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2 E. G. BIRGIN AND Y. G. EVTUSHENKO(FAD) techniques (see [25, 26, 21, 27, 22]). In [13], using generalized FAD expres-sions, the exact gradient of the objective function of a general multistep processwas derived in a very simple canonical form. One of the aims of this paper is toshow the application of these canonical formulas to optimal control processes be-ing integrated by the Runge-Kutta family of numerical methods. There are manypapers concerning numerical comparisions between automatic di�erentiation, �nitedi�erences and symbolic di�erentiation. See, for example, [1, 2, 6, 7, 21] amongothers.Another objective is to test the behavior of the spectral projected gradient meth-ods introduced in [5]. These methods combine the classical projected gradient withtwo recently developed ingredients in optimization: (i) the nonmonotone line searchschemes of Grippo, Lampariello and Lucidi ([24]), and (ii) the spectral steplength(introduced by Barzilai and Borwein ([3]) and analyzed by Raydan ([30, 31])). Thischoice of the steplength requires little computational work and greatly speeds upthe convergence of gradient methods. The numerical experiments presented in [5],showing the high performance of these fast and easily implementable methods,motivate us to combine the spectral projected gradient methods with automaticdi�erentiation. Both tools are used in this work for the development of codes fornumerical solution of optimal control problems.In Section 2 of this paper, we apply the canonical formulas to the discrete versionof the optimal control problem. In Section 3, we give a concise survey about spectralprojected gradient algorithms. Section 4 presents some numerical experiments.Some �nal remarks are presented in Section 5.2 CANONICAL FORMULASThe basic optimal control problem can be described as follows: Let a process gov-erned by a system of ordinary di�erential equations bedx(t)dt = f(x(t); u(t); �); T0 � t � Tf ; (1)where x : [T0; Tf ]! IRnx , u : [T0; Tf ]! U � IRnu , U compact, and � 2 V � IRn� .Function x is called state, u is the control and � is the vector of design parameters.The solution of (1) is a function x(t) with initial condition x(T0) = x0. In general,the scalars T0, Tf and vector x0 are �xed. If T0, Tf or x0 have to be optimized,then we can include them in the vector of design parameters �.The problem is to �nd a control function u(t) 2 U and a vector of design param-eters � 2 V that minimize a cost functional W (T0; Tf ; x(Tf ); u(Tf ); �) subject tothe mixed constraints on state, control and vector of design parameters:h(x(t); u(t); �) = 0; q(x(t); u(t); �) � 0; T0 � t � Tf : (2)As a rule, this problem is reduced to a mathematical programming one usinga discretization scheme. The control function u(t) is approximated by a piecewiseconstant function in which the accuracy of discretization depends on the problem to



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 3be solved. Sometimes this accuracy should be rather high and the software shouldpermit us to provide it. Having some experience in solving practical problems, wecame to the conclusion that very often the accuracy of the integration must behigher than the accuracy of the control function discretization. Therefore, for thesake of simplicity, it is possible to assume that the control vector u is constant ineach interval of integration. Discretizing system (1), we obtain a N step process inwhich functions x and u are naturally represented as vectors,xT = [xT0 ; xT1 ; : : : ; xTN ] and uT = [uT0 ; uT1 ; : : : ; uTN ];where xi = x(ti) 2 IRnx , ui = u(ti) 2 IRnu and ti = T0+ i�1Xk=0�tk for i = 0; 1; : : : ; N ,0 < �ti 2 IR are the discretization steps satisfyingN�1Xi=0 �ti = Tf � T0; (3)x 2 IRnx(N+1) and u 2 IRnu(N+1). The discrete version of (1) is split into the Nrelations xi = F (Xi; Ui; �); i = 1; 2; : : : ; N; (4)where Xi and Ui are given sets of variables xj and uj , respectively, and the indexj takes values from 0 to N . At the initial step we have X0 = U0 = ; and, forsimplicity, we write x0 = F (X0; U0; �). The mixed constraints (2) are consideredat each grid point ash(xi; ui; �) = 0; q(xi; ui; �) � 0; i = 0; 1; : : : ; N; (5)and then the discretized optimal control problem, for an approximated solution ofthe original problem, can be written asMinimize W (T0; Tf ; xN ; uN ; �)subject to ui 2 U; � 2 Vh(xi; ui; �) = 0q(xi; ui; �) � 0: (6)By �xing vectors u and � it is possible to obtain, from (4), the state vectorxN (u; �), and de�ne the composite function W(u; �) = W (T0; Tf ; xN (u; �); uN ; �).For numerical minimization of this function, it is important to know the totalderivatives of W with respect to u and �, since it allows us to use e�cient gradienttype minimization algorithms. In [13], it was shown that, for multistep processeslike (4), formulas to compute total derivatives dW=du and dW=d� can be obtain asfollows.For each set Xi and Ui we introduce the sets of indices Qi and Ki containing theindices of all variables xj and uj belonging to the sets Xi and Ui, respectively, i.e.,Qi = fj : xj 2 Xig; and Ki = fj : uj 2 Uig:



4 E. G. BIRGIN AND Y. G. EVTUSHENKOWe also de�ne their conjugate indices sets as�Qi = fj : xi 2 Xjg and �Ki = fj : ui 2 Ujg:The sets Qi andKi are the input indices and �Qi and �Ki are the output indices sets atthe i-th step. Let us introduce the adjoint vectors pi 2 IRnx for i = 0; 1; : : : ; N , thetotal adjoint vector pT = [pT0 ; pT1 ; : : : ; pTN ] 2 IRnx(N+1) and the auxiliary functionE(x; u; �; p) =W (T0; Tf ; xN ; uN ; �) + NXi=0 F (Xi; Ui; �)T pi: (7)Therefore, the formulas for the computation of the adjoint vectors pi and the totalderivatives dW=du and dW=d� can be written in the following canonical form:xi = Epi(x; u; �; p) = Fxi(Xj ; Uj ; �); (8)pi = Exi(x; u; �; p) =Wxi(T0; Tf ; xN ; uN ; �) + Xj2 �Qi Fxi(Xj ; Uj ; �)T pj ; (9)dW(u; �)dui = Eui(x; u; �; p) =Wui(T0; Tf ; xN ; uN ; �) + Xj2 �Ki Fui(Xj ; Uj ; �)T pj ; (10)dW(u; �)d� = E�(x; u; �; p) =W�(T0; Tf ; xN ; uN ; �) + NXj=0 F�(Xj ; Uj ; �)T pj ; (11)for i varying from 0 to N . Here and from now on, Yw denotes the partial derivativeof function Y with respect to w, i.e., Yw = @Y=@w whereas dZ=dw denotes thetotal derivative of Z with respect to w. We assume that relation (8) de�nes anexplicit process, i.e., at each step i the input set Qi is such that for any k 2 Qi theinequality k < i holds. In this case, from (9), we havepN =WxN (T0; Tf ; xN ; uN ; �): (12)Note that, considering expression (9), we can conclude that the adjoint values piare the partial derivatives of W with respect to the state variables xi.As a practical application, we consider the multistep process (4) given by theRunge-Kutta family methods de�ned by8><>: x0i+1 = F (Xi+1; Ui+1; �) = x0i +�ti M�1Xj=0 �jf(zji );xj+1i = x0i + �j�tif(zji ); j = 0; : : : ;M � 2; (13)for i = 0; : : : ; N � 1. Here, x0i � xi, t0i � ti, tji = ti + �j�1�ti, uji = u(tji ),zji = (xji ; uji ; �) and xji 2 IRnx are auxiliary vectors. Since we have assumed thatthe control variables ui are constant in the integration step, we have ui = uji and



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 5TABLE 1: Examples of Runge-Kutta family methods.Integration Method M � �Runge-Kutta order 1 or Euler 1 �0 = 1Runge-Kutta order 2 or Modi�ed Euler 2 �0 = 0 �1 = 1 �0 = 0:5Runge-Kutta order 2 2 �0 = �1 = 0:5 �0 = 1Runge-Kutta order 4 4 �0 = �3 = 1=6�1 = �2 = 1=3 �0 = �1 = 0:5�2 = 1zji = (xji ; ui; �). Table 1 shows some examples of the Runge-Kutta family methods(see, for example, [32]).Substituting (13) in (7) we obtainE(x; u; �; p) = W (T0; Tf ; z0N) + N�1Xi=0 M�2Xj=0 [x0i +�ti�jf(zji )]T pj+1i+ N�1Xi=0 24x0i +M�1Xj=0 �ti�jf(zji )35T p0i+1; (14)
and, applying the canonical formulas (8){(11), we getp0i =Wx0i (T0; Tf ; z0N) + p1i +�ti�0fx0i (z0i )T p1i + p0i+1 +�ti�0fx0i (z0i )T p0i+1; (15)pji =Wxji (T0; Tf ; z0N) + �ti�jfxji (zji )T pj+1i +�ti�jfxji (zji )T p0i+1; (16)dEdui =Wui(T0; Tf ; z0N) +M�2Xj=0 �ti�jfui(zji )T pj+1i +M�1Xj=0 �ti�jfui(zji )T p0i+1; (17)for i = 0; 1; : : : ; N � 1 and j = 1; 2; : : : ;M � 1, and,dEduN =WuN (T0; Tf ; z0N); (18)dEd� =W�(T0; Tf ; z0N) + N�1Xi=0 M�2Xj=0 �ti�jf�(zji )T pj+1i + N�1Xi=0 M�1Xj=0 �ti�jf�(zji )T p0i+1:(19)



6 E. G. BIRGIN AND Y. G. EVTUSHENKOFinally, rearranging formulas (15){(19) and discarding the null derivatives, we ar-rive at Subroutine 2.1 for the computation ofW(u; �), dW(u; �)=du and dW(u; �)=d�.It is necessary to remark that the approach presented above (formulas (15){(19))is simpler and closer to the computer implementation than the analogous resultsgiven in [11] (pp. 379{382). Meanwhile, our formulas can be used for the wholeclass of Runge-Kutta methods. This improvement comes from the application ofthe auxiliary function (7) and the canonical formulas (8){(11) introduced in [13].Subroutine 2.1Set x00  x0.For i = 0; : : : ; N � 1 (increasing loop)For j = 0; : : : ;M � 2 (increasing loop de�ned only for M � 2)Set y  f(zji ),compute xj+1i = x0i +�ti�jy andcompute x0i+1 = x0i+1 +�ti�jy.endforSet y  f(zM�1i ) andcompute x0i+1 = x0i+1 +�ti�M�1y.endforCompute W (T0; Tf ; z0N ).Set dE=d�  W�(T0; Tf ; z0N ),set dE=duN  WuN (T0; Tf ; z0N) andset pN  WxN (T0; Tf ; z0N).For i = N � 1; : : : ; 0 (decreasing loop)Compute dE=d� = dE=d� +�ti�M�1f�(zM�1i )T pi+1,compute dE=dui = �ti�M�1fui(zM�1i )T pi+1,compute v = �ti�M�1fxM�1i (zM�1i )T pi+1 andcompute pi = pi+1 + v.For j =M � 2; : : : ; 0 (decreasing loop de�ned only for M � 2)Compute y = �jpi+1 + �jv,compute dE=d� = dE=d� +�ti�jf�(zji )T y,compute dE=dui = dE=dui +�ti�jfui(zji )T y,compute v = �tifxji (zji )T y andcompute pi = pi + v.endforendforIn Subroutine 2.1, y; v 2 IRnx are auxiliary vectors for intermediate computa-tions. Observe that there is no need to save adjoint values pji of intermediatevariables xji , when j 6= 0. For this reason, we use notation pi for adjoint valuesp0i of x0i . This kind of implementation is a mixed strategy which tries to �nd anequilibrium between computational cost and memory storage. It is easy to see that,as W and its partial derivatives, W� , WuN and WxN , are being computed together,we should call for a unique function which computes all of them using the reverse



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 7mode. This is not the case of function f and its derivatives, which are being com-puted at di�erent steps. For this reason, it is not possible to take advantage ofcommon expressions between f and fxi , fui and f�. We call this strategy hibridFAD. In this implementation we are sacri�cing computational time to save memorystorage.A particular and important class of control problems is when the goal is tominimize the duration of the process. A possible strategy to handle this situationis to introduce a new design parameter �n� , de�ne the goal function in (6) asW (T0; Tf ; z0N ) = (Tf � T0)�n� ; (20)and rewrite (1) asdx(t)dt = �f(x; u; �) = �n�f(x; u; �); T0 � t � Tf ; (21)0 � �n� < +1: (22)If we use Subroutine 2.1 to compute the gradient of (20), f will be computedtwice at the same point: �f(x; u; �) = �n�f(x; u; �) and �f�n� (x; u; �) = f(x; u; �). Toovercome this problem, we should use, instead of the auxiliary vector y 2 IRnx ,a three-dimensional array y 2 IRnx�N�M (or NM vectors yji 2 IRnx). In thisway the values of f(zji ) will be saved in yji and then used in the computationof �f�n� (zji ). This modi�cation results from the observation of Subroutine 2.1 orfrom the application of the canonical formulas to the following reformulation of theRunge-Kutta family methods:8>>><>>>: f ji = f(zji ); j = 0; : : : ;M � 1;x0i+1 = F (Xi+1; Ui+1; �) = x0i +�ti M�1Xj=0 [�j�n�f ji ];xj+1i = x0i + �j�ti�n�f ji ; j = 0; : : : ;M � 2; (23)for i = 0; : : : ; N � 1. This is a special modi�cation for a particular case. In thisnew approach we are doubling the storage space in order to avoid the computa-tional cost of evaluating f twice. To show how to use the methodology, we willuse Subroutine 2.1 for all the problems in the numerical experiments presented inSection 4.3 NONMONOTONE SPECTRAL PROJECTED GRADIENT METHODSThe nonmonotone spectral gradient-projection algorithms have been introducedin [5]. These methods combine the classical projected gradient with two recentlydeveloped ingredients in optimization: (i) the nonmonotone line search schemesdeveloped by Grippo, Lampariello and Lucidi ([24]) for Newton's method and (ii)the spectral steplength, introduced by Barzilai and Borwein ([3]) and analyzed byRaydan ([30, 31]). In this section, we reproduce the de�nition of both versions of



8 E. G. BIRGIN AND Y. G. EVTUSHENKOspectral projected gradient methods. The �rst one (SPG1 from now on) uses theclassical projected gradient as a curvilinear search path. The second one (SPG2from now on) uses, in order to avoid additional trial projections during the one-dimensional search process, the feasible spectral projected gradient as a searchdirection. These methods apply to problems likeminimize '(x)subject to x 2 S; (24)where S is a closed convex set in IRn. Throughout this section we assume that 'is de�ned and has continuous partial derivatives in an open set that contains S.Given z 2 IRn, we de�ne P (z) as the orthogonal projection of z onto S. Wedenote g(x) = r'(x). The algorithms use an integer K � 1, a small parame-ter �min > 0, a large parameter �max > �min, a su�cient decrease parameter
 2 (0; 1), and safeguarding parameters 0 < �1 < �2 < 1. Given �0 2 [�min; �max]and x0 2 S, Algorithms 3.1 and 3.2 below, describe how to obtain x� such thatkP (x� � g(x�))� x�k2 = 0.Algorithm 3.1Set k  0.While (kP (xk � g(xk))� xkk2 6= 0)Compute x+ = P (xk � �kg(xk)) andset � �k.While ('(x+) > max0�j�minfk;K�1gf'(xk�j)g+ 
hx+ � xk ; g(xk)i)define � 2 [�1�; �2�] andcompute x+ = P (xk � �g(xk)).endwhileSet xk+1  x+ andcompute sk = xk+1 � xk, yk = g(xk+1)� g(xk) and bk = hsk; yki.If (bk � 0) set �k+1  �maxelse compute �k+1 = minf�max; maxf�min; hsk ;skibk gg.Set k  k + 1.endwhileSet x�  xk.Algorithm 3.2Set k  0.While (kP (xk � g(xk))� xkk2 6= 0)Compute dk = P (xk � �kg(xk))� xk,compute x+ = xk + dk andset � 1.While ('(xk+1) > max0�j�minfk;K�1gf'(xk�j )g+ 
�hdk; g(xk)i)define � 2 [�1�; �2�] andcompute x+ = xk + �dk.endwhile



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 9Set xk+1  x+ andcompute sk = xk+1 � xk, yk = g(xk+1)� g(xk) and bk = hsk; yki.If (bk � 0) set �k+1  �maxelse compute �k+1 = minf�max; maxf�min; hsk ;skibk gg.Set k  k + 1.endwhileSet x�  xk.The computation of � 2 [�1�; �2�] uses a one-dimensional quadratic interpolation.4 NUMERICAL RESULTSOur code requires �ve subroutines implemented in C/C++. The �rst one, forthe computation of the goal function W and its partial derivatives WxN , WuNand W�, should use the reverse mode. The second one is used to compute theequality constraints h and hxi , hui and h�, the third one to compute the inequalityconstraints q and its partial derivatives; the forth one computes f ; �nally, the lastone computes fxi , fui and f�. Since in our test problems the functions (f and W )and the constraints (h and q) are simple enough, we decided to write their codesby hand. In general cases, automatic di�erentiation codes like ADOL-C ([23]) orADIC++ ([6]) should be used. Some parameters are connected to the Runge-Kuttamethods and the integration stepsize. In order to choose the Runge-Kutta method,there are input parameters M , � and � (see Table 1). Methods listed in thattable are only examples and any other method in the Runge-Kutta family can beused. Integration stepsize �t can be �xed or, as de�ned in (3), di�erent integrationstepsizes �ti can be considered.The test problems are the ones reported in [20]. We divided the 11 problems intothree groups according to their complexity. The �rst group includes the simplestcontrol problems which do not have constraints on �nal state variables. Problemswith �nal state constraints belong to the second group. Finally, the third groupcontains problems where the objective is to minimize the duration of the processand there are constraints at the �nal state. For the reproducibility of our results,and since the original reference is in Russian, all our �nal continuous formulationsof the test problems are listed below. A full description of their physical meaningsand optimal controls and trajectories can be found in [20]. It is necessary to remarkthat in this kind of optimization problem, which derives from an optimal controlproblem, the complexity of the goal function depends not only on the dimension ofthe solution, n = nu(N+1)+n� , but also on the dimensionality of state variables. Agood measure of the complexity of the goal function is nocp = (nx+nu)(N+1)+n�.Table 2 presents the groups and the variables n and nocp.Problem 1.a: (nx = 3; nu = 1; n� = 0)f(x(t); u(t); �)T = [x1(t); (1�x0(t)2)x1(t)�x0(t)+u0(t); x0(t)2+x1(t)2+u0(t)2]; T0 � t � Tf ;



10 E. G. BIRGIN AND Y. G. EVTUSHENKOx(T0)T = [3; 0; 0]; T0 = 0; Tf = 10;W (T0; Tf ; x(Tf ); u(Tf ); �) = x2(Tf ); �1010 � u0(�) � 1010;and initial control u(�) � 0:Problem 1.b: (nx = 3; nu = 1; n� = 0)f(x(t); u(t); �)T = [x1(t); (1�x0(t)2)x1(t)�x0(t)+u0(t); x0(t)2+x1(t)2+u0(t)2]; T0 � t � Tf ;x(T0)T = [0; 1; 0]; T0 = 0; Tf = 5;W (T0; Tf ; x(Tf); u(Tf ); �) = x2(Tf ); �1010 � u(�) � 1010;and initial control u(�) � 0:Problem 1.c: (nx = 3; nu = 1; n� = 0)f(x(t); u(t); �)T = [x1(t); (1�x0(t)2)x1(t)�x0(t)+u0(t); x0(t)2+x1(t)2+u0(t)2]; T0 � t � Tf ;x(T0)T = [0; 1; 0]; T0 = 0; Tf = 5;W (T0; Tf ; x(Tf ); u(Tf ); �) = x2(Tf ); �0:8 � u(�) � 0:8;and initial control u(�) � 0:Problem 2: Use of catalyst for two successive chemical reactions (nx = 2; nu = 1; n� = 0)f(x(t); u(t); �)T = [u0(t)(10x1(t)�x0(t));�u0(t)(10x1(t)�x0(t))�(1�u0(t))x1(t)]; T0 � t � Tf ;x(T0)T = [1; 0]; T0 = 0; Tf = 1;W (T0; Tf ; x(Tf ); u(Tf ); �) = x0(Tf ) + x1(Tf ); 0 � u(�) � 1and initial control u(�) � 0:5:Problem 3: Chemical reaction between gases (nx = 2; nu = 1; n� = 0)f(x(t); u(t); �)T = [f0(x(t); u(t); �); f1(x(t); u(t); �)];f0(x(t); u(t); �) = �2c1x0(t)u0(t)=(2c0 + x1(t));f1(x(t); u(t); �) = �2f1(x(t); u(t); �)� c2u0(t)2(2x1(t)=(2c0 + x1(t)))2; T0 � t � Tf ;c0 = 1:475 � 10�2; c1 = 1:8725688803 � 107; c2 = 1:2162426427 � 1014;x(T0)T = [0:0105; 0:0085]; T0 = 0; Tf = 8;W (T0; Tf ; x(Tf ); u(Tf ); �) = �100x1(Tf); 0 � u(�) � 1and initial control u(�) � 0:Problem 4: Dolichobrachistochrone problem (nx = 2; nu = 1; n� = 0)f(x(t); u(t); �)T = [u0(t);p(1 + u0(t)2)=x0(t)]; T0 � t � Tf ;x(T0)T = [3; 0]; T0 = 0; Tf = 2;W (T0; Tf ; x(Tf); u(Tf ); �) = x1(Tf ); x0(Tf ) = 10; �1010 � u(�) � 1010and initial control u(�) � 5:Problem 5: Rotation of an electrical machine (nx = 3; nu = 1; n� = 0)f(x(t); u(t); �)T = [x1(t);�(4 + 0:8x1(t)) + u0(t); u0(t)2]; T0 � t � Tf ;



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 11x(T0) = 0nx ; T0 = 0; Tf = 2;W (T0; Tf ; x(Tf ); u(Tf); �) = x2(Tf );x0(Tf ) = 1; x1(Tf ) = 0; �1010 � u(�) � 1010and initial control u(�) � 0:Problem 6: Rocket motion (nx = 5; nu = 2; n� = 0)f(x(t); u(t); �)T = [x1(t); u0(t); x3(t); u1(t)� 9:81; u0(t)2 + u1(t)2]; T0 � t � Tf ;x(T0)T = [�1; 0; 0; 0; 0]; T0 = 0; Tf = 4;W (T0; Tf ; x(Tf ); u(Tf ); �) =px4(Tf );x0(Tf ) = x1(Tf) = x2(Tf) = x3(Tf) = 0; �1010nu � u(�) � 1010nuand initial control u(�)T � (0; 1):Problem 7: (nx = 3; nu = 1; n� = 1)f(x(t); u(t); �)T = �0[x1(t); x2(t); u0(t)]; T0 � t � Tf ;x(T0)T = [16; 0; 0]; T0 = 0; Tf = 1;W (T0; Tf ; x(Tf); u(Tf ); �) = (Tf�T0)�; x(Tf) = 0nx ; �1 � u(�) � 1; 0 � �0 � 1010;initial control u(�) � 0 and initial design parameter � = 1:Problem 8: Control of aircraft motion (nx = 4; nu = 2; n� = 1)f(x(t); u(t); �)T = �0[x2(t); x3(t);�x3(t)+u0(t)sin(u1(t)); x2(t)+u0(t)cos(u1(t))]; T0 � t � Tf ;x(T0)T = [10; 0; 0; 0]; T0 = 0; Tf = 5;W (T0; Tf ; x(Tf ); u(Tf ); �) = (Tf � T0)�;x(Tf ) = 0nx ; 0 � u0(�) � 1; �3:14 � u1(�) � 3:14; 0 � �0 � 1010;initial control u(�) � 0nu and initial design parameter � = 1:Problem 9: Rocket dynamics with minimal duration (nx = 5; nu = 2; n� = 1)f(x(t); u(t); �)T = �0[x1(t); u0(t); x3(t); u1(t)� 9:81; u0(t)2 + u1(t)2]; T0 � t � Tf ;x(T0)T = [�1; 0; 1; 0; 0]; T0 = 0; Tf = 4;W (T0; Tf ; x(Tf ); u(Tf ); �) = (Tf � T0)�;x0(Tf ) = x1(Tf ) = x2(Tf ) = x3(Tf ) = 0;px4(Tf )� 13 = 0;�1010nu � u(�) � 1010nu ; 0 � �0 � 1010initial control u(�)T � [0; 5] and initial design parameter � = 1:Problem 10: Satellite launching (nx = 3; nu = 1; n� = 1)f(x(t); u(t); �)T = �0[x1(t);�x0(t) + x2(t); u0(t)]; T0 � t � Tf ;x(T0)T = [0:052; 0;�0:145]; T0 = 0; Tf = 6:28;W (T0; Tf ; x(Tf); u(Tf ); �) = (Tf�T0)�; x(Tf) = 0nx ; �0:3 � u(�) � 0:3; 0 � �0 � 1010initial control u(�) � 0 and initial design parameter � = 1:



12 E. G. BIRGIN AND Y. G. EVTUSHENKOProblem 11: Stopping of a rotating body (nx = 2; nu = 1; n� = 1)f(x(t); u(t); �)T = �0[x1(t); u0(t)]; T0 � t � Tf ;x(T0)T = [2; 1]; T0 = 0; Tf = 8;W (T0; Tf ; x(Tf); u(Tf ); �) = (Tf � T0)�; x(Tf ) = 0nx ; �1 � u(�) � 1; 0 � �0 � 1010initial control u(�) � 0 and initial design parameter � = 1:In the problem statements, vi is the i-th scalar entrance of vector v = [v0; v1; : : : ; vm�1]T 2IRm and cm is a constant vector in IRm with all its entrances equal to c 2 IR.All the test problems have only equality constraints on �nal state variables xNand box type constraints, a � u � b, with a; b 2 IRnu(N+1). In order to satisfythe equality constraints h(xN ) = 0, we applied the classical quadratic loss penaltyfunction strategy: we added the term �kh(xN )k22 to the objective function of (6)and solved the box constrained subproblemsminimize W (T0; Tf ; xN ; uN ; �) + �kh(xN )k22;for increasing values of � 2 f10; 100; 100; : : :g until we get kh(x)k2 � 10�5. In thiscase, the computation of h and the partial derivative hxN is included in the functionfor the computation of the penalized goal function. Since the bounds for the controlvariables are considered explicitly in the minimization process, the function for thecomputation of q, qxi , qui and q� is not necessary. Problems in group 3 were handledas suggested in (20){(22). In this way, we have added the bound constraint (22) tothese problems. Sometimes, to avoid local minimizers of the new design parameter�n� , with �n� = 0 (excluding the particular case in which the initial state satisfy theconstraints on the �nal state), it is necessary to introduce a small constant � 2 IRand replace (22) by 0 < � � �n� < +1: (25)If �n� = � at the solution, we decrease � and start the minimization process again.We report the results of applying this strategy only once, with � = 10�16 in Prob-lem 9, and with � = 0:2 in Problems 10 and 11.In order to discretize all the test problems, we have used the Fourth-Order Runge-Kutta method with integration stepsize �t = 0:05, except for Problem 2 where wehave used �t = 0:03. The stopping criterion was kgP (xk)k2 � � with � = 10�6,� = 10�5, and � = 10�3, for Groups 1, 2 and 3, respectively.All the experiments were run in a SPARCstation Sun Ultra 1, with an Ultra-SPARC 64 bits processor, 167-MHz clock and 128-MBytes of RAM memory. SPGcodes are in C/C++ language and were compiled with g++ compiler (GNU projectC and C++ compiler v2.7) using the optimization compiler option -O4. For theSPG methods, we used 
 = 10�4, �min = 10�16, �max = 1016 (except for Problem1 where we used �max = 10), �1 = 0:1, �2 = 0:9 and �0 = 1=kgP (x0)k2. In orderto select the parameter K, we tested SPG2 in Problem 8, with K varying from 10to 15. We chose K = 13 because it produced, for Problem 8, the solution with thesmallest kh(xN )k2. However, several tests have shown that the solutions and thecomputational e�orts do not change substantially for several values of K greaterthan 5.



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 13TABLE 2: Problems sets.Group Problem n nocp1.a 201 8041.b 101 4041 1.c 101 4042 31 1243 161 4834 41 1232 5 41 1646 162 5677 21 858 203 6073 9 163 56810 127 50911 161 484Tables 3 and 4 show, for problems in Groups 2 and 3, respectively, the perfor-mance of SPG1 for the solution of each subproblem. Tables 5 and 6 show thesame results for SPG2. We have reported the number of iterations (IT), the num-ber of function-gradient evaluations (FGE), the number of line searches (LS), theCPU time in seconds (Time), the best function value ('(x)), the quadratic loss(kh(xN )k22), and the 2-norm of the continuous projected gradient (kgP (x)k2). Fi-nally, Tables 7 and 8 summarize the performance of SPG methods for the completeset of problems.In all cases, except for Problems 3 and 9, the solutions encountered coincide, withnegligible di�erences, with solutions reported in [20]. The di�erence in the solutionof Problem 3 is due to a possible print error in [20]. Another possibility for thesedi�erences is the choice of di�erent integration methods and stepsizes. With onlyone exception, SPG methods found solutions with negligible di�erences in terms offunction value. In Problem 9, SPG2 found the best solution with '(x) = 0:609295,while SPG1 found a stationary point with '(x) = 1:705849 (the same value asreported in [20]). Both methods satis�ed the stopping criterion in all cases andthere was no signi�cant di�erence between their performances.
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TABLE 3: Intermediate solutions of SPG1 for problems of group 2.Problem � IT FGE LS Time '(x) kh(x)k22 kgP (x)k2101 14 15 0 0.02 2.967166e+00 2.206227e�04 8.462335e�06102 1 4 1 0.00 2.971137e+00 2.204263e�06 8.020546e�064 103 1 5 1 0.00 2.971534e+00 2.204067e�08 8.092395e�06104 1 6 1 0.00 2.971573e+00 2.204047e�10 8.100691e�06105 1 7 1 0.00 2.971577e+00 2.204045e�12 8.101532e�06101 5 6 0 0.00 3.464720e+01 2.706461e�01 8.151036e�06102 7 8 0 0.00 3.965662e+01 3.123877e�03 1.687929e�075 103 6 8 1 0.02 4.022061e+01 3.172508e�05 2.563081e�07104 6 9 1 0.00 4.027773e+01 3.177458e�07 3.601456e�07105 6 10 1 0.00 4.028345e+01 3.177954e�09 4.147059e�07106 6 11 1 0.00 4.028403e+01 3.178004e�11 4.738505e�07101 9 10 0 0.05 1.961230e+01 6.234586e�04 6.384220e�07102 12 16 2 0.07 1.962353e+01 6.256737e�06 6.794644e�066 103 12 17 2 0.07 1.962465e+01 6.258942e�08 7.262530e�06104 12 18 2 0.05 1.962477e+01 6.259195e�10 7.598892e�06105 12 19 2 0.08 1.962478e+01 6.259266e�12 8.043283e�06
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TABLE 4: Intermediate solutions of SPG1 for problems of group 3.Problem � IT FGE LS Time '(x) kh(x)k22 kgP (x)k2101 12092 16004 2715 8.58 7.941602e+00 2.906713e�03 7.837191e�04102 5404 7279 1163 3.85 7.994073e+00 2.970346e�05 9.570142e�047 103 6800 9256 1521 4.97 7.999407e+00 2.974761e�07 7.868055e�04104 4123 5590 992 3.07 7.999964e+00 4.033835e�09 9.085447e�04105 2828 3880 746 2.08 8.000033e+00 4.317425e�11 9.928138e�04101 341 456 60 3.72 1.020345e+01 4.286572e�03 5.798237e�04102 224 298 35 2.35 1.028079e+01 4.335458e�05 9.658054e�048 103 53 63 7 0.50 1.028859e+01 4.342526e�07 9.960121e�04104 381 570 68 4.50 1.028937e+01 4.342951e�09 9.951110e�04105 48 62 7 0.53 1.028945e+01 4.343177e�11 9.984938e�04101 252 488 59 1.85 1.697346e+00 4.244078e�04 7.124376e�04102 197 322 52 1.28 1.704994e+00 4.324331e�06 2.836419e�049 103 77 124 21 0.45 1.705763e+00 4.430674e�08 8.598459e�04104 168 269 42 1.03 1.705841e+00 4.455920e�10 7.390506e�04105 86 139 19 0.52 1.705849e+00 4.250948e�12 9.379793e�04101 31 32 0 0.10 1.256000e+00 5.567425e�04 9.014210e�04102 20 33 5 0.12 1.256000e+00 5.311064e�04 8.818797e�0410 103 710 1265 198 3.80 1.418484e+00 3.304439e�05 9.977746e�04104 3439 6563 903 19.60 1.476615e+00 2.979178e�07 9.773216e�04105 2136 4221 577 12.55 1.481943e+00 2.957625e�09 9.617200e�04106 2682 5231 719 15.95 1.482473e+00 2.947335e�11 9.051665e�04101 557 1046 150 2.80 4.095464e+00 3.271233e�03 8.446307e�04102 1005 1992 270 5.40 4.155792e+00 3.493484e�05 9.859478e�0411 103 928 1867 254 5.12 4.162059e+00 3.495614e�07 9.844122e�04104 998 1964 277 5.30 4.162686e+00 3.580196e�09 9.544532e�04105 475 910 130 2.48 4.162751e+00 3.621512e�11 9.980898e�04
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TABLE 5: Intermediate solutions of SPG2 for problems of group 2.Problem � IT FGE LS Time '(x) kh(x)k22 kgP (x)k2101 14 15 0 0.02 2.967166e+00 2.206227e�04 8.462335e�06102 1 4 1 0.00 2.971137e+00 2.204263e�06 8.020546e�064 103 1 5 1 0.02 2.971534e+00 2.204067e�08 8.092395e�06104 1 6 1 0.00 2.971573e+00 2.204047e�10 8.100691e�06105 1 7 1 0.02 2.971577e+00 2.204045e�12 8.101532e�06101 5 6 0 0.00 3.464720e+01 2.706461e�01 8.151036e�06102 7 8 0 0.00 3.965662e+01 3.123877e�03 1.687929e�075 103 6 8 1 0.00 4.022061e+01 3.172508e�05 2.563081e�07104 6 9 1 0.00 4.027773e+01 3.177458e�07 3.601456e�07105 6 10 1 0.00 4.028345e+01 3.177954e�09 4.147059e�07106 6 11 1 0.00 4.028403e+01 3.178004e�11 4.738505e�07101 9 10 0 0.03 1.961230e+01 6.234586e�04 6.384220e�07102 12 16 2 0.07 1.962353e+01 6.256737e�06 6.794644e�066 103 12 17 2 0.07 1.962465e+01 6.258942e�08 7.262531e�06104 12 18 2 0.08 1.962477e+01 6.259195e�10 7.598893e�06105 12 19 2 0.07 1.962478e+01 6.259266e�12 8.043284e�06
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TABLE 6: Intermediate solutions of SPG2 for problems of group 3.Problem � IT FGE LS Time '(x) kh(x)k22 kgP (x)k2101 10278 13437 2508 7.17 7.941438e+00 2.923215e�03 8.404570e�04102 8467 10812 1820 5.77 7.994078e+00 2.964787e�05 5.415757e�047 103 8979 11478 2000 6.10 7.999407e+00 2.969850e�07 9.076313e�04104 4403 5711 1052 3.12 7.999974e+00 3.943387e�09 9.539757e�04105 2828 3725 724 1.97 8.000042e+00 4.423599e�11 7.832583e�04101 578 748 128 5.87 1.020343e+01 4.288731e�03 4.883267e�04102 386 505 82 4.00 1.028079e+01 4.338337e�05 9.769583e�048 103 177 230 35 1.82 1.028859e+01 4.339628e�07 4.413159e�04104 46 58 8 0.45 1.028937e+01 4.339369e�09 6.674503e�04105 44 59 8 0.45 1.028944e+01 4.342371e�11 5.973882e�04101 13836 26253 3500 101.20 6.024155e�01 3.490189e�04 9.798078e�04102 178 338 51 1.37 6.086081e�01 3.423467e�06 8.323752e�049 103 105 200 30 0.82 6.092257e�01 3.573099e�08 8.967019e�04104 169 330 56 1.33 6.092885e�01 3.762289e�10 9.619322e�04105 76 159 26 0.65 6.092949e�01 3.852315e�12 9.951342e�04101 31 32 0 0.10 1.256000e+00 5.567425e�04 9.014210e�04102 18 23 4 0.07 1.256000e+00 5.319981e�04 8.823535e�0410 103 842 1338 238 4.03 1.418450e+00 3.310608e�05 9.916578e�04104 3628 6227 1049 18.82 1.476621e+00 2.980395e�07 9.211830e�04105 2733 4749 791 14.40 1.481954e+00 2.920001e�09 9.487892e�04106 2050 3598 589 11.05 1.482480e+00 2.935649e�11 9.673148e�04101 1102 1915 347 4.93 4.095515e+00 3.288448e�03 7.641996e�04102 1345 2560 449 6.53 4.155787e+00 3.492347e�05 9.883468e�0411 103 1144 2204 343 5.67 4.162045e+00 3.526807e�07 9.583805e�04104 1277 2567 415 6.55 4.162674e+00 3.539575e�09 9.759158e�04105 1420 2825 433 7.20 4.162737e+00 3.505302e�11 9.864841e�04



18 E. G. BIRGIN AND Y. G. EVTUSHENKOTABLE 7: Performance of SPG1.Problem IT FGE LS Time '(x) kgP (x)k21.a 434 558 77 2.62 2.141775e+01 2.332212e�071.b 87 95 6 0.20 2.621363e+00 6.558450e�071.c 43 44 0 0.12 4.340875e+00 4.100793e�072 48 50 1 0.02 9.519459e�01 7.612754e�073 1 19 1 0.08 �1.958250e+00 4.569610e�084 18 37 4 0.02 2.971577e+00 8.101532e�065 36 52 4 0.02 4.028403e+01 4.738505e�076 57 80 8 0.32 1.962478e+01 8.043283e�067 31249 42009 7137 22.55 8.000033e+00 9.928138e�048 1047 1449 177 11.60 1.028945e+01 9.984938e�049 780 1342 193 5.13 1.705849e+00 9.379793e�0410 9018 17345 2402 52.12 1.482473e+00 9.051665e�0411 3963 7779 1081 21.10 4.162757e+00 9.986710e�04
TABLE 8: Performance of SPG2.Problem IT FGE LS Time '(x) kgP (x)k21.a 500 654 96 3.43 2.141775e+01 3.202524e�071.b 87 95 6 0.22 2.621363e+00 6.557571e�071.c 43 44 0 0.12 4.340875e+00 4.100793e�072 49 52 2 0.03 9.519459e�01 6.363696e�073 1 12 1 0.08 �1.997609e+00 4.456312e�084 18 37 4 0.06 2.971577e+00 8.101532e�065 36 52 4 0.00 4.028403e+01 4.738505e�076 57 80 8 0.32 1.962478e+01 8.043284e�067 34955 45163 8104 24.13 8.000042e+00 7.832583e�048 1231 1600 261 12.59 1.028944e+01 5.973882e�049 14364 27280 3663 105.37 6.092949e�01 9.951342e�0410 9302 15967 2671 48.47 1.482480e+00 9.673148e�0411 6288 12071 1987 30.88 4.162737e+00 9.812947e�04



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 195 CONCLUSIONSIn this work we have shown how to apply the methodology introduced in [13] to theRunge-Kutta family of integration methods. An equivalent approach can be appliedto other integration methods like, for example, Newton-Cotes and Adams-Moulton(see [32] and its numerous references [8, 14, 15, 16, 35]). The same remark must bemade with respect to the optimization techniques. Instead of SPG methods, Sub-routine 2.1 can be combined with other optimization algorithms like TNBOX ([17])and LANCELOT ([9]), based on trust regions and truncated Newton approach.See [10] for a comparison between these two codes for box constrained minimiza-tion and see [5] for a comparison between TNBOX and SPG methods. See also[31] for a comparison between spectral gradient and conjugate gradient methodsfor unconstrained optimization. Moreover, instead of considering penalty functionmethods, many other nonlinear programming methods can be used (augmentedLagrangian, linearization, Newton like methods, interior point techniques, etc.).There are many ways of taking constraints (5) into account. If we use sequentialminimization techniques (as penalty function methods), part of these constraints(for example box constraints) can be considered explicitly in the optimization pro-cess, while other constraints may be penalized. It is worth to mention that, in allcases above, the auxiliary function (7) and the canonical formulas (8){(11) can beused for computing total derivatives and derivatives of any order.We tested the performance of SPG methods for the solution of optimal controlproblems because, as it is said in [5], \It is quite surprising that such a simple toolcan be competitive with rather elaborated algorithms which use extensively testedsubroutines and numerical procedures." As our experimental results show, spectralprojected gradient methods and automatic di�erentiation are, in fact, very usefultools for solving optimal control problems.Finally, we have presented a set of problems and detailed information about theperformance of SPG methods. This information can be used for future comparisonsin the development of new software for solving optimal control problems. All theused codes can be requested by e-mail.ACKNOWLEDGEMENTSThe authors are thankful to L�ucio Tunes Santos for the careful reading of themanuscript.REFERENCES1. B. M. Averick, J. J. Mor�e, C. H. Bischof, A. Carle and A. Griewank, Computing large sparseJacobian matrices using automatic di�erentiation, SIAM Journal in Scienti�c Computing15 (1994), pp. 285{294.2. M. C. Bartholomew-Biggs, L. Bartholomew-Biggs and B. Christianson, Optimization & auto-matic di�erentiation in ADA: some practical experience, Optimization Methods and Software4 (1994), pp. 47{73.
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