smallest possible insertion
radius of new vertex,
relative to vertex that
‘‘caused’’ it.

We require
Minimum angle can go up to 20.7°.

B

Algorithm is guaranteed to
terminate if no cycle exists
with product less than 1.

>− .

1

2

2
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Constrained Delaunay
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Discontinuities in
interpolated functions

Nonconvex shapes;
internal boundaries

Delaunay triangulations are great, but

edges or facets appear.
sometimes you need to make sure



are constrained Delaunay or are
domain boundaries.

(CDTs)
Constrained Delaunay triangulations

Edges, triangles, and tetrahedra

are all Delaunay.

Conforming Delaunay triangulations
Edges, triangles, and tetrahedra

Worst case PSLG needs

to recover boundary facets.
Delaunay property compromised

‘‘Almost Delaunay’’ triangulations

meshing algorithms do.

) to
(n³

(Ω ²n
O ) extra vertices.

What most heuristic 3D Delaunay

Three Alternatives for Recovering Segments
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constrained Delaunay if

Input segments

between vertex and triangle.
Segment occludes visibility

Constrained Delaunay Triangle

A triangle is
its interior doesn’t intersect any input segment, and
its circumcircle encloses no vertex visible from interior of
triangle.
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constrained Delaunay if

Segment occludes visibility
between vertex and edge.

Constrained Delaunay Edge

An edge is

it has a circumcircle that encloses no vertex visible from
interior of edge.

it doesn’t cross any input segment, and
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Constrained Delaunay Triangulations

CDTs were introduced by Der−Tsai Lee and A. K. Lin, ‘‘Generalized Delaunay Triangulations for Planar Graphs,’’
Discrete & Computational Geometry

No need for stitching!

1

Delaunay triangles and edges, plus input segments.
...are triangulations entirely composed of constrained

:201−217, 1986.
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n ) worst−case CDT construction time; usually faster³

CDT Construction Algorithms

one. To insert a segment, delete the triangles it

in practice.
O(

Folklore:  start with DT; insert segments one by

crosses; retriangulate the cavities by gift−wrapping.

Marc Vigo Anglada, ‘‘An Improved Incremental Algorithm for Constructing Restricted
Delaunay Triangulations,’’ Computers and Graphics
(Not the first person to think of this, but a good reference.)

L. Paul Chew, ‘‘Constrained Delaunay Triangulations,’’ Algorithmica

Faster:  Paul Chew’s optimal O(n log n) divide−and−
conquer algorithm. Harder to implement.

4(1):97−108,1989.

(2):215−223, March 1997.21
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Prevents overrefinement due to external features/small angles.

Form CDT; remove triangles outside domain before refining.

Mesh

CDT

DT+refinement

CDT+refinement

One Advantage of CDTs
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Delete all vertices from the encroached subsegment’s
diametral circle (except input vertices & vertices on
segments).  Split the subsegment.

Uses CDTs.  A subsegment is encroached (only) when
it separates a skinny triangle from its circumcenter.

Chew’s Second Delaunay Refinement Algorithm
L. Paul Chew, ‘‘Guaranteed−Quality Mesh Generation for Curved Surfaces,’’ Proceedings of the Ninth Annual
Symposium on Computational Geometry, pages 274−280, May 1993.  (Similar to Ruppert; developed independently.)

t

circumcenter lies right
on the subsegment.)

(Including when the
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Chew’s Second Delaunay Refinement Algorithm
L. Paul Chew, ‘‘Guaranteed−Quality Mesh Generation for Curved Surfaces,’’ Proceedings of the Ninth Annual
Symposium on Computational Geometry, pages 274−280, May 1993.

Ruppert:  559 triangles. Chew:  423 triangles.

With an extra trick, Chew guarantees 30° minimum angle.
(Chew’s algorithm occasionally trisects a subsegment instead of bisecting it.  Unnecessary in practice.)

If angle bound is reduced below 26.5°, good grading is
theoretically guaranteed.  (Compare to Ruppert’s 20.7°.)
This fact from Jonathan Richard Shewchuk, ‘‘Delaunay Refinement Algorithms for Triangular Mesh Generation,’’
Computational Geometry:  Theory and Applications 22 (1−3):21−74, May 2002.  A technique of Miller, Pav, and
Walkington improves this bound to 28.6°.  (Compare to their bound of 26.4° for Ruppert’s algorithm.)



56

Curves
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55

collinear points on any
subcurve occur in linear
order;

no two subcurves’ convex
hulls intersect, except at
shared endpoints.

Preprocess curves, splitting them into subcurves, so that

Curved Boundaries:  Boivin and Ollivier−Gooch
Charles Boivin and Carl Ollivier−Gooch, ‘‘Guaranteed−Quality Triangular Mesh Generation for Domains with Curved
Boundaries,’’ International Journal for Numerical Methods in Engineering (10):1185−1213, 20 August 2002.

(Boivin and Ollivier−Gooch are more restrictive.

2 3
3

1
2

but the main ideas are theirs.  The theoretical angle bound is slightly improved here.

spirals too much

See their article for how to handle intersecting convex hulls during Delaunay refinement.)

They require a subcurve’s tangent direction to vary by no more than 60°.  The modified algorithm here does not.)

(Boivin and Ollivier−Gooch are less restrictive.

1

Warning:  the following treatment is adapted and is not true to Boivin/Ollivier−Gooch,
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55

Construct CDT.

Approximate each subcurve with
Preprocess curves.

a subsegment.

Domain.

Delaunay refinement.

Curved Boundaries:  Boivin and Ollivier−Gooch
Charles Boivin and Carl Ollivier−Gooch, ‘‘Guaranteed−Quality Triangular Mesh Generation for Domains with Curved
Boundaries,’’ International Journal for Numerical Methods in Engineering (10):1185−1213, 20 August 2002.
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Curved Boundaries:  Encroachment

A subsegment is encroached if

it separates a skinny
triangle from its
circumcenter, or

a skinny triangle’s
circumcenter lies between
the subsegment and
its subcurve.
(Or right on the subsegment or subcurve.)

Encroachment is like in Chew’s second algorithm.
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Curved Boundaries:  Encroachment
Case 1:  

Draw circle around new point through endpoints.

vertices on segments).
Insert new vertex.

Delete all vertices in circle (except input vertices &

Insert new subsegments.
Unlock old segment; flip to constrained Delaunay.

Find a point where curve intersects segment bisector.
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Curved Boundaries:  Encroachment
Case 2:  

Draw circle around new point; radius = circumradius.

Unlock old subsegment.

Delete all vertices in circle (except...).
Insert new vertex & subsegments.
Delete all vertices inside the subsegment triangle.

Find a point on the curve no closer to either endpoint
than the skinny triangle’s circumcenter is.
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Guaranteed good grading.

Guaranteed termination for

Curved Boundaries

(like Chew’s second algorithm).
minimum angle bound up to 26.5°

with Curved Boundaries,’’ International Journal for Numerical
‘‘Guaranteed−Quality Triangular Mesh Generation for Domains
Meshes are from Charles Boivin and Carl Ollivier−Gooch,

Methods in Engineering 55 (10):1185−1213, 20 August 2002.
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Small Angles
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Domains with Small Angles

Problem:  Create a triangular mesh
that has no new angle less than .θ
(For instance, 26°.)

Suppose the mesh must exactly
fit the input.  Small angles between
adjoining input segments cannot
be removed.
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You can remove these small
angles, but others will pop up
to take their place!

A Negative Result

Counterexample puts small input
angle next to large input angle.

This problem has no solution!

no algorithm can mesh this PSLG
without creating a new angle less
than θ = 26°.

If the small angle is < 0.24°,

Algorithms for Triangular Mesh Generation,’’
For a proof, see my ‘‘Delaunay Refinement

cited on page 67.
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An algorithm has to decide when
and where to give up.

Goal:  judge which skinny triangles are hopeless, and
which skinny triangles you should attack.
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Except ‘‘near’’ small input angles, no angle is less than
(say, 26.5°).θ

No angle is (much) less than the smallest nearby input
angle.

No angle is greater than 180°− 2 .θ

If we can’t demand no new angle less than

Gary L. Miller, Steven E. Pav, and Noel J. Walkington, ‘‘When and Why Ruppert’s Algorithm Works,’’ Twelfth
International Meshing Roundtable, pages 91−102, September 2003.

θ,

Best:  Miller−Pav−Walkington.  Works with DTs or CDTs.

what can we demand?

Algorithms

Jonathan Richard Shewchuk, ‘‘Delaunay Refinement Algorithms for Triangular Mesh Generation,’’ Computational
Geometry:  Theory and Applications 22 (1−3):21−74, May 2002.  (Also in 16th Symp. on Comp. Geometry, 2000.)

Better:  Mine.  Uses CDTs.  No bound on max angle.

No angle greater than 180°− 2θ ; better bound on minimum angle; easiest to implement; guaranteed good grading.

Corner−lopping. See Bern−Eppstein−Gilbert and Ruppert.
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Corner−Lopping

as implemented in Triangle
Generated by my algorithm,

It’s a simple idea,
but we can do better.
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Runaway Encroachment

encroachment can occur.
an endless cycle of mutual
Problem:  If angle < 45°,

Split segments at
Ruppert’s solution:

whose radii are
powers of two.

Midpoint

New vertex

concentric circular shells
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Skinny triangles engender more
new vertices.  Small edge
lengths propagate around and
split the subsegment again!

The new vertex encroaches
upon the other subsegment.

creating a very short edge.
Oops!

Another vertex is inserted,

A subsegment is split.

Small angles are ‘‘edge length reducers.’’
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Make one tiny adjustment to Delaunay refinement with
concentric circular shells:

Guaranteed to terminate with no other skinny triangles

Combined with Chew’s algorithm, we can demand most angles be > 28.6° and all angles be < 122.8°.

subtends a small input angle and has both endpoints on
circular shells.

(< 26.45°); no large angles (> 127.1°); good grading.

Never attack a skinny triangle whose shortest edge

Don’t split me!

Don’t split me!

Don’t split me!

The Miller−Pav−Walkington Algorithm
Gary L. Miller, Steven E. Pav, and Noel J. Walkington, ‘‘When and Why Ruppert’s Algorithm Works,’’ Twelfth
International Meshing Roundtable, pages 91−102, September 2003.  See also Pav’s Ph.D. dissertation.



72

Courtesy Steven Pav

International Meshing Roundtable, pages 91−102, September 2003.
Gary L. Miller, Steven E. Pav, and Noel J. Walkington, ‘‘When and Why Ruppert’s Algorithm Works,’’ Twelfth

The Miller−Pav−Walkington Algorithm

Most angles > 26.45°.  All angles < 127.1°.
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3D Delaunay Refinement
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3D Delaunay Refinement
Tamal Krishna Dey, Chanderjit L. Bajaj, and Kokichi Sugihara, ‘‘On Good Triangulations in Three Dimensions,’’

The first 3D Delaunay refinement algorithm works only for
convex polyhedra.  Like Chew’s first algorithm, it pre−
discretizes the boundary so Delaunay refinement will work.

International Journal of Computational Geometry and Applications 2(1):75−95, 1992.

Mesh transcribed from
Dey−Bajaj−Sugihara article.
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Restriction: Input domain has no angle < 90°.

non−manifold boundaries.
Here’s an algorithm that works on non−convex domains with

3D Delaunay Refinement
Jonathan Richard Shewchuk, ‘‘Tetrahedral Mesh Generation by Delaunay Refinement,’’ Proceedings of the Fourteenth
Annual Symposium on Computational Geometry, pages 86−95, June 1998.

You choose the maximum acceptable circumradius−to−

(Neither a plane angle
nor a dihedral angle.)

, as low as 2.  Can go lower in practice.Bshortest edge ratio

= 1.041, 3144 vertices, 13969 tetrahedra.B= 1.2, 334 vertices, 1009 tetrahedra.B
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3D Delaunay Refinement
Jonathan Richard Shewchuk, ‘‘Tetrahedral Mesh Generation by Delaunay Refinement,’’ Proceedings of the Fourteenth
Annual Symposium on Computational Geometry, pages 86−95, June 1998.

Provably good grading:  all edge lengths are proportional to the
‘‘local feature size.’’  Theoretical grading guarantee deteriorates
as B
edge ratio), but grading remains good in practice.

2 (your maximum acceptable circumradius−to−shortest



77

Set of vertices,

facets.

subfacets.

subsegments,
divided into

segments, and

The segments are

and the facets into

Input:  A Piecewise Linear Complex

PLC

Mesh
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of a subfacet
The equatorial sphereThe diametral sphere

of a subsegment

(The smallest sphere that passes through all its vertices.)

Definitions
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Begin with Delaunay tetrahedralization of
the vertices of the PLC.

This PLC courtesy Carl−Ollivier Gooch.
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encroached.

The diametral sphere
of this subsegment is

midpoint and maintaining
the Delaunay property.

Split the encroached
subsegment by inserting
a new vertex at its

Splitting an Encroached Subsegment
Rule #1
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vertex at its circumcenter
and maintaining the
Delaunay property.

encroached.
of this subfacet is
The equatorial sphere Split the encroached

subfacet by inserting a new

(For best results, you must choose the right
subfacet to split first.  Orthogonally project

the subfacet that contains the projected point.)
the encroaching vertex onto the facet.  Split

Rule #2
Splitting an Encroached Subfacet
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If the new vertex would
encroach upon a
subsegment, reject the
vertex.

Split the encroached
subsegment(s) instead.

But . . .



83

separately
the 3D mesh.

from

Maintain a 2D
DT of each facet

Split any subfacet

in the 3D mesh.
a facet DT but not

When you split
a subfacet, insert
new vertex into

simultaneously.

the 2D facet DT
and the 3D mesh

PLC Mesh

Facet Triangulation

Missing Facet Recovery by ‘‘Stitching’’ (Rule #2)

that is present in
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Missing Facet Recovery

By contrast, a popular
method in the heuristic
meshing literature

intersection of a missing
inserts a vertex at the

facet and an edge of the
3D mesh.

Unfortunately, this
approach can place
a vertex very close to
a subsegment.
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Delaunay refinement in action.
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its circumcenter and maintaining the Delaunay property.
Split a skinny tetrahedron by inserting a new vertex at

Rule #3
Splitting a Skinny Tetrahedron
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If the new vertex would
encroach upon a subfacet
or subsegment, reject the
vertex.

Split the encroached

(Subsegments first.  Split encroached subfacets

encroaches upon.)

only if the skinny tetrahedron survives after
you split all subsegments that its circumcenter

subfacet(s) or
subsegment(s) instead.

But . . .
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Delaunay refinement in action.
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rv

rv

rv

rp

× 1
2

× 1
2

Goal:  Avoid Cycle of Diminishing Edge Lengths

Subsegment
Midpoints

Subfacet
Circumcenters

Tetrahedron
Circumcenters

B×

rp

v

p

rp

v

p

v
p

Multipliers (right) reflect
smallest possible insertion
radius of new vertex,
relative to vertex that
‘‘caused’’ it.

Algorithm is guaranteed to
terminate if no cycle exists
with product less than 1.

We require B 2.−>
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Slivers
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Sliver Elimination

The theoretical bound allows slivers to survive
if their circumradius−to−shortest edge ratios
are less than 2.  How do we get rid of them?

Delaunay refinement.  A sliver can always be eliminated

Randomized Delaunay refinement (Chew).  Insert a random

by a vertex at its circumcenter.  There’s just no guarantee
that refinement will terminate.

off−center vertex.  If you don’t like the result, undo and try
again with different random vertex.  Has a ‘‘guarantee.’’

‘‘Sliver Exudation’’ (Cheng et al.).  Has a ‘‘guarantee.’’
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Slivers and Delaunay Refinement
Fortunately, sliver removal by Delaunay refinement works
well in practice, even without a termination guarantee.

minimum dihedral:  22° minimum dihedral:  22.8°
Jonathan Richard Shewchuk, ‘‘Tetrahedral Mesh Generation by Delaunay Refinement,’’ Proceedings of the Fourteenth
Annual Symposium on Computational Geometry, pages 86−95, June 1998.
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sliver tetrahedron
in slab to form
vertex must fall

L. Paul Chew, ‘‘Guaranteed−Quality Delaunay Meshing in 3D,’’ Proceedings of the Thirteenth Annual Symposium on
Computational Geometry, pages 391−393, June 1997.

randomly and try again.  (Never implemented, to my knowledge.)

Chew’s Third Delaunay Refinement Algorithm

Chew observes that a new vertex must fall in a small region to
create a sliver with good circumradius−to−shortest edge ratio

Idea:  If a circumcenter falls in a face’s disallowed region, perturb it

(with a pre−existing triangular face, like the red one below).

disallowed region

plane of
triangular face

circumcircle of
triangular face

vertex must fall in green region to form
tetrahedron with small radius−edge ratio
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L. Paul Chew, ‘‘Guaranteed−Quality Delaunay Meshing in 3D,’’ Proceedings of the Thirteenth Annual Symposium on
Computational Geometry, pages 391−393, June 1997.

Chew’s Third Delaunay Refinement Algorithm

of a skinny tetrahedron.

If ‘‘sliver’’ is defined as having an extremely small dihedral angle,

bother computing.  Still, the first provably good sliver eliminator!

Chew can prove that the union of the forbidden regions does not fill
the inner sphere.  A random search eventually finds a good spot.

Unfortunately, the bound on dihedral angle is too minuscule to

New vertex may go anywhere in the inner half of the circumsphere
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E .3

E 4.

Sliver Exudation

Uses weighted Delaunay
triangulations.

Exudation,’’ Journal of the ACM 47 (5):883−904, September 2000.

In a weighted DT, vertices
with positive weight are
lifted below the paraboloid,
and vertices with negative
weight are lifted above
the paraboloid.  Compute

parabolic lifting map

tetrahedra down to
lower convex hull; project

The 3D DT matches
the lower convex hull
of the vertices lifted
onto a paraboloid in

Siu−Weng Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang−Hua Teng, ‘‘Sliver
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Sliver Exudation
Siu−Weng Cheng, Tamal Krishna Day, Herbert Edelsbrunner, Michael A. Facello, and Shang−Hua Teng, ‘‘Sliver
Exudation,’’ Journal of the ACM 47 (5):883−904, September 2000.

dihedral angle is too minuscule to bother computing.
Provably good sliver elimination.  Unfortunately, the bound on

As Chew shows, slivers with good circumradius−to−shortest
edge ratios are fragile:  small perturbations eliminate them.

Idea:  fiddle with the weights of the vertices until the slivers
disappear.  Weights must stay within a small range, lest a
vertex disappear into the convex hull.  Search within that
range for a sliver−free configuration.

Courtesy
Damrong Guoy
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reasonably (but not perfectly) effective.
Experiments show sliver exudation to be

Herbert Edelsbrunner and Damrong Guoy, ‘‘An Experimental Study of Sliver Exudation,’’ Tenth International Meshing
Roundtable, pages 307−316, October 2001.

exudationpre−refinementinput post−refinement

tetrahedra have
Rendered

dihedrals
under 5°.
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Small Angles
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It is difficult to mesh the interior of this box with Delaunay
tetrahedra.  A new vertex inserted in one facet tends to knock
out triangular subfacets in adjacent facets.

A Hard Example for Tetrahedral Meshing
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Provably Good Meshing for
3D Domains with Small Angles

All guarantee good circumradius−to−shortest edge ratios

Jonathan Richard Shewchuk, ‘‘Mesh Generation for Domains with Small Angles,’’ Proceedings of the Sixteenth
Annual Symposium on Computational Geometry, pages 1−10, June 2000.

Cheng−Dey−Ramos−Ray.  Uses DTs, but handles only

Siu−Weng Cheng, Tamal Krishna Dey, Edgar A. Ramos, and Tathagata Ray, ‘‘Quality Meshing for Polyhedra with
Small Angles,’’ Proceedings of the Twentieth Annual Symposium on Computational Geometry, June 2004.

Pav−Walkington (this conference!).  Uses DTs, handles

Steven Pav and Noel Walkington, ‘‘Robust Three Dimensional Delaunay Refinement,’’ Thirteenth International
Meshing Roundtable, September 2004.

except near small input angles.

manifold boundaries (polyhedra with holes).

Uses 3D CDTs.  Handles non−manifold boundaries.
Earliest algorithm:  Mine...but the paper omits the proof.

non−manifold boundaries.  Claims provably good grading!
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The only one of these algorithms implemented so far.

3D Small Angles:  Cheng−Dey−Ramos−Ray
Siu−Weng Cheng, Tamal Krishna Dey, Edgar A. Ramos, and Tathagata Ray, ‘‘Quality Meshing for Polyhedra with
Small Angles,’’ Proceedings of the Twentieth Annual Symposium on Computational Geometry, June 2004.

Courtesy Tamal Dey

surviving bad
tetrahedra
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Conclusions
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Things I Don’t Have Time to Discuss

Provably good triangular mesh generation for curved
surfaces.  (Chew’s second Delaunay refinement
algorithm was designed for this purpose.)
L. Paul Chew, ‘‘Guaranteed−Quality Mesh Generation for Curved Surfaces,’’ Proceedings of the Ninth Annual
Symposium on Computational Geometry, pages 274−280, May 1993.

This work is continued by Jean−Daniel Boissonnat and
Steve Oudot. ‘‘Provably Good Surface Sampling and Approximation,’’ Symposium on Geometry

Processing 2003, pages 9−19, June 2003.

Courtesy Paul Chew
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pages 191−200, June 2003.
Anisotropic Mesh Generation,’’ Proceedings of the Nineteenth Annual Symposium on Computational Geometry,
François Labelle and Jonathan Richard Shewchuk, ‘‘Anisotropic Voronoi Diagrams and Guaranteed−Quality

anisotropic Voronoi diagrams).
Provably good anisotropic mesh generation (using

Things I Don’t Have Time to Discuss

Courtesy François Labelle
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Open Problems

Design an algorithm that guarantees a

Provably good tetrahedral meshing of 3D domains
whose boundaries are curved surfaces is wide open.

There’s still room for
improvement in meshing 3D
domains with small angles.
Mesh this domain with
guaranteed quality
without adding many new
vertices in practice.

meaningful bound on the smallest dihedral angle.

and

My biased opinion:  I think 3D CDTs will be part
of the best−performing algorithm of the future.
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http://www.cs.cmu.edu/~quake/triangle.html

riangle
Provably good software!

Fin


