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FAST MONTE CARLO ALGORITHMS FOR MATRICES II:

COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗

PETROS DRINEAS† , RAVI KANNAN‡ , AND MICHAEL W. MAHONEY§

Abstract. In many applications, the data consist of (or may be naturally formulated as) an
m×n matrix A. It is often of interest to find a low-rank approximation to A, i.e., an approximation
D to the matrix A of rank not greater than a specified rank k, where k is much smaller than m and
n. Methods such as the singular value decomposition (SVD) may be used to find an approximation
to A which is the best in a well-defined sense. These methods require memory and time which are
superlinear in m and n; for many applications in which the data sets are very large this is prohibitive.
Two simple and intuitive algorithms are presented which, when given an m×n matrix A, compute a
description of a low-rank approximation D∗ to A, and which are qualitatively faster than the SVD.
Both algorithms have provable bounds for the error matrix A − D∗. For any matrix X, let ‖X‖F
and ‖X‖2 denote its Frobenius norm and its spectral norm, respectively. In the first algorithm, c
columns of A are randomly chosen. If the m × c matrix C consists of those c columns of A (after
appropriate rescaling), then it is shown that from CTC approximations to the top singular values and
corresponding singular vectors may be computed. From the computed singular vectors a description
D∗ of the matrix A may be computed such that rank(D∗) ≤ k and such that

‖A−D∗‖2
ξ ≤ min

D:rank(D)≤k
‖A−D‖2

ξ + poly(k, 1/c) ‖A‖2
F

holds with high probability for both ξ = 2, F . This algorithm may be implemented without storing
the matrix A in random access memory (RAM), provided it can make two passes over the matrix
stored in external memory and use O(cm + c2) additional RAM. The second algorithm is similar
except that it further approximates the matrix C by randomly sampling r rows of C to form a
r × c matrix W . Thus, it has additional error, but it can be implemented in three passes over the
matrix using only constant additional RAM. To achieve an additional error (beyond the best rank k
approximation) that is at most ǫ‖A‖2

F
, both algorithms take time which is polynomial in k, 1/ǫ, and

log(1/δ), where δ > 0 is a failure probability; the first takes time linear in max(m,n) and the second
takes time independent of m and n. Our bounds improve previously published results with respect
to the rank parameter k for both the Frobenius and spectral norms. In addition, the proofs for
the error bounds use a novel method that makes important use of matrix perturbation theory. The
probability distribution over columns of A and the rescaling are crucial features of the algorithms
which must be chosen judiciously.
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1. Introduction. We are interested in developing and analyzing fast Monte
Carlo algorithms for performing useful computations on large matrices. In this paper
we consider the singular value decomposition (SVD); in two related papers we consider
matrix multiplication and a new method for computing a compressed approximate
decomposition of a large matrix [13, 14]. Since such computations generally require

∗Received by the editors April 5, 2004; accepted for publication (in revised form) November 17,
2005; published electronically May 26, 2006. The technical report version of this paper appeared as
Fast Monte Carlo Algorithms for Matrices II: Computing a Low-Rank Approximation to a Matrix,
by P. Drineas, R. Kannan, and M. W. Mahoney [15].

http://www.siam.org/journals/sicomp/36-1/44269.html
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 (drinep@cs.

rpi.edu).
‡Department of Computer Science, Yale University, New Haven, CT 06520 (kannan@cs.yale.edu).

This author was supported in part by a grant from the NSF.
§Department of Mathematics, Yale University, New Haven, CT 06520 (mahoney@cs.yale.edu).

158



FAST MONTE CARLO ALGORITHMS FOR MATRICES II 159

time which is superlinear in the number of nonzero elements of the matrix, we expect
our algorithms to be useful in many applications where data sets are modeled by
matrices and are extremely large. In all these cases, we assume that the input matrices
are prohibitively large to store in random access memory (RAM) and thus that only
external memory storage is possible. Our algorithms will be allowed to read the
matrices a few, e.g., one, two or three, times and keep a small randomly chosen
and rapidly computable “sketch” of the matrices in RAM; computations will then be
performed on this “sketch.” We will work within the framework of the pass-efficient
computational model, in which the scarce computational resources are the number
of passes over the data, the additional RAM space required, and the additional time
required [13, 12].

In many applications, the data consist of (or may be naturally formulated as) an
m×n matrix A which is either low-rank or is well approximated by a low-rank matrix
[7, 9, 25, 3, 26, 28, 29, 24, 22]. In these application areas, e.g., latent semantic indexing,
DNA microarray analysis, facial and object recognition, and web search models, the
data may consist of m points in R

n. Let A ∈ R
m×n be the matrix with these points as

rows. Two methods for dealing with such high-dimensional data are the SVD (and the
related principal components analysis) and multidimensional scaling [18, 23]. Thus,
it is often of interest to find a low-rank approximation to A, i.e., an approximation
D, of rank no greater than a specified rank k, to the matrix A, where k is much
smaller than m and n. For example, this rank reduction is used in many applications
of linear algebra and statistics as well as in image processing, lossy data compression,
text analysis, and cryptography [6]. The SVD may be used to find an approximation
to A which is the best in a well-defined sense [18, 19], but it requires a superlinear (in m
and n) polynomial time dependence that is prohibitive for many applications in which
the data sets are very large. Another method that has attracted interest recently is
the traditional “random projection” method where one projects the problem into a
randomly chosen low-dimensional subspace [21, 30, 20]. This dimensional reduction
requires performing an operation that amounts to premultiplying the given m × n
matrix A by an s×m matrix which takes time dependent in a superlinear manner on
m + n.

In this paper we present two simple and intuitive algorithms which, when given
an m×n matrix A, compute a description of a low-rank approximation D∗ to A, and
which are qualitatively faster than the SVD. Both algorithms have provable bounds
for the error matrix A − D∗. For any matrix X, let ‖X‖F and ‖X‖2 denote its
Frobenius norm and its spectral norm (as defined in section 3.1), respectively. In
the first algorithm, the LinearTimeSVD algorithm of section 4, c columns of A are
randomly chosen. If the m × c matrix C consists of those c columns of A (after
appropriate rescaling), then it is shown that from CTC approximations to the top
singular values and corresponding singular vectors of A may be computed. From the
computed singular vectors a description D∗ of the matrix A may be computed such
that rank(D∗) ≤ k and such that

‖A−D∗‖2
ξ ≤ min

D:rank(D)≤k
‖A−D‖2

ξ + poly(k, 1/c) ‖A‖2
F(1)

holds with high probability for each of ξ = 2, F . This algorithm may be implemented
without storing the matrix A in RAM, provided it can make two passes over the
matrix stored in external memory and use O(cm + c2) additional RAM. The second
algorithm, the ConstantTimeSVD algorithm of section 5, is similar except that it
further approximates the matrix C by randomly sampling r rows of C to form an r×c
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Table 1
Summary of sampling complexity.

Additional error for: LinearTimeSVD ConstantTimeSVD Ref. [16, 17]

‖A−D∗‖2
2 1/ǫ2 1/ǫ4 k4/ǫ3

‖A−D∗‖2
F k/ǫ2 k2/ǫ4 k4/ǫ3

matrix W . Thus, it has additional error but can be implemented in three passes over
the matrix using additional RAM that is O(cr), i.e., that is constant for constant c and

r. To achieve an additional error that is at most ǫ ‖A‖2
F , both algorithms take time

which is polynomial in k, 1/ǫ, and log(1/δ), where δ > 0 is a failure probability; see
Table 1 for a summary of the dependence of the sampling complexity on k and ǫ. The
first algorithm takes time linear in max(m,n) and the other takes time independent
of m and n. Our bounds improve previously published results with respect to the
rank parameter k for both the Frobenius and the spectral norms. In addition, the
proofs for the error bounds use a novel method that makes important use of matrix
perturbation theory. The probability distribution over columns of A and the rescaling
are crucial features of the algorithms which must be chosen judiciously.

It is worth emphasizing how this work fits into recent work on computing low-rank
matrix approximations. In the original work of Frieze, Kannan, and Vempala [16] (see
also [17]) it was shown that by working with a randomly chosen and constant-sized
submatrix of A, one could obtain bounds of the form (1) for the Frobenius norm
(and thus indirectly for the spectral norm). To achieve an additional error that is at

most ǫ ‖A‖2
F , the size of the submatrix was a constant with respect to m and n but

depended polynomially on k and 1/ǫ; although the submatrix was constant-sized, its
construction (in particular, the construction of the sampling probabilities) required
space and thus time that was linear in m+ n. In this work, we modify the algorithm
of [16] so that both the construction of and the computation on the constant-sized
submatrix requires only constant additional space and time; thus, it fits within the
framework of the pass-efficient model of data-streaming computation [12, 13]. In
addition, we provide a different proof of the main result of [16] for the Frobenius norm
and improve the polynomial dependence on k. Our proof method is quite different
than that of [16]; it relies heavily on the approximate matrix multiplication result of
[13] and [11] and it uses the Hoffman–Wielandt inequality. In addition, we provide a
proof of a direct and significantly improved bound with respect to the spectral norm.
Since these results are technically quite complex, we also present the corresponding
proofs for both norms in the linear additional space and time framework [12, 13].
These latter results have been presented in the context of clustering applications [10],
but are included here for completeness and to provide motivation and clarity for the
more complex constant time results. Table 1 provides a summary of our results, for
both the linear and the constant time models, and shows the number of rows and
columns to be sampled sufficient to ensure, with high probability, an additional error
of ǫ ‖A‖2

F in (1); see section 6 for more discussion.

In other related work, Achlioptas and McSherry have also computed low-rank
approximations using somewhat different sampling techniques [2, 1]. The primary
focus of their work was in introducing methods to accelerate orthogonal iteration and
Lanczos iteration, which are two commonly used methods for computing low-rank
approximations to a matrix. Also included in [2, 1] is a comparison of their methods
with those of [10, 12, 16] and thus with the results we present here. Our algorithms
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and those of [16] and [2, 1] come with mathematically rigorous guarantees of the
running time and of the quality of the approximation produced. As far as we know,
so-called incremental SVD algorithms, which bring as much of the data as possible
into memory, compute the SVD, and then update this SVD in an incremental fashion
with the remaining data, do not come with such guarantees.

In section 2 several applications areas that deal with large matrices are discussed,
and in section 3 we provide a review of relevant linear algebra, the pass-efficient
model, and an approximate matrix multiplication result that will be used extensively.
Then, in section 4 our linear additional space and time approximation algorithm, the
LinearTimeSVD algorithm, is presented and analyzed; in section 5 our constant
additional space and time approximation algorithm, the ConstantTimeSVD algo-
rithm, is presented and analyzed. Finally, in section 6 a discussion and conclusion are
presented.

2. Some applications. There are numerous applications in which the data are
well approximated by a low-rank matrix. In this section we discuss several such
applications to provide motivation for our algorithms.

2.1. Latent semantic indexing. Latent semantic indexing (LSI) is a general
technique for analyzing a collection of documents which are assumed to be related
[7, 9, 25]. Approaches to retrieving textual information from databases that depend
on a lexical match between words in the query and words in the document can be
inaccurate, both because often users want to retrieve information on the basis of
conceptual content and because individual words do not in general provide reliable
evidence about the conceptual topic of a document. LSI is an alternative matching
method that attempts to overcome problems associated with lexical matching; it does
so by assuming that there is some underlying or latent semantic structure that is
partially obscured by variability in word choice and then using techniques such as
SVD to remove the noise and estimate this latent structure.

Suppose that there are m documents and n terms which occur in the documents.
Latent semantic structure analysis starts with a term-document matrix, e.g., a matrix
A ∈ R

m×n, where Aij is frequency of the jth term in the ith document. A topic is
modeled as an n-vector of nonnegative reals summing to 1, where the jth component
of a topic vector is interpreted as the frequency with which the jth term occurs in a
discussion of the topic. By assumption, the number of topics that the documents are
about is small relative to the number of unique terms n. It can be argued that, for
a given k, finding a set of k topics which best describe the documents corresponds
to keeping only the top k singular vectors of A; most of the important underlying
structure in the association of terms and documents will then be kept and most of
the noise or variability in word usage will be removed.

2.2. DNA microarray data. DNA microarray technology has been used to
study a variety of biological processes since it permits the monitoring of the expres-
sion levels of thousands of genes under a range of experimental conditions [3, 26, 28].
Depending on the particular technology, either the absolute or the relative expres-
sion levels of m genes, which for model organisms may constitute nearly the entire
genome, are probed simultaneously by a single microarray. A series of n arrays probe
genome-wide expression levels in n different samples, i.e., under n different experi-
mental conditions. The data from microarray experiments may thus be represented
as a matrix A ∈ R

m×n, where Aij represents the expression level of gene i under
experimental condition j. From this matrix, both the relative expression level of the
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ith gene under every condition and also the relative expression level of every gene
under the jth condition may be easily extracted.

This matrix is low-rank and thus a small number of eigengenes and corresponding
eigenarrays (left and right singular vectors) are sufficient to capture most of the gene
expression information. Removing the rest, which correspond to noise or experimen-
tal artifacts, enables meaningful comparison of the expression levels of different genes.
When processing and modeling genome-wide expression data, the SVD and its low-
rank approximation provides a framework such that the mathematical variables and
operations suggest assigned biological meaning, e.g., in terms of cellular regulatory
processes and cellular states, that may be hidden in the original data due to exper-
imental noise or hidden dependencies. Expression data has been used for inference
tasks such as to identify genes based on coexpression, predict regulatory elements,
and reverse-engineer transcription networks, but this inference is difficult with noise
or dependencies.

2.3. Eigenfaces and facial recognition. Applications of SVD and low-rank
approximations in computer vision include pattern estimation, image compression
and restoration, and facial and object recognition, where the concept of eigenfaces
has been useful [29, 24].

The goal of facial recognition is to recognize a certain face given a database of
photographs of human faces under variations in lighting conditions and pose view-
points. A common approach is to represent the database as a matrix in which the rows
of the matrix are the images represented as vectors. Thus, if there are m images, each
of which is of size n × n, the matrix A ∈ R

m×n2

represents the database of images,
where Aij is the jth pixel value in the ith image. Typically, m ≪ n2 and, although
many of the singular vectors are needed for very accurate reconstruction of an image,
often only a few of the singular vectors are needed to extract the major appearance
characteristics of an image. The right singular vectors of the matrix A are known as
eigenfaces since they are the principal components or eigenvectors of the associated
correlation matrix of the set of face images. The eigenfaces are computed and they
are used to project the database of photographs to a lower-dimensional space that
spans the significant variations among known facial images. Then, given a new image,
it is projected to the same low-dimensional space, and its position is then compared
to the images in the database.

2.4. Web search model. The problem of how to extract information from the
network structure of a hyperlinked environment such as the World Wide Web was
considered by Kleinberg [22]. This is of interest, for example, if one wants to find web
pages that are relevant to a given query and one is using a keyword-based web search
program, since there is no obvious endogenous measure of an authoritative page that
would favor it under a text-based ranking system.

Starting with a set of pages returned by a text-based search engine, a document
is defined to be an authority if many other documents returned by the search point
to it, i.e., have a hypertext link to it. A document is defined to be a hub if it points
to many other documents. More generally, suppose n documents are returned by the
search engine. Then, a matrix A ∈ R

m×n is defined, where Aij is 1 or 0 depending on
whether the ith document points to the jth document. Kleinberg attempts to find two
n-vectors, x and y, where xi is the hub weight of document i and yj is the authority
weight of document j. He then argues that it is desirable to find max|x|=|y|=1 x

TAy,
where | · | denotes the Euclidean length, since in maximizing x, y one expects the hub
weights and authority weights to be mutually consistent. This is simply the problem of
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finding the singular vectors of A. Since A is large, he judiciously chooses a submatrix
of A and computes only the singular vectors of it. In the case when the key word
has multiple meanings, not only the top but also some of the other singular vectors
with large singular values are interesting. Thus, it is of interest to find the k largest
singular vectors form some small k. This is the problem we are considering, and we
also find the singular vectors of a submatrix, but a randomly chosen one.

3. Review of relevant background. This section contains a review of linear
algebra that will be useful throughout the paper; for more detail, see [18, 19, 27, 8]
and the references therein. This section also contains a review of the pass-efficient
model of data-streaming computation (which provides a framework within which our
SVD results may be viewed) and a matrix multiplication result that will be used
extensively in our proofs; see [11, 12, 13] for more details.

3.1. Review of linear algebra. For a vector x ∈ R
n we let xi, i = 1, . . . , n,

denote the ith element of x and we let |x| = (
∑n

i=1 |xi|2)1/2. For a matrix A ∈ R
m×n

we let A(j), j = 1, . . . , n, denote the jth column of A as a column vector and A(i),
i = 1, . . . ,m, denote the ith row of A as a row vector; thus, if Aij denotes the (i, j)th
element of A, Aij = (A(j))i = (A(i))j . The range of an A ∈ R

m×n is

range(A) = {y ∈ R
m : y = Ax for some x ∈ R

n} = span(A(1), . . . , A(n)).

The rank of A, rank(A), is the dimension of range(A) and is equal to the number of
linearly independent columns of A; since this is equal to rank(AT ) it also equals the
number of linearly independent rows of A. The null space of A is

null(A) = {x ∈ R
n : Ax = 0}.

For a matrix A ∈ R
m×n we denote matrix norms by ‖A‖ξ, using subscripts to

distinguish between various norms. Of particular interest will be the Frobenius norm,
which is defined by

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

A2
ij .(2)

If Tr (A) is the matrix trace which is the sum of the diagonal elements of A, then

‖A‖2
F = Tr(ATA) = Tr(AAT ). Also of interest is the spectral norm, which is defined

by

‖A‖2 = sup
x∈Rn, x �=0

|Ax|
|x| .(3)

Both of these norms are submultiplicative and unitarily invariant and they are related
to each other as

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 .

Both of these norms provide a measure of the “size” of the matrix A. Note that if
A ∈ R

m×n, then there exists an x ∈ R
n such that |x| = 1 and ATAx = ‖A‖2

2 x and

that if {x1, x2, . . . , xn} is any basis of R
n and if A ∈ R

m×n, then ‖A‖2
F =

∑n
i=1

∣

∣Axi
∣

∣

2
.
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If A ∈ R
m×n, then there exist orthogonal matrices U = [u1u2 . . . um] ∈ R

m×m

and V = [v1v2 . . . vn] ∈ R
n×n where {ut}mt=1 ∈ R

m and {vt}nt=1 ∈ R
n are such that

UTAV = Σ = diag(σ1, . . . , σρ),(4)

where Σ ∈ R
m×n, ρ = min{m,n}, and σ1 ≥ σ2 ≥ · · · ≥ σρ ≥ 0. Equivalently,

A = UΣV T .

The three matrices U , V , and Σ constitute the SVD of A. The σi are the singular
values of A and the vectors ui, vi are the ith left and the ith right singular vectors,
respectively. The columns of U and V satisfy the relations Avi = σiu

i and ATui =
σiv

i. For symmetric matrices the left and right singular vectors are the same. The
singular values of A are the nonnegative square roots of the eigenvalues of ATA and of
AAT ; furthermore, the columns of U , i.e., the left singular vectors, are eigenvectors of
AAT and the columns of V , i.e., the right singular vectors, are eigenvectors of ATA.

The SVD can reveal important information about the structure of a matrix. If
we define r by σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σρ = 0, then rank(A) = r,
null(A) = span(vr+1, . . . , vρ), and range(A) = span(u1, . . . , ur). If we let Ur ∈ R

m×r

denote the matrix consisting of the first r columns of U , Vr ∈ R
r×n denote the matrix

consisting of the first r columns of V , and Σr ∈ R
r×r denote the principal r × r

submatrix of Σ, then

A = UrΣrV
T
r =

r
∑

t=1

σtu
tvt

T
.(5)

Note that this decomposition property provides a canonical description of a matrix
as a sum of r rank-one matrices of decreasing importance. If k ≤ r and we define

Ak = UkΣkV
T
k =

k
∑

t=1

σtu
tvt

T
,(6)

then Ak = UkU
T
k A = (

∑k
t=1 u

tutT )A and Ak = AVkV
T
k = A(

∑k
t=1 v

tvt
T
), i.e., Ak

is the projection of A onto the space spanned by the top k singular vectors of A.
Furthermore, the distance (as measured by both ‖·‖2 and ‖·‖F ) between A and any
rank-k approximation to A is minimized by Ak, i.e.,

min
D∈Rm×n:rank(D)≤k

‖A−D‖2 = ‖A−Ak‖2 = σk+1(A)(7)

and

min
D∈Rm×n:rank(D)≤k

‖A−D‖2
F = ‖A−Ak‖2

F =

r
∑

t=k+1

σ2
t (A).(8)

Thus, Ak constructed from the k largest singular triplets of A is the optimal rank-k
approximation to A with respect to both ‖·‖F and ‖·‖2. More generally, one can also

show that ‖A‖2 = σ1 and that ‖A‖2
F =

∑r
i=1 σ

2
i .

From the perturbation theory of matrices it is known that the size of the difference
between two matrices can be used to bound the difference between the singular value
spectrum of the two matrices [27, 8]. In particular, if A,E ∈ R

m×n,m ≥ n, then

max
t:1≤t≤n

|σt(A + E) − σt(A)| ≤ ‖E‖2(9)
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and
n
∑

k=1

(σk(A + E) − σk(A))2 ≤ ‖E‖2
F .(10)

The latter inequality is known as the Hoffman–Wielandt inequality.

3.2. Review of the pass-efficient model. The pass-efficient model of data-
streaming computation is a computational model that is motivated by the observation
that in modern computers the amount of disk storage, i.e., sequential access memory,
has increased very rapidly, while RAM and computing speeds have increased at a
substantially slower pace [13, 12]. In the pass-efficient model the three scarce compu-
tational resources are number of passes over the data and the additional RAM space
and additional time required by the algorithm. The data are assumed to be stored on
a disk, to consist of elements whose size is bounded by a constant, and to be presented
to an algorithm on a read-only tape. See [13] for more details.

3.3. Review of matrix multiplication. The BasicMatrixMultiplication
algorithm to approximate the product of two matrices is presented and analyzed in
[13]. When this algorithm is given as input two matrices, A ∈ R

m×n and B ∈ R
n×p,

a probability distribution {pi}ni=1, and a number c ≤ n, it returns as output two
matrices, C and R, such that CR ≈ AB; C ∈ R

m×c is a matrix whose columns are
c randomly chosen columns of A (suitably rescaled) and R ∈ R

c×p is a matrix whose
rows are the c corresponding rows of B (also suitably rescaled). An important aspect
of this algorithm is the probability distribution {pi}ni=1 used to choose column-row
pairs. Although one could always use a uniform distribution, superior results are
obtained if the probabilities are chosen judiciously. In particular, a set of sampling
probabilities {pi}ni=1 are nearly optimal probabilities if they are of the form (11) and
are the optimal probabilities (with respect to approximating the product AB) if they
are of the form (11) with β = 1. In [13] we prove the following theorem.

Theorem 1. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that pi ≥ 0,
∑n

i=1 pi = 1 and such that for some positive constant

β ≤ 1

pk ≥ β
∣

∣A(k)
∣

∣

∣

∣B(k)

∣

∣

∑n
k′=1

∣

∣A(k′)
∣

∣

∣

∣B(k′)

∣

∣

.(11)

Construct C and R with the BasicMatrixMultiplication algorithm of [13] and

let CR be an approximation to AB. Then

E
[

‖AB − CR‖2
F

]

≤ 1

βc
‖A‖2

F ‖B‖2
F .(12)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then, with probability at

least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(13)

In [13] it is shown that after one pass over the matrices nearly optimal probabilities
can be constructed. In the present paper, we will be particularly interested in the
case that B = AT . In this case, using the Select algorithm of [13] random samples
can be drawn according to nearly optimal probabilities using O(1) additional space
and time.
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LinearTimeSVD Algorithm.

Input: A ∈ R
m×n, c, k ∈ Z

+ such that 1 ≤ k ≤ c ≤ n, {pi}ni=1 such that pi ≥ 0 and
∑n

i=1 pi = 1.

Output: Hk ∈ R
m×k and σt(C), t = 1, . . . , k.

1. For t = 1 to c,
(a) Pick it ∈ 1, . . . , n with Pr [it = α] = pα, α = 1, . . . , n.
(b) Set C(t) = A(it)/

√
cpit .

2. Compute CTC and its SVD; say CTC =
∑c

t=1 σ
2
t (C)ytyt

T
.

3. Compute ht = Cyt/σt(C) for t = 1, . . . , k.

4. Return Hk, where H
(t)
k = ht, and σt(C), t = 1, . . . , k.

Fig. 1. The LinearTimeSVD algorithm.

R
n

V

{vi}��

ΣA ��
R

m

U

{ui} ��
R

n A ��
R

m
R

m
H(=UC)

{hi}

��

R
c

C

��

CTC

�� R
c

Y (=VC)

{yi}��

ΣC

��

Fig. 2. Diagram for the LinearTimeSVD algorithm.

4. Linear time SVD approximation algorithm.

4.1. The algorithm. Given a matrix A ∈ R
m×n we wish to approximate its

top k singular values and the corresponding singular vectors in a constant number of
passes through the data and O(cm+ c2) additional space and O(c2m+ c3) additional
time. The strategy behind the LinearTimeSVD algorithm is to pick c columns of
the matrix A, rescale each by an appropriate factor to form a matrix C ∈ R

m×c, and
then compute the singular values and corresponding left singular vectors of the matrix
C, which will be approximations to the singular values and left singular vectors of A,
in a sense we make precise later. These are calculated by performing an SVD of the
matrix CTC to compute the right singular vectors of C and from them calculating
the left singular vectors of C.

The LinearTimeSVD algorithm is described in Figure 1; it takes as input a
matrix A and returns as output an approximation to the top k left singular values
and the corresponding singular vectors. Note that by construction the SVD of C is
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C = HΣCY
T . A diagram illustrating the action of the LinearTimeSVD algorithm is

presented in Figure 2. The transformation represented by the matrix A is shown along
with its SVD, and the transformation represented by the matrix C is also shown along
with its SVD. It will be shown that if the probabilities {pi}ni=1 are chosen judiciously,
then the left singular vectors of C are with high probability approximations to the
left singular vectors of A.

In section 4.2 we discuss running-time issues, and in section 4.3 we will prove the
correctness of the algorithm.

4.2. Analysis of the implementation and running time. Assuming that
nearly optimal sampling probabilities (as defined in section 3.3) are used, then in
the LinearTimeSVD algorithm the sampling probabilities pk can be used to select
columns to be sampled in one pass and O(c) additional space and time using the
Select algorithm of [13]. Given the elements to be sampled, the matrix C can then
be constructed in one additional pass; this requires additional space and time that
is O(mc). Given C ∈ R

m×c, computing CTC requires O(mc) additional space and
O(mc2) additional time, and computing the SVD of CTC requires O(c3) additional
time. Then computing Hk requires k matrix-vector multiplications for a total of
O(mck) additional space and time. Thus, overall O(cm + c2) additional space and
O(c2m + c3) additional time are required by the LinearTimeSVD algorithm. Note
that the “description” of the solution that is computable in the allotted additional
space and time is the explicit approximation to the top k singular values and corre-
sponding left singular vectors.

4.3. Analysis of the sampling step. Approximating A by Ak = UkU
T
k A

incurs an error equal to ‖A−Ak‖2
F =

∑r
t=k+1 σ

2
t (A) and ‖A−Ak‖2 = σk+1(A),

since Ak is the “optimal” rank-k approximation to A with respect to both ‖·‖F and
‖·‖2. We will show that in addition to this error the matrix HkH

T
k A has an error that

depends on ‖AAT −CCT ‖F . Then, using the results of Theorem 1, we will show that

this additional error depends on ‖A‖2
F . We first consider obtaining a bound with

respect to the Frobenius norm.

Theorem 2. Suppose A ∈ R
m×n and let Hk be constructed from the Linear-

TimeSVD algorithm. Then

∥

∥A−HkH
T
k A

∥

∥

2

F
≤ ‖A−Ak‖2

F + 2
√
k
∥

∥AAT − CCT
∥

∥

F
.

Proof. Recall that for matrices X and Y , ‖X‖2
F = Tr(XTX), Tr (X + Y ) =

Tr (X) + Tr (Y ), and also that HT
k Hk = Ik. Thus, we may express

∥

∥A−HkH
T
k A

∥

∥

2

F
as

∥

∥A−HkH
T
k A

∥

∥

2

F
= Tr

(

(A−HkH
T
k A)T (A−HkH

T
k A)

)

= Tr
(

ATA− 2ATHkH
T
k A + ATHkH

T
k HkH

T
k A

)

= Tr
(

ATA
)

− Tr
(

ATHkH
T
k A

)

= ‖A‖2
F −

∥

∥ATHk

∥

∥

2

F
.(14)
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We may relate
∥

∥ATHk
∥

∥

2

F
and

∑k
t=1 σ

2
t (C) by the following:

∣

∣

∣

∣

∣

∥

∥ATHk

∥

∥

2

F
−

k
∑

t=1

σ2
t (C)

∣

∣

∣

∣

∣

≤
√
k

(

k
∑

t=1

(

∣

∣ATht
∣

∣

2 − σ2
t (C)

)2
)1/2

=
√
k

(

k
∑

t=1

(

∣

∣ATht
∣

∣

2 −
∣

∣CTht
∣

∣

2
)2

)1/2

=
√
k

(

k
∑

t=1

(

htT (AAT − CCT )ht
)2

)1/2

≤
√
k
∥

∥AAT − CCT
∥

∥

F
.(15)

The first inequality follows by applying the Cauchy–Schwarz inequality; the last in-
equality follows by writing AAT and CCT with respect to a basis containing {ht}kt=1.
By again applying the Cauchy–Schwarz inequality, noting that σ2

t (X) = σt(XXT ) for
a matrix X, and applying the Hoffman–Wielandt inequality (10), we may also relate
∑k

k=1 σ
2
t (C) and

∑k
k=1 σ

2
t (A) by the following:

∣

∣

∣

∣

∣

k
∑

t=1

σ2
t (C) −

k
∑

t=1

σ2
t (A)

∣

∣

∣

∣

∣

≤
√
k

(

k
∑

t=1

(

σ2
t (C) − σ2

t (A)
)2

)1/2

=
√
k

(

k
∑

t=1

(

σt(CCT ) − σt(AAT )
)2

)1/2

≤
√
k

(

m
∑

t=1

(

σt(CCT ) − σt(AAT )
)2

)1/2

≤
√
k
∥

∥CCT −AAT
∥

∥

F
.(16)

Combining the results of (15) and (16) allows us to relate
∥

∥ATHk

∥

∥

2

F
and

∑k
t=1 σ

2
t (A)

by the following:

∣

∣

∣

∣

∣

∥

∥ATHk

∥

∥

2

F
−

k
∑

t=1

σ2
t (A)

∣

∣

∣

∣

∣

≤ 2
√
k
∥

∥AAT − CCT
∥

∥

F
.(17)

Combining (17) with (14) yields the theorem.

We next prove a similar result for the spectral norm; note that the factor
√
k is

not present.

Theorem 3. Suppose A ∈ R
m×n and let Hk be constructed from the Linear-

TimeSVD algorithm. Then

∥

∥A−HkH
T
k A

∥

∥

2

2
≤ ‖A−Ak‖2

2 + 2
∥

∥AAT − CCT
∥

∥

2
.

Proof. Let Hk = range(Hk) = span(h1, . . . , hk) and let Hm−k be the orthogonal
complement of Hk. Let x ∈ R

m and let x = αy + βz, where y ∈ Hk, z ∈ Hm−k, and
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α2 + β2 = 1; then

∥

∥A−HkH
T
k A

∥

∥

2
= max

x∈Rm,|x|=1

∣

∣xT (A−HkH
T
k A)

∣

∣

= max
y∈Hk,|y|=1,z∈Hm−k,|z|=1,α2+β2=1

∣

∣(αyT + βzT )(A−HkH
T
k A)

∣

∣

≤ max
y∈Hk,|y|=1

∣

∣yT (A−HkH
T
k A)

∣

∣ + max
z∈Hm−k,|z|=1

∣

∣zT (A−HkH
T
k A)

∣

∣(18)

= max
z∈Hm−k,|z|=1

∣

∣zTA
∣

∣ .(19)

Inequality (18) follows since α, β ≤ 1 and (19) follows since y ∈ Hk and z ∈ Hm−k.
We next bound (19):

∣

∣zTA
∣

∣

2
= zTCCT z + zT

(

AAT − CCT
)

z

≤ σ2
k+1(C) + ‖AAT − CCT ‖2(20)

≤ σ2
k+1(A) + 2‖AAT − CCT ‖2(21)

= ‖A−Ak‖2
2 + 2‖AAT − CCT ‖2.(22)

Inequality (20) follows since maxz∈Hm−k
|zTC| occurs when z is the (k + 1)st left

singular vector, i.e., the maximum possible in the Hm−k subspace. Inequality (21)
follows since σ2

k+1(C) = σk+1(CCT ) and since by (9) we have that σ2
k+1(C) ≤

σk+1(AA
T )+‖AAT −CCT ‖2; (22) follows since ‖A−Ak‖2 = σk+1(A). The theorem

then follows by combining (19) and (22).
Theorems 2 and 3 hold regardless of the sampling probabilities {pi}ni=1. Since

‖A−Ak‖ξ, ξ = 2, F , is a property of the matrix A, the choice of sampling probabili-
ties enters into the error of ‖A−HkH

T
k A‖2

ξ only through the term involving the addi-
tional error beyond the optimal rank-k approximation, i.e., the term ‖AAT −CCT ‖ξ.
Although the additional error in Theorem 3 depends on ‖AAT −CCT ‖2, we note that
‖AAT − CCT ‖2 ≤ ‖AAT − CCT ‖F and will use a bound for the latter quantity to
bound the former in the following. Note that the prefactor of the additional error is
2
√
k for ‖·‖2

F , while that for ‖·‖2
2 is only 2.

In the following theorem we specialize the sampling probabilities to be those that
are nearly optimal; by choosing enough columns, the error in the approximation of
the SVD can be made arbitrarily small.

Theorem 4. Suppose A ∈ R
m×n; let Hk be constructed from the Linear-

TimeSVD algorithm by sampling c columns of A with probabilities {pi}ni=1 such that

pi ≥ β
∣

∣A(i)
∣

∣

2
/ ‖A‖2

F for some positive β ≤ 1, and let η = 1 +
√

(8/β) log(1/δ). Let

ǫ > 0. If c ≥ 4k/βǫ2, then

E
[ ∥

∥A−HkH
T
k A

∥

∥

2

F

]

≤ ‖A−Ak‖2
F + ǫ ‖A‖2

F ,(23)

and if c ≥ 4kη2/βǫ2, then with probability at least 1 − δ,

∥

∥A−HkH
T
k A

∥

∥

2

F
≤ ‖A−Ak‖2

F + ǫ ‖A‖2
F .(24)

In addition, if c ≥ 4/βǫ2, then

E
[ ∥

∥A−HkH
T
k A

∥

∥

2

2

]

≤ ‖A−Ak‖2
2 + ǫ ‖A‖2

F ,(25)
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and if c ≥ 4η2/βǫ2, then with probability at least 1 − δ,

∥

∥A−HkH
T
k A

∥

∥

2

2
≤ ‖A−Ak‖2

2 + ǫ ‖A‖2
F .(26)

Proof. By combining Theorems 2 and 3 with Theorem 1 we have that

E
[ ∥

∥A−HkH
T
k A

∥

∥

2

F

]

≤ ‖A−Ak‖2
F +

(

4k

βc

)1/2

‖A‖2
F ,(27)

E
[ ∥

∥A−HkH
T
k A

∥

∥

2

2

]

≤ ‖A−Ak‖2
2 +

(

4

βc

)1/2

‖A‖2
F ,(28)

and that with probability at least 1 − δ,

∥

∥A−HkH
T
k A

∥

∥

2

F
≤ ‖A−Ak‖2

F +

(

4η2k

βc

)1/2

‖A‖2
F ,(29)

∥

∥A−HkH
T
k A

∥

∥

2

2
≤ ‖A−Ak‖2

2 +

(

4η2

βc

)1/2

‖A‖2
F .(30)

The theorem follows by using the appropriate value of c.
Note that alternatively one could sample rows instead of columns of a matrix;

in this case, a modified version of the LinearTimeSVD algorithm leads to results
analogous to Theorems 2 through 4.

5. Constant time SVD approximation algorithm.

5.1. The algorithm. Given a matrix A ∈ R
m×n we now wish to approximate its

top k singular values and the corresponding singular vectors in a constant number of
passes through the data and additional space and time that are O(1), independent of m
and n. The strategy behind the ConstantTimeSVD algorithm is to pick c columns
of the matrix A, rescale each by an appropriate factor to form a matrix C ∈ R

m×c,
and then compute approximations to the singular values and left singular vectors
of the matrix C, which will then be approximations to the singular values and left
singular vectors of A. In the LinearTimeSVD algorithm of section 4, the left singular
vectors of the matrix C are computed exactly; as the analysis of section 4.2 showed,
this computation takes additional space and time that is linear in m + n (assuming
that c is constant). With the ConstantTimeSVD algorithm, in order to use only a
constant O(1) additional space and time, sampling is performed again, drawing rows
of C to construct a matrix W ∈ R

w×c. The SVD of WTW is then computed; let
WTW = ZΣWTWZT = ZΣ2

WZT . The singular values and corresponding singular
vectors so obtained are with high probability approximations to the singular values
and singular vectors of CTC and thus to the singular values and right singular vectors
of C. Note that this is simply using the LinearTimeSVD algorithm to approximate
the right singular vectors of C by randomly sampling rows of C.

The ConstantTimeSVD algorithm is described in Figure 3; it takes as input
a matrix A and returns as output a “description” of an approximation to the top
k left singular values and the corresponding singular vectors. This “description”
of the approximations to the left singular vectors of A may, at the expense of one
additional pass and linear additional space and time, be converted into an explicit
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ConstantTimeSVD Algorithm.

Input: A ∈ R
m×n, c, w, k ∈ Z

+ such that 1 ≤ w ≤ m, 1 ≤ c ≤ n, and 1 ≤ k ≤
min(w, c), and {pi}ni=1 such that pi ≥ 0 and

∑n
i=1 pi = 1.

Output: σt(W ), t = 1, . . . , ℓ and a “description” of H̃ℓ ∈ R
m×ℓ.

1. For t = 1 to c,
(a) Pick it ∈ 1, . . . , n with Pr [it = α] = pα, α = 1, . . . , n, and save {(it, pjt) :

t = 1, . . . , c}.
(b) Set C(t) = A(it)/

√
cpit . (Note that C is not explicitly constructed in

RAM.)

2. Choose {qj}mj=1 such that qj =
∣

∣C(j)

∣

∣

2
/ ‖C‖2

F .
3. For t = 1 to w,

(a) Pick jt ∈ 1, . . . ,m with Pr [jt = α] = qα, α = 1, . . . ,m.
(b) Set W(t) = C(jt)/

√
wqjt .

4. Compute WTW and its SVD. Say WTW =
∑c

t=1 σ
2
t (W )ztzt

T
.

5. If a ‖·‖F bound is desired, set γ = ǫ/100k,
Else if a ‖·‖2 bound is desired, set γ = ǫ/100.

6. Let ℓ = min{k,max{t : σ2
t (W ) ≥ γ ‖W‖2

F }}.
7. Return singular values {σt(W )}ℓt=1 and their corresponding singular vectors

{zt}ℓt=1.

Fig. 3. The ConstantTimeSVD algorithm.

approximation to the left singular vectors of A by using C = H̃ΣWZT to compute H̃,
whose columns are approximations of the left singular vectors of C. Note that γ in
the ConstantTimeSVD algorithm is introduced to bound small singular values of
C that may be perturbed by the second level of sampling; as indicated, the particular
value of γ that is chosen depends on the norm bound which is desired. Note also that
the probabilities {qj}mj=1 used in the algorithm are optimal (in the sense of section

3.3), as will be the probabilities {pi}ni=1 which will enter into Theorem 5.

A diagram illustrating the action of the ConstantTimeSVD algorithm is pre-
sented in Figure 4. The transformation represented by the matrix A is represented
along with its SVD, and the transformation represented by the matrix C is also shown
(but note that its SVD is not shown). The transformation represented by the matrix
W , which is constructed from C with the second level of sampling, is also shown along
with its SVD. In addition, approximations to the right singular vectors of C and to
the left singular vectors of C calculated from C = H̃ΣWZT are shown.

In section 5.2 we will show that this algorithm takes O(1), i.e., a constant with
respect to m and n, additional space and time, assuming that c and w are constant.
In section 5.3 we will state Theorem 5, which will establish the correctness of the
algorithm; this theorem is the main result of this section and is the analogue of
Theorem 4. Finally, in section 5.4 we will prove Theorem 5.

5.2. Analysis of the implementation and running time. Assuming that
optimal sampling probabilities (as defined in section 3.3) are used, then in the Con-
stantTimeSVD algorithm the sampling probabilities pk can be used to select columns
to be sampled in one pass and O(c) additional space and time using the Select algo-
rithm of [13]. Given the columns of A to be sampled, we do not explicitly construct the
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Fig. 4. Diagram for the ConstantTimeSVD algorithm.

matrix C but instead perform a second level of sampling and select w rows of C with
probabilities {qi}mi=1 (as described in the ConstantTimeSVD algorithm) in order
to construct the matrix W . We do this by performing a second pass and using O(w)
additional space and time, again using the Select algorithm. Then in a third pass we
explicitly construct W ; this requires additional space and time that is O(cw). Then,
given W , computing WTW requires O(cw) additional space and O(c2w) additional
time, and computing the SVD of WTW requires O(c3) additional time. The singular
values and corresponding singular vectors thus computed can then be returned as the
“description” of the solution. The total additional time for the ConstantTimeSVD
algorithm is then O(c3 + cw2); this is a constant if c and w are assumed to be a
constant. To explicitly compute H̃k would require k matrix-vector multiplications
which would require another pass over the data and O(mck) additional space and
time.

5.3. Statement of Theorem 5. This subsection and the next provide an anal-
ysis of the ConstantTimeSVD algorithm similar to the analysis of the Linear-
TimeSVD algorithm found in section 4.3. Recall that in section 4 we were interested

in bounding
∥

∥A−HkH
T
k A

∥

∥

2

ξ
, where ξ = F, 2. In that case, HT

k Hk = Ik, HkH
T
k was

an orthonormal projection, and HkH
T
k A was our rank at most k approximation to A.

In the constant time model, we do not have access to Hk but instead to H̃ℓ, where the
columns of H̃ℓ, i.e., h̃t = Czt/σt(W ), t = 1, . . . , ℓ, do not form an orthonormal set.
However, by Lemma 2 of section 5.4.1, if C and W are constructed by sampling with
optimal probabilities, then with high probability the columns of H̃ℓ are approximately

orthonormal, H̃T
ℓ H̃ℓ ≈ Iℓ, and H̃ℓH̃

T
ℓ =

∑ℓ
t=1 h̃

th̃tT is approximately an orthonormal
projection. Applying this to A, we will get our low-rank approximation. Note that in
dealing with this nonorthonormality the original proof of [16] contained a small error
which was corrected in the journal version [17].
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In this section and the next we use the following notation. Recall that the SVD
of WTW ∈ R

c×c is

WTW =

c
∑

t=1

σ2
t (W )ztzt

T
= ZΣ2

WZT ,(31)

where Z ∈ R
c×c. Define Zα,β ∈ R

c×(β−α+1) to be the matrix whose columns are the
αth through the βth singular vectors of WTW . Then

H̃ℓ = CZ1,ℓT,(32)

where T ∈ R
ℓ×ℓ is the diagonal matrix with elements Ttt = 1/σt(W ). In addition, let

the SVD of H̃ℓ be

H̃ℓ = BℓΣH̃ℓ
DT

ℓ ,(33)

and let us define the matrix ∆ ∈ R
ℓ×ℓ to be

∆ = TZT
1,ℓ(C

TC −WTW )Z1,ℓT.(34)

We will see that ∆ is a measure of the degree to which the columns of H̃ℓ are not
orthonormal.

Theorem 5 is the constant time analogue of Theorem 4 and is the main result
of this section. Note that since the results from sampling at the second step, i.e.,
sampling from the matrix C to form the matrix W , depend on the samples chosen
in the first sampling step, we do not state the following results in expectation, but
instead state them with high probability.

Theorem 5. Suppose A ∈ R
m×n; let a description of H̃ℓ be constructed from

the ConstantTimeSVD algorithm by sampling c columns of A with probabilities

{pi}ni=1 and w rows of C with probabilities {qj}mj=1 where pi = |A(i)|2/ ‖A‖2
F and

qj = |C(j)|2/ ‖C‖2
F . Let η = 1 +

√

8 log(2/δ) and ǫ > 0.
If a Frobenius norm bound is desired, and hence the ConstantTimeSVD algo-

rithm is run with γ = ǫ/100k, then by choosing c = Ω(k2η2/ǫ4) columns of A and

w = Ω(k2η2/ǫ4) rows of C we have that with probability at least 1 − δ,

∥

∥A− H̃ℓH̃
T
ℓ A

∥

∥

2

F
≤ ‖A−Ak‖2

F + ǫ ‖A‖2
F .(35)

If a spectral norm bound is desired, and hence the ConstantTimeSVD algorithm

is run with γ = ǫ/100, then by choosing c = Ω(η2/ǫ4) columns of A and w = Ω(η2/ǫ4)
rows of C we have that with probability at least 1 − δ,

∥

∥A− H̃ℓH̃
T
ℓ A

∥

∥

2

2
≤ ‖A−Ak‖2

2 + ǫ ‖A‖2
F .(36)

Proof. See section 5.4 for the proof.
Recall that in section 4 we first proved Theorems 2 and 3, which provided a bound

on
∥

∥A−HkH
T
k A

∥

∥

2

F
and

∥

∥A−HkH
T
k A

∥

∥

2

2
, respectively, for arbitrary probabilities,

and then we proved Theorem 4 for the nearly optimal probabilities. Although a
similar presentation strategy could be adopted in this section, in the interests of
simplicity (due to the technically more complicated proofs in the constant time model)
we instead immediately restrict ourselves in Theorem 5 to the case of optimal sampling
probabilities and defer the proofs of the supporting lemmas to section 5.4.
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5.4. Proof of Theorem 5. In this section, we prove Theorem 5. We start in
section 5.4.1 with several lemmas that are common to both the Frobenius and spectral
norms. Then in section 5.4.2 we provide the proof of (35). Finally, in section 5.4.3
we provide the proof of (36).

5.4.1. General lemmas. In this section, we prove four lemmas that are used
in the proofs of both the Frobenius and spectral norm results.

First, we relate
∥

∥A− H̃ℓH̃
T
ℓ A

∥

∥

2

ξ
, for ξ = 2, F , to

∥

∥A−BℓB
T
ℓ A

∥

∥

2

ξ
plus an error

term; we do so since the columns of Bℓ are orthonormal, which will allow us to bound
∥

∥A − BℓB
T
ℓ A

∥

∥

2

ξ
using arguments similar to those used to bound

∥

∥A −HkH
T
k A

∥

∥

2

ξ
in

Theorems 2 and 3.

Lemma 1. For ξ = 2, F and for any ǫ > 0,

∥

∥A− H̃ℓH̃
T
ℓ A

∥

∥

2

ξ
≤
(

1 +
ǫ

100

)

∥

∥A−BℓB
T
ℓ A

∥

∥

2

ξ
+

(

1 +
100

ǫ

)

∥

∥BℓB
T
ℓ − H̃ℓH̃

T
ℓ

∥

∥

2

ξ
‖A‖2

ξ .

Proof. By subadditivity and submultiplicitivity,

∥

∥A− H̃ℓH̃
T
ℓ A

∥

∥

2

ξ
≤

( ∥

∥A−BℓB
T
ℓ A

∥

∥

ξ
+
∥

∥BℓB
T
ℓ − H̃ℓH̃

T
ℓ

∥

∥

ξ
‖A‖ξ

)2
.

The lemma follows since (α + β)
2 ≤ (1 + ε)α2 + (1 + 1/ε)β2 for all ε ≥ 0.

Second, although the vectors h̃t = Czt/σt(W ), t = 1, . . . , ℓ, do not in general form
an orthonormal set, one would expect from their construction that if the matrix WTW
is close to the matrix CTC, then with high probability they will be approximately
orthonormal. Lemma 2 establishes that ∆, defined in (34), characterizes how far H̃ℓ

is from having orthonormal columns and shows that the error introduced due to this
nonorthonormality is bounded by a simple function of γ and the error introduced at
the second level of sampling.

Lemma 2. When written in the basis with respect to Z,

H̃T
ℓ H̃ℓ = Iℓ + ∆.

Furthermore, for ξ = 2, F

‖∆‖ξ ≤ 1

γ ‖W‖2
F

∥

∥CTC −WTW
∥

∥

ξ
.

Proof. Recall that H̃ℓ = CZ1,ℓT and that TTZT
1,ℓW

TWZ1,ℓT = Iℓ, so that

∥

∥H̃T
ℓ H̃ℓ − Iℓ

∥

∥

ξ
=

∥

∥TTZT
1,ℓC

TCZ1,ℓT − TTZT
1,ℓW

TWZ1,ℓT
∥

∥

ξ
(37)

=
∥

∥TTZT
1,ℓ

(

CTC −WTW
)

Z1,ℓT
∥

∥

ξ
.(38)

Using the submultiplicativity properties of the 2-norm, and in particular

‖AB‖ξ ≤ ‖A‖2 ‖B‖ξ ,(39)

‖AB‖ξ ≤ ‖A‖ξ ‖B‖2 ,(40)
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for both ξ = 2, F , we get
∥

∥H̃T
ℓ H̃ℓ − Iℓ

∥

∥

ξ
≤

∥

∥TTZT
1,ℓ

∥

∥

2

∥

∥CTC −WTW
∥

∥

ξ
‖Z1,ℓT‖2(41)

≤ ‖T‖2
2

∥

∥CTC −WTW
∥

∥

ξ
(42)

≤ max
t=1,...,ℓ

(

1/σ2
t (W )

) ∥

∥CTC −WTW
∥

∥

ξ
,(43)

since ‖Z1,ℓ‖2 = 1. The lemma follows since σ2
t (W ) ≥ γ ‖W‖2

F for all t = 1, . . . , ℓ by
the definition of ℓ.

Third, we consider the second term in Lemma 1,
∥

∥BℓB
T
ℓ − H̃ℓH̃

T
ℓ

∥

∥

2

ξ
and show

that it can be related to ‖∆‖ξ.
Lemma 3. For ξ = 2, F

∥

∥BℓB
T
ℓ − H̃ℓH̃

T
ℓ

∥

∥

ξ
= ‖∆‖ξ .

Proof. Since H̃ℓ = BℓΣH̃ℓ
DT

ℓ , we have

∥

∥BℓB
T
ℓ − H̃ℓH̃

T
ℓ

∥

∥

ξ
=

∥

∥Bℓ

(

Iℓ − Σ2
H̃ℓ

)

BT
ℓ

∥

∥

ξ

=
∥

∥Iℓ − Σ2
H̃ℓ

∥

∥

ξ

=
∥

∥Dℓ

(

Iℓ − Σ2
H̃ℓ

)

DT
ℓ

∥

∥

ξ

=
∥

∥Iℓ − H̃T
ℓ H̃ℓ

∥

∥

ξ
.

Fourth, Lemma 4 considers the special case in which the probabilities {pi}ni=1

that are entered into the ConstantTimeSVD algorithm are optimal, as is the case
for Theorem 5.

Lemma 4. Let A ∈ R
m×n and let H̃ℓ be constructed from the Constant-

TimeSVD algorithm by sampling c columns of A with probabilities {pi}ni=1 and w

rows of C with probabilities {qj}mj=1, where pi = Pr [it = i] = |A(i)|2/ ‖A‖2
F and

qj = Pr [jt = j] = |C(j)|2/ ‖C‖2
F . Then

‖W‖F = ‖C‖F = ‖A‖F .

Proof. If pi =
∣

∣A(i)
∣

∣

2
/ ‖A‖2

F , we have that ‖C‖2
F =

∑c
t=1

∣

∣C(t)
∣

∣

2
=

∑c
t=1

|A(it)|2
cpit

= ‖A‖2
F . Similarly, if qj =

∣

∣C(j)

∣

∣

2
/ ‖C‖2

F , we have that ‖W‖2
F =

∑w
t=1

∣

∣W(t)

∣

∣

2

=
∑w

t=1
|C(it)|2
wqit

= ‖C‖2
F . The lemma follows.

5.4.2. Lemmas for the Frobenius norm proof. In this section we prove (35).
We do this by first proving lemmas sufficient to bound ‖A−BℓB

T
ℓ A‖2

F ; when this is

combined with the lemmas of section 5.4.1 we obtain a bound on ‖A−H̃ℓH̃
T
ℓ A‖2

F . The
bound on ‖A−BℓB

T
ℓ A‖2

F depends on the error for the optimal rank-k approximation
to A, i.e., ‖A−Ak‖2

F , and additional errors that depend on the quality of the sampling
approximations, i.e., on ‖AAT − CCT ‖F and ‖CTC − WTW‖F . This will be the
analogue of Theorem 2 applied to the constant additional space and time model. The
result and associated proof will have a similar structure to that of Theorem 2, but
will be more complicated due to the nonorthonormality of the vectors h̃t, t = 1, . . . , ℓ,
and will involve additional error terms since two levels of approximation are involved.

We now prove several lemmas which will provide a bound for the first term in

Lemma 1 when applied to the Frobenius norm. We first rewrite the
∥

∥A−BℓB
T
ℓ A

∥

∥

2

F
term from Lemma 1. Note that Lemma 5 is the constant time analogue of (14).
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Lemma 5.

∥

∥A−BℓB
T
ℓ A

∥

∥

2

F
= ‖A‖2

F −
∥

∥BT
ℓ A

∥

∥

2

F
.

Proof.

∥

∥A−BℓB
T
ℓ A

∥

∥

2

F
= Tr

((

A−BℓB
T
ℓ A

)T (

A−BℓB
T
ℓ A

) )

= Tr
(

ATA−ATBℓB
T
ℓ A

)

.

Next, we want to provide a lower bound for
∥

∥BT
ℓ A

∥

∥

2

F
in terms of the singular

values of W . We do so in several steps. First, we relate ‖BT
ℓ A‖2

F to ‖H̃T
ℓ A‖2

F . We
note that the assumption ‖∆‖F < 1 is made since in Theorem 5 optimal probabilities
are used and sufficiently many columns and rows are drawn; if this assumption is
dropped, then bounds of the form in Theorem 5 may be obtained with slightly worse
sampling complexity.

Lemma 6. If ‖∆‖F < 1, then

∥

∥BT
ℓ A

∥

∥

2

F
≥ (1 − ‖∆‖F )

∥

∥H̃T
ℓ A

∥

∥

2

F
.

Proof. Since H̃ℓ = BℓΣH̃ℓ
DT

ℓ

∥

∥H̃T
ℓ A

∥

∥

2

F
=

∥

∥ΣH̃ℓ
BT

ℓ A
∥

∥

2

F
≤

∥

∥ΣH̃ℓ

∥

∥

2

2

∥

∥BT
ℓ A

∥

∥

2

F
=

∥

∥H̃T
ℓ H̃ℓ

∥

∥

2

2

∥

∥BT
ℓ A

∥

∥

2

F
,(44)

using (39). From the triangle inequality

∥

∥H̃T
ℓ H̃ℓ

∥

∥

2
≥

∣

∣ ‖Iℓ‖2 −
∥

∥H̃T
ℓ H̃ℓ − Iℓ

∥

∥

2

∣

∣ = |1 − ‖∆‖2| .(45)

The lemma follows since ‖∆‖2 ≤ ‖∆‖F < 1 and by observing that 1 + x ≤ 1/(1− x)
for all x ≤ 1.

Second, we relate ‖H̃T
ℓ A‖2

F to ‖H̃T
ℓ C‖2

F .
Lemma 7.

∥

∥H̃T
ℓ A

∥

∥

2

F
≥

∥

∥H̃T
ℓ C

∥

∥

2

F
−
(

k +
√
k ‖∆‖F

) ∥

∥AAT − CCT
∥

∥

F
.

Proof. Since ‖H̃T
ℓ A‖2

F = Tr(H̃T
ℓ AAT H̃T

ℓ ), we have that

∥

∥H̃T
ℓ A

∥

∥

2

F
= Tr

(

H̃T
ℓ CCT H̃T

ℓ

)

+ Tr
(

H̃T
ℓ (AAT − CCT )H̃T

ℓ

)

≥
∥

∥H̃T
ℓ C

∥

∥

2

F
−

∥

∥AAT − CCT
∥

∥

2

∥

∥H̃ℓ

∥

∥

2

F
,

where the inequality follows since

∣

∣

∣Tr
(

H̃T
ℓ (AAT − CCT )H̃T

ℓ

)∣

∣

∣ ≤
∑

t

∣

∣

∣(H̃T
ℓ )(t)(AAT − CCT )(H̃ℓ)

(t)
∣

∣

∣

≤
∥

∥AAT − CCT
∥

∥

2

∥

∥H̃ℓ

∥

∥

2

F
.

The lemma follows since ‖·‖2 ≤ ‖·‖F and since

∥

∥

∥H̃ℓ

∥

∥

∥

2

F
=

ℓ
∑

t=1

∣

∣

∣h̃tT h̃t
∣

∣

∣ =

ℓ
∑

t=1

1 + ∆tt ≤ k +
√
k ‖∆‖F .
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Third, we relate ‖H̃T
ℓ C‖2

F to
∑ℓ

t=1 σ
2
t (W ).

Lemma 8.

∥

∥

∥H̃T
ℓ C

∥

∥

∥

2

F
≥

ℓ
∑

t=1

σ2
t (W ) − 2√

γ

∥

∥CTC −WTW
∥

∥

F
.

Proof. Since ‖H̃T
ℓ C‖2

F = ‖CT H̃ℓ‖2
F = ‖CTCZ1,ℓT‖2

F , we have

∥

∥

∥H̃T
ℓ C

∥

∥

∥

2

F
≥

( ∥

∥WTWZ1,ℓT
∥

∥

F
−

∥

∥(CTC −WTW )Z1,ℓT
∥

∥

F

)2

≥





(

ℓ
∑

t=1

σ2
t (W )

)1/2

− 1√
γ ‖W‖F

∥

∥(CTC −WTW )
∥

∥

F





2

,

where the second inequality uses that ‖XZ‖F ≤ ‖X‖F for any matrix X if the matrix
Z has orthonormal columns. By multiplying out the right-hand side and ignoring
terms that reinforce the inequality, the lemma follows since (

∑ℓ
t=1 σ

2
t (W ))1/2/ ‖W‖F

≤ 1.
By combining Lemmas 6, 7, and 8, we have our desired bound on ‖BT

ℓ A‖2
F in

terms of the singular values of W . Finally, we use matrix perturbation theory to
relate

∑ℓ
t=1 σ

2
t (W ) to

∑k
t=1 σ

2
t (A).

Lemma 9.

ℓ
∑

t=1

σ2
t (W ) ≥

k
∑

t=1

σ2
t (A)−

√
k
∥

∥AAT − CCT
∥

∥

F
−
√
k
∥

∥CTC −WTW
∥

∥

F
−(k−ℓ)γ ‖W‖2

F .

Proof. Recalling the Hoffman–Wielandt inequality, we see that

∣

∣

∣

∣

∣

k
∑

t=1

(

σ2
t (C) − σ2

t (A)
)

∣

∣

∣

∣

∣

≤
√
k

(

k
∑

t=1

(

σ2
t (C) − σ2

t (A)
)2

)1/2

≤
√
k

(

k
∑

t=1

(

σt(CCT ) − σt(AAT )
)2

)1/2

≤
√
k
∥

∥AAT − CCT
∥

∥

F
,(46)

and, similarly, that

∣

∣

∣

∣

∣

k
∑

t=1

(

σ2
t (W ) − σ2

t (C)
)

∣

∣

∣

∣

∣

≤
√
k

(

k
∑

t=1

(

σ2
t (W ) − σ2

t (C)
)2

)1/2

≤
√
k

(

k
∑

t=1

(

σt(WWT ) − σt(CCT )
)2

)1/2

≤
√
k
∥

∥CTC −WTW
∥

∥

F
.(47)

By combining (46) and (47) we see that

∣

∣

∣

∣

∣

k
∑

t=1

σ2
t (W ) −

k
∑

t=1

σ2
t (A)

∣

∣

∣

∣

∣

≤
√
k
∥

∥AAT − CCT
∥

∥

F
+
√
k
∥

∥CTC −WTW
∥

∥

F
.(48)
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Since σ2
t (W ) < γ ‖W‖2

F for all t = ℓ + 1, . . . , k we have that
∑k

t=ℓ+1 σ
2
t (W ) ≤ (k −

ℓ)γ ‖W‖2
F . Combining this with (48) allows us to relate

∑ℓ
t=1 σ

2
t (W ) and

∑k
t=1 σ

2
t (A),

thus establishing the lemma.

Now we combine these results in order to prove (35). Let EAAT = AAT − CCT

and ECTC = CTC − WTW . First, we establish a lower bound on
∥

∥BT
ℓ A

∥

∥

2

F
. By

combining Lemmas 6 and 7 and dropping terms that reinforce the inequality, we have
that

∥

∥BT
ℓ A

∥

∥

2

F
≥

∥

∥H̃T
ℓ C

∥

∥

2

F
− ‖∆‖F

∥

∥H̃T
ℓ C

∥

∥

2

F
−
(

k +
√
k ‖∆‖F

)

‖EAAT ‖F .

By combining this with Lemmas 8 and 9 and dropping terms that reinforce the in-
equality, we have that

∥

∥BT
ℓ A

∥

∥

2

F
≥

k
∑

t=1

σ2
t (A) −

(

k +
√
k
)

‖EAAT ‖F −
(√

k +
2√
γ

)

‖ECTC‖F

− ‖∆‖F
k

∑

t=1

σ2
t (A) −

√
k ‖∆‖F ‖EAAT ‖F − (k − ℓ)γ ‖W‖2

F .

(49)

From Lemma 5 this immediately leads to the upper bound on
∥

∥A−BℓB
T
ℓ A

∥

∥

2

F
,

∥

∥A−BℓB
T
ℓ A

∥

∥

2

F
≤ ‖A−Ak‖2

F +
(

k +
√
k
)

‖EAAT ‖F +

(√
k +

2√
γ

)

‖ECTC‖F

+ ‖∆‖F
k

∑

t=1

σ2
t (A) +

√
k ‖∆‖F ‖EAAT ‖F + (k − ℓ)γ ‖W‖2

F .

(50)

From Lemmas 1 and 3,

∥

∥A− H̃ℓH̃
T
ℓ A

∥

∥

2

F
≤

(

1 +
ǫ

100

)

∥

∥A−BℓB
T
ℓ A

∥

∥

2

F
+

(

1 +
100

ǫ

)

‖∆‖2
F ‖A‖2

F .(51)

Recall that γ = ǫ/100k, that
∑k

t=1 σ
2
t (A) ≤ ‖A‖2

F , that ‖∆‖F ≤ ‖ECTC‖F /γ ‖W‖2
F

by Lemma 2, and that ‖W‖F = ‖C‖F = ‖A‖F by Lemma 4; (35) then follows by
combining (50) and (51), using the sampling probabilities indicated in the statement
of the theorem, and by choosing c, w = Ω(k2η2/ǫ4).

5.4.3. Lemmas for the spectral norm proof. In this section we prove (36).
We do this by first proving lemmas sufficient to bound ‖A− BℓB

T
ℓ A‖2

2; when this is

combined with the lemmas of section 5.4.1, we obtain a bound on ‖A−H̃ℓH̃
T
ℓ A‖2

2. The
bound on ‖A−BℓB

T
ℓ A‖2

2 depends on the error for the optimal rank-k approximation to
A, i.e., ‖A− Ak‖2

2, and additional errors that depend on the quality of the sampling
approximations, i.e., on ‖AAT − CCT ‖2 and ‖CTC − WTW‖2. This will be the
analogue of Theorem 3 applied to the constant additional space and time model.
The result and associated proof will have a similar structure to that of Theorem 3,
but will be more complicated due to the nonorthonormality of the vectors h̃t, t =
1, . . . , ℓ, and will involve additional error terms since two levels of approximation are
involved.
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We now prove three lemmas which will provide a bound for the first term in
Lemma 1 when applied to the spectral norm. We first rewrite the ‖A − BℓB

T
ℓ A‖2

2

term from Lemma 1.

Lemma 10.

∥

∥A−BℓB
T
ℓ A

∥

∥

2

2
≤

∥

∥ZT
k+1,cC

TCZk+1,c

∥

∥

2
+

∥

∥ZT
ℓ+1,kC

TCZℓ+1,k

∥

∥

2
+

∥

∥AAT − CCT
∥

∥

2
.

Proof. In order to bound ‖A−BℓB
T
ℓ A‖2 we will project onto the subspace spanned

by Bℓ and its orthogonal complement in a manner analogous to that used in the proof
of Theorem 3. Let Bℓ = range(Bℓ) and let Bm−ℓ be the orthogonal complement of
Bℓ. Let x = αy + βz, where y ∈ Bℓ, z ∈ Bm−ℓ, and α2 + β2 = 1. Then

∥

∥A−BℓB
T
ℓ A

∥

∥

2
= max

x∈Rm,|x|=1

∣

∣xT (A−BℓB
T
ℓ A)

∣

∣

= max
y∈Bℓ,|y|=1,z∈Bm−ℓ,|z|=1,α2+β2=1

∣

∣(αyT + βzT )(A−BℓB
T
ℓ A)

∣

∣

≤ max
y∈Bℓ,|y|=1

∣

∣yT (A−BℓB
T
ℓ A)

∣

∣ + max
z∈Bm−ℓ,|z|=1

∣

∣zT (A−BℓB
T
ℓ A)

∣

∣(52)

= max
z∈Bm−ℓ,|z|=1

∣

∣zTA
∣

∣ .(53)

Inequality (52) follows since α, β ≤ 1 and (53) follows since y ∈ Bℓ and z ∈ Bm−ℓ. To
bound (53), let z ∈ Bm−ℓ, |z| = 1; then

∣

∣zTA
∣

∣

2
= zT (AAT )z

= zT (CCT )z + zT (AAT − CCT )z

= zT (CCT − CZ1,kZ
T
1,kC

T )z + zT (CZ1,kZ
T
1,kC

T )z + zT (AAT − CCT )z(54)

= zT (CZk+1,cZ
T
k+1,cC

T )z + zT (CZℓ+1,kZ
T
ℓ+1,kC

T )z + zT (AAT − CCT )z.(55)

Equation (55) follows since Ic = ZZT = Z1,kZ
T
1,k + Zk+1,cZ

T
k+1,c and, since

CZ1,ℓZ
T
1,ℓC

T =

ℓ
∑

t=1

Cztzt
T

CT =

ℓ
∑

t=1

σ2
t (W )h̃th̃tT ,

implies that

zTCZ1,ℓZ
T
1,ℓC

T z = 0(56)

for z ∈ Bm−ℓ. Thus, by combining (53) and (55)

∥

∥A−BℓB
T
ℓ A

∥

∥

2

2
≤

∥

∥CZk+1,cZ
T
k+1,cC

T
∥

∥

2
+

∥

∥CZℓ+1,kZ
T
ℓ+1,kC

T
∥

∥

2
+

∥

∥AAT − CCT
∥

∥

2
.

The lemma follows since ‖XTX‖2 = ‖XXT ‖2 for any matrix X.
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We next bound the ‖ZT
k+1,cC

TCZk+1,c‖2 term from Lemma 10; note that matrix
perturbation theory is used in (59).

Lemma 11.
∥

∥ZT
k+1,cC

TCZk+1,c

∥

∥

2
≤ ‖A−Ak‖2

2 +
∥

∥AAT − CCT
∥

∥

2
+ 2

∥

∥CTC −WTW
∥

∥

2
.

Proof. First note that

(57)
∥

∥ZT
k+1,cC

TCZk+1,c

∥

∥

2
≤

∥

∥ZT
k+1,cW

TWZk+1,c

∥

∥

2
+

∥

∥ZT
k+1,c(C

TC −WTW )Zk+1,c

∥

∥

2
.

Since
∥

∥ZT
k+1,c(C

TC −WTW )Zk+1,c

∥

∥

2
≤

∥

∥CTC −WTW
∥

∥

2
‖Zk+1,c‖2

2

=
∥

∥CTC −WTW
∥

∥

2

and
∥

∥ZT
k+1,cW

TWZk+1,c

∥

∥

2
= σ2

k+1(W ),

it follows from (57) that
∥

∥ZT
k+1,cC

TCZk+1,c

∥

∥

2
≤ σ2

k+1(W ) +
∥

∥CTC −WTW
∥

∥

2
.(58)

By a double application of (9), we see that

σ2
k+1(W ) ≤ σ2

k+1(A) +
∥

∥AAT − CCT
∥

∥

2
+

∥

∥CTC −WTW
∥

∥

2
.(59)

The lemma follows by combining (58) and (59) since ‖A−Ak‖2 = σk+1(A).
Finally, we bound the

∥

∥ZT
ℓ+1,kC

TCZℓ+1,k

∥

∥

2
term from Lemma 10; note that if

ℓ = k, it is unnecessary.
Lemma 12.

∥

∥ZT
ℓ+1,kC

TCZℓ+1,k

∥

∥

2
≤

∥

∥CTC −WTW
∥

∥

2
+ γ ‖W‖2

F .

Proof. First note that

(60)
∥

∥ZT
ℓ+1,kC

TCZℓ+1,k

∥

∥

2
≤

∥

∥ZT
ℓ+1,k

(

CTC −WTW
)

Zℓ+1,k

∥

∥

2
+

∥

∥ZT
ℓ+1,kW

TWZℓ+1,k

∥

∥

2
.

Since
∥

∥ZT
ℓ+1,k

(

CTC −WTW
)

Zℓ+1,k

∥

∥

2
≤

∥

∥CTC −WTW
∥

∥

2
‖Zℓ+1,k‖2

2

=
∥

∥CTC −WTW
∥

∥

2

and
∥

∥ZT
ℓ+1,kW

TWZℓ+1,k

∥

∥

2
= σ2

ℓ+1(W ),

it follows from (60) that
∥

∥ZT
ℓ+1,kC

TCZℓ+1,k

∥

∥

2
≤

∥

∥CTC −WTW
∥

∥

2
+ σ2

ℓ+1(W ).(61)

The lemma follows since σ2
t (W ) < γ ‖W‖2

F for all t = ℓ + 1, . . . , k.
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Now we combine these results in order to prove (36). Recall that EAAT = AAT −
CCT and ECTC = CTC − WTW . By combining Lemmas 10, 11, and 12, we have
that

∥

∥A−BℓB
T
ℓ A

∥

∥

2

2
≤ ‖A−Ak‖2

2 + 2 ‖EAAT ‖2 + 3 ‖ECTC‖2 + γ ‖W‖2
F .(62)

From Lemmas 1 and 3,

∥

∥A− H̃ℓH̃
T
ℓ A

∥

∥

2

2
≤

(

1 +
ǫ

100

)

∥

∥A−BℓB
T
ℓ A

∥

∥

2

2
+

(

1 +
100

ǫ

)

‖∆‖2
2 ‖A‖2

2 .(63)

Recall that γ = ǫ/100, that ‖·‖2 ≤ ‖·‖F , and that ‖∆‖2 ≤ ‖ECTC‖2 /γ ‖W‖2
F by

Lemma 2; (36) follows by combining (62) and (63), using the sampling probabilities
indicated in the statement of the theorem, and by choosing c, w = Ω(η2/ǫ4).

6. Discussion and conclusion. We have presented two algorithms to compute
approximations to the SVD of a matrix A ∈ R

m×n which do not require that A be
stored in RAM, but for which the additional space and time required (in addition
to a constant number of passes over the matrix) is either linear in m + n or is a
constant independent of m and n; we have also proven error bounds for both algo-
rithms with respect to both the Frobenius and spectral norms. Table 1 in section 1
presents a summary of the dependence of the sampling complexity on k and ǫ. With
the LinearTimeSVD algorithm, the additional error (beyond the optimal rank-k ap-

proximation) in the spectral norm bound can be made less than ǫ ‖A‖2
F by sampling

Θ(1/ǫ2) columns, and the additional error in the Frobenius norm can be made less

than ǫ ‖A‖2
F by sampling Θ(k/ǫ2) columns. Likewise, with the ConstantTimeSVD

algorithm, the additional error in the spectral norm can be made less than ǫ ‖A‖2
F by

sampling Θ(1/ǫ4) columns and rows, and the additional error in the Frobenius norm

can be made less than ǫ ‖A‖2
F by sampling Θ(k2/ǫ4) columns and rows. The results

of [16] require Θ(k4/ǫ3) columns and rows for the Frobenius (and thus the spectral)
norm bound.

Recent work has focused on developing new techniques for proving lower bounds
on the number of queries a sampling algorithm is required to perform in order to
approximate a given function accurately with a low probability of error [4, 5]. In
[5] these methods have been applied to the low-rank matrix approximation problem
(defined as approximating the SVD with respect to the Frobenius norm) and to the
matrix reconstruction problem. It is shown that any sampling algorithm that with
high probability finds a good low-rank approximation requires Ω(m + n) queries. In
addition, it is shown that even if the algorithm is given the exact weight distribution
over the columns of a matrix, it will still require Ω(k/ǫ2) column queries to approxi-
mate A. Thus, the LinearTimeSVD algorithm (see also the original [10]) is optimal
with respect to Frobenius norm bounds for the rank parameter k and the Constant-
TimeSVD algorithm (see also the original [16]) is optimal with respect to Frobenius
norm bounds up to polynomial factors.
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