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Abstract. We prove that any real matrix A contains a subset of at
most 4k/ε + 2k log(k + 1) rows whose span “contains” a matrix of rank
at most k with error only (1 + ε) times the error of the best rank-k
approximation of A. We complement it with an almost matching lower
bound by constructing matrices where the span of any k/2ε rows does
not “contain” a relative (1 + ε)-approximation of rank k. Our existence
result leads to an algorithm that finds such rank-k approximation in time
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i.e., essentially O(Mk/ε), where M is the number of nonzero entries of
A. The algorithm maintains sparsity, and in the streaming model [12,
14, 15], it can be implemented using only 2(k + 1)(log(k + 1) + 1) passes
over the input matrix and O

�
min{m, n}( k

ε
+ k2 log k)

�
additional space.

Previous algorithms for low-rank approximation use only one or two
passes but obtain an additive approximation.

1 Introduction

Given an m × n matrix A of reals and an integer k, the problem of finding a
matrix B of rank at most k that minimizes ‖A − B‖2

F =
∑

i,j(Aij − Bij)2 has
received much attention in the past decade. The classical optimal solution to this
problem is the matrix Ak consisting of the first k terms in the Singular Value
Decomposition (SVD) of A:

A =
n∑

i=1

σiuiv
T
i

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the singular values and {ui}n
1 , {vi}n

1

are orthonormal sets of vectors called left and right singular vectors, respec-
tively. Computing the SVD and hence the best low-rank approximation takes
O(min{mn2,m2n}) time.

Recent work on this problem has focussed on reducing the complexity while
allowing an approximation to Ak. Frieze et al. [13] introduced the following
sampling approach where rows of A are picked with probabilities proportional
to their squared lengths.



Theorem 1 ([13]). Let S be an i.i.d. sample of s rows of an m× n matrix A,
from the following distribution: row i is picked with probability

Pi ≥ c
‖A(i)‖2

‖A‖2
F

.

Then there is a matrix Ãk whose rows lie in span(S) such that

E
[
‖A− Ãk‖2

F

]
≤ ‖A−Ak‖2

F +
k

cs
‖A‖2

F .

Setting s = k/cε in the theorem, we get

E
[
‖A− Ãk‖2

F

]
≤ ‖A−Ak‖2

F + ε‖A‖2
F .

The theorem suggests a randomized algorithm (analyzed in [13], [7] and later
in [9]) that makes two passes through the matrix A and finds such an approx-
imation using O(min{m,n}k2/ε4) additional time. So overall, it takes O(M +
min{m,n}k2/ε4) time, where M is the number of non-zero entries of A. A differ-
ent sampling approach that uses only one pass and has comparable guarantees
(in particular, additive error) was given in [2], and further improved in [1].

The additive error ε‖A‖2
F could be arbitrarily large compared to the true

error, ‖A−Ak‖2
F . Is it possible to get a (1+ε)-relative approximation efficiently,

i.e., in linear or sublinear time? Related to this, is there a small witness, i.e., is
there a (1 + ε)-approximation of rank k whose rows lie in the span of a small
subset of the rows of A? Addressing these questions, it was shown in [11] that
any matrix A contains a subset S of O(k2/ε) rows such that there is a matrix
Ãk of rank at most k whose rows lie in span(S) and

‖A− Ãk‖2
F ≤ (1 + ε)‖A−Ak‖2

F .

This existence result was applied to derive an approximation algorithm for a
projective clustering [3, 16] problem: find j linear subspaces, each of dimension
at most k, that minimize the sum of squared distances of each point to its
nearest subspace. However, the question of efficiently finding such a (1 + ε)-
relative approximation to Ak was left open.

In recent independent work, Drineas et al. [6, 10] have shown that, using the
SVD, one can find a subset of O(k log k/ε) rows whose span “contains” such a
relative approximation. They also provide practical motivation for this problem.

1.1 Our Results

Our first result is the following improved existence theorem.

Theorem 2. Any m× n matrix A contains a subset S of 4k/ε + 2k log(k + 1)
rows such that there is a matrix Ãk of rank at most k whose rows lie in span(S)
and

‖A− Ãk‖2
F ≤ (1 + ε)‖A−Ak‖2

F .



Based on this, we give an efficient algorithm in Section 3.2 that exploits any
sparsity of the input matrix. For a matrix with M nonzero entries, a rank-k
approximation is computed in

O

(
M

(
k

ε
+ k2 log k

)
+ (m + n)

(
k2

ε2
+

k3 log k

ε
+ k4 log2 k

))
time using O(min{m,n}(k

ε + k2 log k)) space (Theorem 5). In the streaming
model, the algorithm requires 2(k + 1)(log(k + 1) + 1) passes over the input
matrix. The running time is O

(
M(k/ε + k2 log k)

)
for M sufficiently larger than

m,n; when k is a constant it is O(M/ε + 1/ε2). We note that while some of the
analysis is new, most of the algorithmic ideas were proposed in [11].

We complement the existence result with the following lower bound (Prop.
4): there exist matrices for which the span of any subset of k/2ε rows does not
contain a (1 + ε)-relative approximation.

Finally, the improved existence bound also leads to better PTAS for the
projective clustering problem. The complexity becomes d(n/ε)O(jk2/ε+jk2 log k)

reducing the dependence on k in the exponent from k3 and resolving an open
question of [11].
Notation. Henceforth, we will use πV (A) to denote the matrix obtained by pro-
jecting each row of A onto a linear subspace V . If V is spanned by a subset S of
rows, we denote the projection of A onto V by πspan(S)(A). We use πspan(S),k(A)
for the best rank-k approximation to A whose rows lie in span(S). Thus, the
approximation Ãk in Theorem 2 is Ãk = πspan(S),k(A) for a suitable S.

2 Sampling Techniques

We now describe the two sampling techniques that will be used.

2.1 Adaptive Sampling

One way to generalize the sampling procedure of Frieze et al. [13] is to do the
sampling in multiple rounds, and in an adaptive fashion. The rows in each new
round get picked with probabilities proportional to their squared distance from
the span of the rows that we have already picked in the previous rounds.

Here is the t-round adaptive sampling algorithm, introduced in [11].

1. Start with a linear subspace V . Let E0 = A− πV (A), and S = ∅.
2. For j = 1 to t, do:

(a) Pick a sample Sj of sj rows of A independently from the following dis-

tribution: row i is picked with probability P
(j−1)
i ≥ c

‖E
(i)
j−1‖

2

‖Ej−1‖2
F

.
(b) S = S ∪ Sj .
(c) Ej = A− πspan(V ∪S)(A).

The next theorem, from [11], is a generalization of Theorem 1.



Theorem 3 ([11]). After one round of the adaptive sampling procedure de-
scribed above,

ES1

[
‖A− πspan(V ∪S1),k(A)‖2

F

]
≤ ‖A−Ak‖2

F +
k

cs1
‖E0‖2

F .

We can now prove the following corollary of Theorem 3, for t-round adaptive
sampling, using induction on the number of rounds.

Corollary 1. After t rounds of the adaptive sampling procedure described above,

ES1,...,St

[
‖A− πspan(V ∪S),k(A)‖2

F

]
≤

(
1 +

k

cst
+

k2

c2stst−1
+ . . . +

kt−1

ct−1stst−1 . . . s2

)
‖A−Ak‖2

F

+
kt

ctstst−1 . . . s1
‖E0‖2

F .

Proof. We prove the theorem by induction on t. The case t = 1 is precisely
Theorem 3. For the inductive step, using Theorem 3 with span(V ∪S1∪· · ·∪St−1)
as our initial subspace, we have

ESt

[
‖A− πspan(V ∪S),k(A)‖2

F

]
≤ ‖A−Ak‖2

F +
k

cst
‖Et−1‖2

F .

Combining this inequality with the fact that

‖Et−1‖2
F = ‖A− πspan(V ∪S1∪···∪St−1)(A)‖2

F ≤ ‖A− πspan(V ∪S1∪···∪St−1),k(A)‖2
F ,

we get

ESt

[
‖A− πspan(S′),k(A)‖2

F

]
≤ ‖A−Ak‖2

F +
k

cst
‖A− πspan(V ∪S1∪···∪St−1),k(A)‖2

F .

Finally, taking the expectation over S1, . . . , St−1:

ES1,...,St

[
‖A− πspan(V ∪S),k(A)‖2

F

]
≤ ‖A−Ak‖2

F +
k

cst
ES1,...,St−1

[
‖A− πspan(V ∪S1∪···∪St−1),k(A)‖2

F

]
and the result follows from the induction hypothesis for t− 1.

From Corollary 1, it is clear that if we can get a good initial subspace V
such that dim(V ) = k and the error given by V is within some multiplicative
factor of ‖A−Ak‖2

F , then we can hope to prove something about relative rank-k
approximation. This motivates a different generalization of the sampling method
of [13].



2.2 Volume Sampling

Another way to generalize the sampling scheme of Frieze et al. [13] is by sampling
subsets of rows instead of individual rows. Let S be a subset of k rows of A, and
∆(S) be the simplex formed by these rows and the origin. Volume sampling
corresponds to the following distribution: we pick subset S with probability
equal to

PS =
vol(∆(S))2∑

T :|T |=k vol(∆(T ))2
.

Remark: Volume sampling can also be thought of as squared length sampling in
the exterior product space. Consider a matrix A′ with rows A′

S = A(i1) ∧A(i2) ∧
. . . ∧A(ik) ∈

∧k R, indexed by all k-subsets S = {i1, i2, . . . , ik} ⊆ [m]. It is easy
to see that the topmost singular value of A′ is σ1σ2 . . . σk with v1∧v2∧ . . .∧vk as
its corresponding right singular vector. Moreover, determinant (i.e., normalized
volume) defines a norm on the wedge product of k vectors, and therefore, rank-k
approximation of A by volume sampling k-subsets of rows can be thought of as
rank-1 approximation of A′ by squared length sampling of its rows.

Volume sampling technique was introduced in [11] to prove the following
theorem.

Theorem 4 ([11]). Let S be a random subset of k rows of a given matrix A
chosen with probability PS defined as above. Then.

ES

[
‖A− πspan(S)(A)‖2

F

]
≤ (k + 1)‖A−Ak‖2

F .

The next lemma was used crucially in the analysis of volume sampling.

Lemma 1 ([11]).∑
S,|S|=k

vol(∆(S))2 =
1

(k!)2
∑

1≤t1<t2<...<tk≤n

σ2
t1σ

2
t2 . . . σ2

tk
,

where σ1, σ2, . . . , σr > 0 = σr+1 = . . . = σn are the singular values of A.

2.3 Approximate Volume Sampling via Adaptive Sampling

Here we give an algorithm for approximate volume sampling. In brief, we run a
k-round adaptive sampling procedure, picking one row in each round.

1. S = ∅, E0 = A.
2. For j = 1 to k, do:

(a) Pick row i with probability proportional to P
(j−1)
i ≥ c

‖E
(i)
j−1‖

2

‖Ej−1‖2
F

.
(b) Add this new row to subset S.
(c) Ej = A− πspan(S)(A).

Next we show that the above procedure gives an approximate implementation
of volume sampling.



Proposition 1. Suppose the k-round adaptive procedure mentioned above picks
a subset S with probability P̃S. Then,

P̃S ≤ k! PS

Proof. Let S = {Ai1 , Ai2 , . . . , Aik} be a subset of k rows, and let τ ∈ Πk, the
set of all permutations of {i1, i2, . . . , ik}. By Hτ,t we denote the linear subspace
span(Aτ(i1), Aτ(i2), . . . , Aτ(it)), and by d(Ai,Hτ,t) we denote the orthogonal dis-
tance of Ai from this subspace. Our adaptive procedure picks a subset S with
probability equal to

P̃S =
∑

τ∈Πk

‖Aτ(i1)‖2

‖A‖2
F

d(Aτ(i2),Hτ,1)2∑m
i=1 d(Ai,Hτ,1)2

· · · d(Aτ(ik),Hτ,k−1)2∑m
i=1 d(Ai,Hτ,k−1)2

≤
∑

τ∈Πk
‖Aτ(i1)‖2 d(Aτ(i2),Hτ,1)2 · · · d(Aτ(ik),Hτ,k−1)2

‖A‖2
F ‖A−A1‖2

F · · · ‖A−Ak−1‖2
F

=

∑
τ∈Πk

(k!)2vol(∆(S))2

‖A‖2
F ‖A−A1‖2

F · · · ‖A−Ak−1‖2
F

=
(k!)3 vol(∆(S))2∑m

i=1 σ2
i

∑m
i=2 σ2

i · · ·
∑m

i=k σ2
i

≤ (k!)3 vol(∆(S))2∑
1≤i1<i2<...<ik≤m σ2

i1
σ2

i2
· · ·σ2

ik

=
k! vol(∆(S))2∑

T :|T |=k vol(∆(T ))2
(using Lemma 1)

= k! PS

Now we will show why it suffices to have just the approximate implementation
of volume sampling. If we sample subsets S with probabilities P̃S instead of PS ,
we get an analog of Theorem 4 with a weaker multiplicative approximation.

Proposition 2. If we sample a subset S of k rows using the k-round adaptive
sampling procedure mentioned above, then

ES

[
‖A− πS(A)‖2

F

]
≤ (k + 1)! ‖A−Ak‖2

F .

Proof. Since we are picking a subset S with probability P̃S the expected error is

ES

[
‖A− πspan(S)(A)‖2

F

]
=

∑
S:|S|=k

P̃S‖A− πspan(S)(A)‖2
F

≤ k!
∑

S:|S|=k

PS‖A− πspan(S)(A)‖2
F

≤ k! (k + 1)‖A−Ak‖2
F (using Theorem 4)

= (k + 1)! ‖A−Ak‖2
F



3 Low-rank approximation with multiplicative error

In this section, we combine adaptive sampling and volume sampling to prove the
existence of a small witness and then to derive an efficient algorithm.

3.1 Existence

We now prove Theorem 2.

Proof. From Theorem 4, we know that there exists a subset S0 of k rows of A
such that

‖A− πspan(S0)(A)‖2
F ≤ (k + 1)‖A−Ak‖2

F .

Let V = span(S0), t = log(k + 1), c = 1 in Corollary 1, we know that there
exist subsets S1, . . . , St of rows with sizes s1 = . . . = st−1 = 2k and st = 4k/ε,
respectively, such that

‖A− πspan(V ∪S1∪...∪St),k(A)‖2
F ≤

(
1 +

ε

4
+

ε

8
+ . . .

)
‖A−Ak‖2

F +
ε

2t+1
‖E0‖2

F

≤ (1 +
ε

2
) ‖A−Ak‖2

F +
ε

2t+1
‖A− πV (A)‖2

F

≤ (1 +
ε

2
) ‖A−Ak‖2

F +
ε

2t+1
(k + 1)‖A−Ak‖2

F

= (1 +
ε

2
) ‖A−Ak‖2

F +
ε

2
‖A−Ak‖2

F

= (1 + ε)‖A−Ak‖2
F .

Therefore, for S = S0 ∪ S1 ∪ . . . ∪ St we have

|S| ≤
t∑

j=0

|Sj | = k + 2k(log(k + 1)− 1) +
4k

ε
≤ 4k

ε
+ 2k log(k + 1)

and
‖A− πspan(S′),k(A)‖2

F ≤ (1 + ε)‖A−Ak‖2
F .

3.2 Efficient algorithm

In this section we describe an algorithm that given a matrix A ∈ Rm×n, finds
another matrix Ãk of rank at most k such that ‖A− Ãk‖2

F ≤ (1 + ε)‖A−Ak‖2
F .

The algorithm has two phases. In the first phase, we pick a subset of k rows
using the approximate volume sampling procedure described in Subsection 2.3.
In the second phase, we use the span of these k rows as our initial subspace and
perform (k + 1) log(k + 1) rounds of adaptive sampling. The rows chosen are all
from the original matrix A.



Linear Time Low-Rank Matrix Approximation

Input: A ∈ Rm×n, integer k ≤ m, error parameter ε > 0.
Output: Ãk ∈ Rm×n of rank at most k.

1. Pick a subset S0 of k rows of A using the approximate volume sampling
procedure described in Subsection 2.3. Compute an orthonormal basis B0

of span(S0).
2. Initialize V = span(S0). Fix parameters as t = (k + 1) log(k + 1), s1 =

s2 = . . . = st−1 = 2k, and st = 16k/ε.
3. Pick subsets of rows S1, S2, . . . , St, using t-round adaptive sampling proce-

dure described in Subsection 2.1. After round j, extend the previous ortho-
normal basis Bj−1 to an orthonormal basis Bj of span(S0 ∪S1 ∪ . . .∪Sj).

4. S =
⋃t

j=0 Sj , and we have an orthonormal basis Bt of span(S).
5. Compute h1, h2, . . . , hk, the top k right singular vectors of πspan(S)(A).
6. Output matrix Ãk = πspan(h1,...,hk)(A), written in the standard basis.

Here are some details about the implementations of these steps.
In Step 1, we use the k-round adaptive procedure for approximate volume

sampling. In the j-th round of this procedure, we sample a row and com-
pute its component vj orthogonal to the span of the rows picked in rounds
1, 2, . . . , j − 1. The residual squared lengths of the rows are computed using
‖E(i)

j ‖2 = ‖E(i)
j−1‖2 − A(i) · vj , and ‖Ej‖2

F = ‖Ej−1‖2
F − ‖Avj‖2. In the end, we

have an orthonormal basis B0 = {v1/ ‖v1‖ , . . . , vk/ ‖vk‖}.
In Step 3, there are (k+1) log(k+1) rounds of adaptive sampling. In the j-th

round, we extend the orthonormal basis from Bj−1 to Bj by Gram-Schmidt or-
thonormalization. We compute the residual squared lengths of the rows ‖E(i)

j ‖2,
as well as the total, ‖Ej‖2

F , by subtracting the contribution πspan(Bj\Bj−1)(A)
from the values that they had during the previous round.

Each round in Steps 1 and 3 can be implemented using 2 passes over the
matrix: one pass to figure out the sampling distribution, and an another one to
sample a row (or a subset of rows) according to this distribution. So Steps 1 and
3 require 2(k + 1) log(k + 1) + 2k passes.

Finally, in Step 5, we compute πspan(S)(A) in terms of basis Bt using one pass
(now we have an m×O(k/ε + k2 log k) matrix), and we compute its top k right
singular vectors using SVD. In Step 6, we rewrite them in the standard basis
and project matrix A onto their span, which requires one additional pass.

So the total number of passes is 2(k + 1)(log(k + 1) + 1).

Theorem 5. With probability at least 3/4, the algorithm outputs a matrix Ãk

such that
‖A− Ãk‖2

F ≤ (1 + ε)‖A−Ak‖2
F .

Moreover, the algorithm takes

O

(
M

(
k

ε
+ k2 log k

)
+ (m + n)

(
k2

ε2
+

k3 log k

ε
+ k4 log2 k

))



time and O
(
min{m,n}(k

ε + k2 log k)
)

space.

Proof. We begin with a proof of correctness. After the first phase of approximate
volume sampling, using Proposition 2, we have

ES0

[
‖A− πspan(S0)(A)‖2

F

]
≤ (k + 1)! ‖A−Ak‖2

F .

Now using V = span(S0), c = 1, t = (k + 1) log(k + 1), st = 16k/ε, st−1 =
. . . = s1 = 2k in Theorem 1 we get that

ES1,...,St

[
‖A− πspan(S),k(A)‖2

F

]
≤

(
1 +

ε

16
+

ε

32
+ . . .

)
‖A−Ak‖2

F +
ε

2t+3
‖A− πspan(S0)(A)‖2

F

≤ (1 +
ε

8
) ‖A−Ak‖2

F +
ε

8 · 2t
‖A− πspan(S0)(A)‖2

F .

Now taking expectation over S0 we have

ES0,...,St

[
‖A− πspan(S),k(A)‖2

F

]
≤ (1 +

ε

8
) ‖A−Ak‖2

F +
ε

8 · 2t
ES0‖A− πspan(S0)(A)‖2

F

≤ (1 +
ε

8
) ‖A−Ak‖2

F +
ε

8 · 2t
(k + 1)! ‖A−Ak‖2

F

≤ (1 +
ε

8
) ‖A−Ak‖2

F +
ε

8 · 2t
(k + 1)(k+1) ‖A−Ak‖2

F

≤ (1 +
ε

8
) ‖A−Ak‖2

F +
ε

8
‖A−Ak‖2

F

= (1 +
ε

4
)‖A−Ak‖2

F .

This means

ES0,...,St

[
‖A− πspan(S),k(A)‖2

F − ‖A−Ak‖2
F

]
≤ ε

4
‖A−Ak‖2

F .

Therefore, using Markov’s inequality, with probability at least 3/4 the algorithm
gives a matrix Ãk = πspan(S),k(A) satisfying

‖A− Ãk‖2
F ≤ (1 + ε)‖A−Ak‖2

F .

Now let us analyze its complexity.
Step 1 has k rounds of adaptive sampling. In each round, the matrix-vector

multiplication requires O(M) time and storing vector vj requires O(n) space. So
overall, Step 1 takes O(Mk + nk) time, O(nk) space.

Step 3 has 2(k + 1) log(k + 1) rounds of adaptive sampling. The j-th round
(except for the last round), involves Gram-Schmidt orthonormalization of 2k
vectors in Rn against an orthonormal basis of size at most (2j +1)k, which takes
time O(njk2). Computing πspan(Bj\Bj−1)(A) for updating the values ‖E(i)

j ‖2 and



‖Ej‖2
F takes time O(Mk). Thus, the total time for the j-th round is O(Mk +

njk2). In the last round, we pick O(k/ε) rows. The Gram-Schmidt orthonor-
malization of these O(k/ε) vectors against an orthonormal basis of O(k2 log k)
vectors takes O(nk3 log k/ε) time; storing this basis requires O(nk/ε+nk2 log k)
space. So overall, Step 3 takes O

(
Mk2 log k + n(k3 log k/ε + k4 log2 k)

)
time and

O(nk/ε + nk2 log k) space (to store the basis Bt).
In Step 5, projecting A onto span(S) takes O

(
M(k/ε + k2 log k)

)
time. Now

we have πspan(S)(A) in terms of our basis Bt (which is a m × O(k2 log k + k/ε)
matrix) and computation of its top k right singular vectors takes time
O

(
m(k/ε + k2 log k)2

)
.

In Step 6, rewriting h1, h2, . . . , hk in terms of the standard basis takes time
O

(
n(k3 log k + k2/ε)

)
. And finally, projecting the matrix A onto span(h1, . . . , hk)

takes time O(Mk).
Putting it all together, the algorithm takes

O

(
M

(
k

ε
+ k2 log k

)
+ (m + n)

(
k2

ε2
+

k3 log k

ε
+ k4 log2 k

))
time and O

(
min{m,n}(k/ε + k2 log k)

)
space (since we can do the same with

columns instead of rows), and O(k log k) passes over the data.

This algorithm can be made to work with high probability, by running inde-
pendent copies of the algorithm in each pass and taking the best answer found
at the end. The overhead to get a probability of success of 1−δ is O(

√
log(1/δ)).

4 Lower-bound for relative low-rank matrix
approximation

Here we show a lower bound of Ω(k/ε) for rank-k approximation using a subset
of rows.

Proposition 3. Given ε > 0 and n large enough so that nε ≥ 2, there exists an
n× (n + 1) matrix A such that for any subset S of its rows with |S| ≤ 1/2ε,

‖A− πspan(S),1(A)‖2
F ≥ (1 + ε)‖A−A1‖2

F

Proof. Let e1, e2, . . . , en+1 be the standard basis for Rn+1, considered as rows.
Consider the n× (n+1) matrix A, whose i-th row is given by A(i) = e1 + ε ei+1,
for i = 1, 2, . . . , n. The best rank-1 approximation for this is A1, whose i-th row
is given byA

(i)
1 = e1 +

∑n
i=1

1
nei+1. Therefore,

‖A−A1‖2
F =

n∑
i=1

‖A(i) −A
(i)
1 ‖2 = n

(
(n− 1)2ε2

n2
+ (n− 1)

ε2

n2

)
= (n− 1)ε2.

Now let S be any subset of the rows with |S| = s. It is easy to see that the best
rank-1 approximation for A in the span of S is given by πspan(S),1(A), whose i-th



row is given by πspan(S),1(A)(i) = e1 + ε
s

∑
i∈S ei+1, for all i (because it has to

be a symmetric linear combination of them). Hence,

‖A− πspan(S),1(A)‖2
F =

∑
i∈S

‖A(i) − πspan(S),1(A)(i)‖2 +
∑
i/∈S

‖A(i) − πspan(S),1(A)(i)‖2

= s

(
(s− 1)2ε2

s2
+ (s− 1)

ε2

s2

)
+ (n− s)

(
s

ε2

s2
+ ε2

)
=

(s− 1)2ε2

s
+

(s− 1)ε2

s
+

nε2

s
+ nε2 − ε2 − sε2

=
nε2

s
+ nε2 − 2ε2.

Now if s ≤ 1
2ε then ‖A − πspan(S),1(A)‖2

F = (1 + 2ε)nε2 − 2ε2 ≥ (1 + ε)nε2 ≥
(1 + ε)‖A−A1‖2

F , for n chosen large enough so that nε ≥ 2.

Now we will try to extend this lower bound for relative rank-k approximation.

Proposition 4. Given ε > 0, k, and n large enough so that nε ≥ 2k, there exists
a kn× k(n+1) matrix B such that for any subset S of its rows with |S| ≤ k/2ε,

‖B − πspan(S),k(A)‖2
F ≥ (1 + ε)‖B −Bk‖2

F .

Proof. Consider B to be a kn × k(n + 1) block-diagonal matrix with k blocks,
where each of the blocks is equal to A defined as in Proposition 3 above. It is
easy to see that

‖B −Bk‖2
F = k‖A−A1‖2

F .

Now pick any subset S of rows with |S| ≤ k
2ε . Let Si be the subset of rows taken

from the i-th block, and let |Si| = k
2εi

. We know that
∑k

i=1 |Si| =
∑k

i=1
k

2εi
≤ k

2ε ,
and hence nεi ≥ nε ≥ 2.

Therefore,

‖B − πspan(S),k(B)‖2
F =

k∑
i=1

‖A− πspan(Si),1(A)‖2
F

≥
k∑

i=1

(1 +
εi

k
)‖A−A1‖2

F (using Proposition 3)

= (k +
∑k

i=1 εi

k
)‖A−A1‖2

F

≥ (k +
k∑k

i=1 1/εi

)‖A−A1‖2
F (by A.M.-H.M. inequality)

≥ (k + kε)‖A−A1‖2
F

= k(1 + ε)‖A−A1‖2
F

= (1 + ε)‖B −Bk‖2
F .



5 Discussion

Our algorithm implements approximate volume sampling using 2k passes over
the matrix. Can we do it using fewer passes? Can exact volume sampling be
implemented efficiently?

It would also be nice to close the gap between the upper bound O(k/ε +
k log k) and the lower bound Ω(k/ε) on the number of rows whose span “con-
tains” a (1 + ε)-approximation of rank at most k.
Acknowledgements. We would like to thank Sariel Har-Peled, Prahladh Har-
sha, Ravi Kannan, Frank McSherry, Luis Rademacher and Grant Wang.
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